1
|
O'Leary SJ, Hollenbeck CM, Vega RR, Portnoy DS. Disentangling complex genomic signals to understand population structure of an exploited, estuarine-dependent flatfish. Ecol Evol 2021; 11:13415-13429. [PMID: 34646479 PMCID: PMC8495835 DOI: 10.1002/ece3.8064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Interpreting contemporary patterns of population structure requires an understanding of the interactions among microevolutionary forces and past demographic events. Here, 4,122 SNP-containing loci were used to assess structure in southern flounder (Paralichthys lethostigma) sampled across its range in the US Atlantic Ocean (Atlantic) and Gulf of Mexico (Gulf) and relationships among components of genomic variation and spatial and environmental variables were assessed across estuarine population samples in the Gulf. While hierarchical amova revealed significant heterogeneity within and between the Atlantic and Gulf, pairwise comparisons between samples within ocean basins demonstrated that all significant heterogeneity occurred within the Gulf. The distribution of Tajima's D estimated at a genome-wide scale differed significantly from equilibrium in all estuaries, with more negative values occurring in the Gulf. Components of genomic variation were significantly associated with environmental variables describing individual estuaries, and environment explained a larger component of variation than spatial proximity. Overall, results suggest that there is genetic spatial autocorrelation caused by shared larval sources for proximal nurseries (migration/drift), but that it is modified by environmentally driven differentiation (selection). This leads to conflicting signals in different parts of the genome and creates patterns of divergence that do not correspond to paradigms of strong local directional selection.
Collapse
Affiliation(s)
| | - Christopher M. Hollenbeck
- Marine Genomics LaboratoryDepartment of Life SciencesTexas A&M University Corpus ChristiCorpus ChristiTexasUSA
| | - Robert R. Vega
- CCA Marine Development CenterTexas Parks and Wildlife DepartmentCorpus ChristiTexasUSA
| | - David S. Portnoy
- Marine Genomics LaboratoryDepartment of Life SciencesTexas A&M University Corpus ChristiCorpus ChristiTexasUSA
| |
Collapse
|
2
|
Popovic I, Matias AMA, Bierne N, Riginos C. Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evol Appl 2020; 13:515-532. [PMID: 32431733 PMCID: PMC7045716 DOI: 10.1111/eva.12857] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Introduced species can impose profound impacts on the evolution of receiving communities with which they interact. If native and introduced taxa remain reproductively semi-isolated, human-mediated secondary contact may promote genetic exchange across newly created hybrid zones, potentially impacting native genetic diversity and invasive species spread. Here, we investigate the contributions of recent divergence histories and ongoing (post-introduction) gene flow between the invasive marine mussel, Mytilus galloprovincialis, and a morphologically indistinguishable and taxonomically contentious native Australian taxon, Mytilus planulatus. Using transcriptome-wide markers, we demonstrate that two contemporary M. galloprovincialis introductions into south-eastern Australia originate from genetically divergent lineages from its native range in the Mediterranean Sea and Atlantic Europe, where both introductions have led to repeated instances of admixture between introduced and endemic populations. Through increased genome-wide resolution of species relationships, combined with demographic modelling, we validate that mussels sampled in Tasmania are representative of the endemic Australian taxon (M. planulatus), but share strong genetic affinities to M. galloprovincialis. Demographic inferences indicate late-Pleistocene divergence times and historical gene flow between the Tasmanian endemic lineage and northern M. galloprovincialis, suggesting that native and introduced taxa have experienced a period of historical isolation of at least 100,000 years. Our results demonstrate that many genomic loci and sufficient sampling of closely related lineages in both sympatric (e.g. Australian populations) and allopatric (e.g. northern hemisphere Mytilus taxa) ranges are necessary to accurately (a) interpret patterns of intraspecific differentiation and to (b) distinguish contemporary invasive introgression from signatures left by recent divergence histories in high dispersal marine species. More broadly, our study fills a significant gap in systematic knowledge of native Australian biodiversity and sheds light on the intrinsic challenges for invasive species research when native and introduced species boundaries are not well defined.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| | | | - Nicolas Bierne
- Institut des Sciences de l’EvolutionUMR 5554CNRS‐IRD‐EPHE‐UMUniversité de MontpellierMontpellierFrance
| | - Cynthia Riginos
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
3
|
Taylor ML, Roterman CN. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor. Mol Ecol 2017; 26:4872-4896. [PMID: 28833857 DOI: 10.1111/mec.14237] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made.
Collapse
Affiliation(s)
- M L Taylor
- Department of Zoology, University of Oxford, Oxford, UK
| | - C N Roterman
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Farhadi A, Jeffs AG, Farahmand H, Rejiniemon TS, Smith G, Lavery SD. Mechanisms of peripheral phylogeographic divergence in the indo-Pacific: lessons from the spiny lobster Panulirus homarus. BMC Evol Biol 2017; 17:195. [PMID: 28821229 PMCID: PMC5563042 DOI: 10.1186/s12862-017-1050-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/11/2017] [Indexed: 12/03/2022] Open
Abstract
Background There is increasing recognition of the concordance between marine biogeographic and phylogeographic boundaries. However, it is still unclear how population-level divergence translates into species-level divergence, and what are the principal factors that first initiate that divergence, and then maintain reproductive isolation. This study examines the likely forces driving population and lineage divergences in the broadly-distributed Indo-Pacific spiny lobster Panulirus homarus, which has peripheral divergent lineages in the west and east. The study focuses particularly on the West Indian Ocean, which is emerging as a region of unexpected diversity. Mitochondrial control region (mtCR) and COI sequences as well as genotypes of 9 microsatellite loci were examined in 410 individuals from 17 locations grouped into 7 regions from South Africa in the west, and eastward across to Taiwan and the Marquesas Islands. Phylogenetic and population-level analyses were used to test the significance and timing of divergences and describe the genetic relationships among populations. Results Analyses of the mtCR revealed high levels of divergence among the seven regions (ФST = 0.594, P < 0.001). Microsatellite analyses also revealed significant divergence among regions, but at a much lower level (FST = 0.066, P < 0.001). The results reveal different patterns of mtCR v. nDNA divergence between the two distinct peripheral lineages: a subspecies in South Africa and Madagascar, and a phylogeographically diverged population in the Marquesas. The results also expose a number of other more fine-scale population divergences, particularly in the Indian Ocean. Conclusions The divergence of peripheral lineages in the west and east of the species’ range appear to have been initiated and maintained by very different processes. The pattern of mitochondrial and nuclear divergence of the western lineage, implicates processes of parapatric isolation, secondary contact and introgression, and suggests possible maintenance through adaptation and behavioural reproductive isolation. In contrast, the eastern lineage appears to have diverged through a rare colonisation event, maintained through long-term isolation, and matches expectations of the core-periphery hypothesis. The process of active peripheral speciation may be a common force in the Indo-Pacific that helps drive some of the regions’ recognized biogeographic boundaries. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1050-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmad Farhadi
- School of Biological Sciences, University of Auckland, Auckland, New Zealand. .,Department of Natural Resources and Environment, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Andrew G Jeffs
- Institute of Marine Science and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hamid Farahmand
- Department of Fisheries and Environment, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | | | - Greg Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Shane D Lavery
- School of Biological Sciences and Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Portnoy DS, Hollenbeck CM, Belcher CN, Driggers WB, Frazier BS, Gelsleichter J, Grubbs RD, Gold JR. Contemporary population structure and post-glacial genetic demography in a migratory marine species, the blacknose shark, Carcharhinus acronotus. Mol Ecol 2014; 23:5480-95. [PMID: 25294029 DOI: 10.1111/mec.12954] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022]
Abstract
Patterns of population structure and historical genetic demography of blacknose sharks in the western North Atlantic Ocean were assessed using variation in nuclear-encoded microsatellites and sequences of mitochondrial (mt)DNA. Significant heterogeneity and/or inferred barriers to gene flow, based on microsatellites and/or mtDNA, revealed the occurrence of five genetic populations localized to five geographic regions: the southeastern U.S Atlantic coast, the eastern Gulf of Mexico, the western Gulf of Mexico, Bay of Campeche in the southern Gulf of Mexico and the Bahamas. Pairwise estimates of genetic divergence between sharks in the Bahamas and those in all other localities were more than an order of magnitude higher than between pairwise comparisons involving the other localities. Demographic modelling indicated that sharks in all five regions diverged after the last glacial maximum and, except for the Bahamas, experienced post-glacial, population expansion. The patterns of genetic variation also suggest that the southern Gulf of Mexico may have served as a glacial refuge and source for the expansion. Results of the study demonstrate that barriers to gene flow and historical genetic demography contributed to contemporary patterns of population structure in a coastal migratory species living in an otherwise continuous marine habitat. The results also indicate that for many marine species, failure to properly characterize barriers in terms of levels of contemporary gene flow could in part be due to inferences based solely on equilibrium assumptions. This could lead to erroneous conclusions regarding levels of connectivity in species of conservation concern.
Collapse
Affiliation(s)
- D S Portnoy
- Marine Genomics Laboratory, Department of Life Sciences, Harte Research Institute, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX, 78412, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 2014; 4:4399-428. [PMID: 25540699 PMCID: PMC4267876 DOI: 10.1002/ece3.1305] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Advancing technologies have facilitated the ever-widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (F ST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity-based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration-specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context-dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non-human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high-throughput technologies in population genetics.
Collapse
Affiliation(s)
- Alexander I Putman
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| | - Ignazio Carbone
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| |
Collapse
|
7
|
Selkoe KA, Gaggiotti OE, Bowen BW, Toonen RJ. Emergent patterns of population genetic structure for a coral reef community. Mol Ecol 2014; 23:3064-79. [DOI: 10.1111/mec.12804] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Kimberly A. Selkoe
- Hawai ̀i Institute of Marine Biology; University of Hawai ̀i; Kāne ̀ohe HI 97644 USA
- National Center for Ecological Analysis and Synthesis; 735 State St. Santa Barbara CA 93101 USA
| | - Oscar E. Gaggiotti
- Scottish Oceans Institute; School of Biology; University of St Andrews; St Andrews Fife KY16 8LB UK
| | - Brian W. Bowen
- Hawai ̀i Institute of Marine Biology; University of Hawai ̀i; Kāne ̀ohe HI 97644 USA
| | - Robert J. Toonen
- Hawai ̀i Institute of Marine Biology; University of Hawai ̀i; Kāne ̀ohe HI 97644 USA
| | | |
Collapse
|
8
|
Vignaud TM, Maynard JA, Leblois R, Meekan MG, Vázquez-Juárez R, Ramírez-Macías D, Pierce SJ, Rowat D, Berumen ML, Beeravolu C, Baksay S, Planes S. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline. Mol Ecol 2014; 23:2590-601. [DOI: 10.1111/mec.12754] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas M. Vignaud
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
| | - Jeffrey A. Maynard
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14568 USA
| | | | - Mark G. Meekan
- Australian Institute of Marine Science; UWA Oceans Institute (MO96); 35 Stirling Hwy Crawley WA 6009 Australia
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biologicas del Noroeste; Mar Bermejo 195, Col. Playa Palo de Santa Rita La Paz B.C.S. 23096 Mexico
| | - Dení Ramírez-Macías
- Centro de Investigaciones Biologicas del Noroeste; Mar Bermejo 195, Col. Playa Palo de Santa Rita La Paz B.C.S. 23096 Mexico
- Tiburón Ballena México proyecto de Conciencia Mexico; Manatí 4802, Col. Esperanza III La Paz B.C.S. 23090 Mexico
| | - Simon J. Pierce
- Marine Megafauna Foundation; 3024 Frandoras Circle Oakley CA 94561 USA
- Wild Me; Praia do Tofo; Inhambane Mozambique
| | - David Rowat
- Marine Conservation Society Seychelles; PO Box 1299 Victoria Mahe Seychelles
| | - Michael L. Berumen
- Red Sea Research Center; King Abdullah University of Science and Technology; 23955-6900 Thuwal Kingdom of Saudi Arabia
| | | | - Sandra Baksay
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
| | - Serge Planes
- Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE; CRIOBE; Papetoai Moorea French Polynesia
| |
Collapse
|
9
|
Haye PA, Segovia NI, Muñoz-Herrera NC, Gálvez FE, Martínez A, Meynard A, Pardo-Gandarillas MC, Poulin E, Faugeron S. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. PLoS One 2014; 9:e88613. [PMID: 24586356 PMCID: PMC3929388 DOI: 10.1371/journal.pone.0088613] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
The role of dispersal potential on phylogeographic structure, evidenced by the degree of genetic structure and the presence of coincident genetic and biogeographic breaks, was evaluated in a macrogeographic comparative approach along the north-central coast of Chile, across the biogeographic transition zone at 30°S. Using 2,217 partial sequences of the mitochondrial Cytochrome Oxidase I gene of eight benthic invertebrate species along ca. 2,600 km of coast, we contrasted dispersal potential with genetic structure and determined the concordance between genetic divergence between biogeographic regions and the biogeographic transition zone at 30°S. Genetic diversity and differentiation highly differed between species with high and low dispersal potential. Dispersal potential, sometimes together with biogeographic region, was the factor that best explained the genetic structure of the eight species. The three low dispersal species, and one species assigned to the high dispersal category, had a phylogeographic discontinuity coincident with the biogeographic transition zone at 30°S. Furthermore, coalescent analyses based on the isolation-with-migration model validate that the split between biogeographic regions north and south of 30°S has a historic origin. The signatures of the historic break in high dispersers is parsimoniously explained by the homogenizing effects of gene flow that have erased the genetic signatures, if ever existed, in high dispersers. Of the four species with structure across the break, only two had significant albeit very low levels of asymmetric migration across the transition zone. Historic processes have led to the current biogeographic and phylogeographic structure of marine species with limited dispersal along the north-central coast of Chile, with a strong lasting impact in their genetic structure.
Collapse
Affiliation(s)
- Pilar A. Haye
- Laboratorio de Diversidad Molecular, Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte & Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Nicolás I. Segovia
- Laboratorio de Diversidad Molecular, Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte & Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
| | - Natalia C. Muñoz-Herrera
- Laboratorio de Diversidad Molecular, Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte & Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Francisca E. Gálvez
- Laboratorio de Diversidad Molecular, Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte & Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Andrea Martínez
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
| | - Andrés Meynard
- Centro de Conservación Marina, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María C. Pardo-Gandarillas
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
- Centro de Conservación Marina, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elie Poulin
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
| | - Sylvain Faugeron
- Centro de Conservación Marina, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Iacchei M, Ben-Horin T, Selkoe KA, Bird CE, García-Rodríguez FJ, Toonen RJ. Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Mol Ecol 2013; 22:3476-94. [PMID: 23802550 PMCID: PMC3749441 DOI: 10.1111/mec.12341] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Abstract
We combine kinship estimates with traditional F-statistics to explain contemporary drivers of population genetic differentiation despite high gene flow. We investigate range-wide population genetic structure of the California spiny (or red rock) lobster (Panulirus interruptus) and find slight, but significant global population differentiation in mtDNA (ΦST = 0.006, P = 0.001; D(est_Chao) = 0.025) and seven nuclear microsatellites (F(ST) = 0.004, P < 0.001; D(est_Chao) = 0.03), despite the species' 240- to 330-day pelagic larval duration. Significant population structure does not correlate with distance between sampling locations, and pairwise FST between adjacent sites often exceeds that among geographically distant locations. This result would typically be interpreted as unexplainable, chaotic genetic patchiness. However, kinship levels differ significantly among sites (pseudo-F(16,988) = 1.39, P = 0.001), and ten of 17 sample sites have significantly greater numbers of kin than expected by chance (P < 0.05). Moreover, a higher proportion of kin within sites strongly correlates with greater genetic differentiation among sites (D(est_Chao), R(2) = 0.66, P < 0.005). Sites with elevated mean kinship were geographically proximate to regions of high upwelling intensity (R(2) = 0.41, P = 0.0009). These results indicate that P. interruptus does not maintain a single homogenous population, despite extreme dispersal potential. Instead, these lobsters appear to either have substantial localized recruitment or maintain planktonic larval cohesiveness whereby siblings more likely settle together than disperse across sites. More broadly, our results contribute to a growing number of studies showing that low F(ST) and high family structure across populations can coexist, illuminating the foundations of cryptic genetic patterns and the nature of marine dispersal.
Collapse
Affiliation(s)
- Matthew Iacchei
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Gaither MR, Bowen BW, Toonen RJ. Population structure in the native range predicts the spread of introduced marine species. Proc Biol Sci 2013; 280:20130409. [PMID: 23595272 PMCID: PMC3652461 DOI: 10.1098/rspb.2013.0409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Forecasting invasion success remains a fundamental challenge in invasion biology. The effort to identify universal characteristics that predict which species become invasive has faltered in part because of the diversity of taxa and systems considered. Here, we use an alternative approach focused on the spread stage of invasions. FST, a measure of alternative fixation of alleles, is a common proxy for realized dispersal among natural populations, summarizing the combined influences of life history, behaviour, habitat requirements, population size, history and ecology. We test the hypothesis that population structure in the native range (FST) is negatively correlated with the geographical extent of spread of marine species in an introduced range. An analysis of the available data (29 species, nine phyla) revealed a significant negative correlation (R(2) = 0.245-0.464) between FST and the extent of spread of non-native species. Mode FST among pairwise comparisons between populations in the native range demonstrated the highest predictive power (R(2) = 0.464, p < 0.001). There was significant improvement when marker type was considered, with mtDNA datasets providing the strongest relationship (n = 21, R(2) = 0.333-0.516). This study shows that FST can be used to make qualitative predictions concerning the geographical extent to which a non-native marine species will spread once established in a new area.
Collapse
Affiliation(s)
- Michelle R Gaither
- Section of Ichthyology, California Academy of Sciences, , 55 Music Concourse Drive, San Francisco, CA 94118, USA.
| | | | | |
Collapse
|
12
|
Barbosa SS, Klanten SO, Puritz JB, Toonen RJ, Byrne M. Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio S. Barbosa
- School of Medical Science; University of Sydney; Sydney; NSW; 2006; Australia
| | - Selma O. Klanten
- School of Medical Science; University of Sydney; Sydney; NSW; 2006; Australia
| | - Jonathan B. Puritz
- Hawaii Institute of Marine Biology; University of Hawai'i at Mānoa; Kaneohe; HI; 96744; USA
| | - Robert J. Toonen
- Hawaii Institute of Marine Biology; University of Hawai'i at Mānoa; Kaneohe; HI; 96744; USA
| | | |
Collapse
|
13
|
Drew J, Kaufman L. Functional endemism: population connectivity, shifting baselines, and the scale of human experience. Ecol Evol 2013; 3:450-6. [PMID: 23467269 PMCID: PMC3586653 DOI: 10.1002/ece3.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 11/26/2022] Open
Abstract
Quantifying population connectivity is important for visualizing the spatial and temporal scales that conservation measures act upon. Traditionally, migration based on genetic data has been reported in migrants per generation. However, the temporal scales over which this migration may occur do not necessarily accommodate the scales over which human perturbations occur, leaving the potential for a disconnect between population genetic data and conservation action based on those data. Here, we present a new metric called the "Rule of Memory", which helps conservation practitioners to interpret "migrants per generation" in the context both of human modified ecosystems and the cultural memory of those doing the modification. Our rule states that clades should be considered functionally endemic regardless of their actual taxonomic designation if the migration between locations is insufficient to maintain a viable population over the timescales of one human generation (20 years). Since larger animals are more likely to be remembered, we quantify the relationship between migrants per human (N) and body mass of the organism in question (M) with the formula N = 10M(-1). We then use the coral reef fish Pomacentrus moluccensis to demonstrate the taxonomic and spatial scales over which this rule can be applied. Going beyond minimum viable population literature, this metric assesses the probability that a clade's existence will be forgotten by people throughout its range during a period of extirpation. Because conservation plans are predicated on having well-established baselines, a loss of a species over the range of one human generation evokes the likelihood of that species no longer being recognized as a member of an ecosystem, and thus being excluded in restoration or conservation prioritization. [Correction added on 26 December 2012, after first online publication: this formula has been corrected to N=10M(-1)].
Collapse
Affiliation(s)
- Joshua Drew
- Department of Ecology, Evolution and Environmental Biology, Columbia University1200 Amsterdam Ave., New York, NY, 10027
| | - Les Kaufman
- Biology Department, Boston University5 Cummington Street, Boston, MA, 02215
- Conservation International2011 Crystal Drive, Arlington, Virginia, 22202
| |
Collapse
|
14
|
Horne JB, van Herwerden L. Long-term panmixia in a cosmopolitan Indo-Pacific coral reef fish and a nebulous genetic boundary with its broadly sympatric sister species. J Evol Biol 2013; 26:783-99. [DOI: 10.1111/jeb.12092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/23/2012] [Indexed: 11/26/2022]
Affiliation(s)
- J. B. Horne
- Molecular Ecology and Evolution Laboratory; School of Tropical and Marine Biology; James Cook University; Townsville Qld Australia
- Centre of Marine Sciences; University of Algarve; Faro Portugal
| | - L. van Herwerden
- Molecular Ecology and Evolution Laboratory; School of Tropical and Marine Biology; James Cook University; Townsville Qld Australia
| |
Collapse
|
15
|
Choat JH, klanten OS, Van Herwerden L, Robertson DR, Clements KD. Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01959.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John. H. Choat
- School of Tropical and Marine Biology; James Cook University; Townsville QLD 4811 Australia
| | - Oya. S. klanten
- School of Tropical and Marine Biology; James Cook University; Townsville QLD 4811 Australia
- School of Medicine; The University of Sydney; Building F13 Sydney NSW 2006 Australia
| | - Lynne Van Herwerden
- School of Tropical and Marine Biology; James Cook University; Townsville QLD 4811 Australia
| | - D. Ross Robertson
- Smithsonian Tropical Research Institute; Ancon Balboa Republic of Panama
| | - Kendall D. Clements
- School of Biological Sciences; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
16
|
Marko PB, Hart MW. The complex analytical landscape of gene flow inference. Trends Ecol Evol 2011; 26:448-56. [PMID: 21722987 DOI: 10.1016/j.tree.2011.05.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 11/25/2022]
Abstract
Gene flow estimation is essential for characterizing local adaptation, speciation potential and connectivity among threatened populations. New model-based population genetic methods can resolve complex demographic histories, but many studies in fields such as landscape genetics continue to rely on simple rules of thumb focused on gene flow to explain patterns of spatial differentiation. Here, we show how methods that use gene genealogies can reveal cryptic demographic histories and provide better estimates of gene flow with other parameters that contribute to genetic variation across landscapes and seascapes. We advocate for the expanded use and development of methods that consider spatial differentiation as the product of multiple forces interacting over time, and caution against a routine reliance on post-hoc gene flow interpretations.
Collapse
Affiliation(s)
- Peter B Marko
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| | | |
Collapse
|