1
|
Sen Zhao, Wang Y, Zhong C, Chen J, Meng L. Biotransformation of 5-methoxy-N-isopropyl-N-methyltryptamine by zebrafish and human liver microsome with high-resolution mass spectrometry. J Pharm Biomed Anal 2024; 241:115987. [PMID: 38280235 DOI: 10.1016/j.jpba.2024.115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
To explore the metabolites of 5-Methoxy-N-isopropyl-N-methyltryptamine (5-MeO-MiPT) and unveil its toxicological effects, we examined its metabolic profiles using zebrafish and human liver microsome models. Employing ultra-high-performance liquid chromatography Q Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-QE-HRMS), we analyzed samples from intoxicated zebrafish and human liver microsomes. In the zebrafish model, we identified a total of six metabolites. Primary phase I metabolic pathways involved N-Demethylation and Indole-hydroxylation reactions, while phase II metabolism included Glucoside conjugation directly, Glucoside conjugation after Indole-hydroxylation, and Sulfonation following Indole-hydroxylation. In the human liver microsome model, nine metabolites were generated. Major phase I metabolic pathways encompassed N-Demethylation, 5-O-Demethylation, and N-Depropylation, N-Oxidation, Indole-hydroxylation, N-Demethylation combined with Indole-hydroxylation, and 5-O-Methylation-carboxylation. Phase II metabolism involved Glucoside conjugation after Indole-hydroxylation, as well as Glucoside conjugation after 5-O-Demethylation. Proposed phase I metabolites, such as 5-MeO-MiPT-N-Demethylation (5-MeO-NiPT) and 5-MeO-MiPT-Indole-hydroxylation, alongside the phase II metabolite OH&Glucoside conjugation-5-MeO-MiPT, were identified as effective markers for screening 5-MeO-MiPT intake. This study systematically delineates the phase I and II metabolites of 5-MeO-MiPT, confirming their pathways through in vivo and in vitro extrapolation. Additionally, inclusion of the parent drug itself and OH&Glucoside conjugation-5-MeO-MiPT could serve as valuable confirmation tools.
Collapse
Affiliation(s)
- Sen Zhao
- Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Hangzhou 310053, PR China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yanjiao Wang
- Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China
| | - Chenhao Zhong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, PR China.
| |
Collapse
|
2
|
Boťanská B, Pecníková V, Fogarassyová M, Barančík M. The Role of Heat Shock Proteins and Autophagy in Mechanisms Underlying Effects of Sulforaphane on Doxorubicin-Induced Toxicity in HEK293 Cells. Physiol Res 2023; 72:S47-S59. [PMID: 37294118 DOI: 10.33549/physiolres.935107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Doxorubicin (DOX) is a cytostatic agent belonging to anthracycline group. Important role in mechanism associated with negative effects of DOX plays an oxidative stress. Heat shock proteins (HSPs) are part of mechanisms initiated in response to stressful stimuli and play an important role in cellular responses to oxidative stress through interaction with components of redox signaling. The present work was aimed to study the role of HSPs and autophagy in mechanisms underlying effects of sulforaphane (SFN), a potential activator of Nrf-2, on doxorubicin-induced toxicity in human kidney HEK293 cells. We investigated effects of SFN and DOX on proteins associated with regulation of heat shock response, redox signaling, and autophagy. Results show that SFN significantly reduced cytotoxic effects of DOX. The positive effects of SFN on DOX-induced changes were associated with up-regulation of Nrf-2 and HSP60 protein levels. In the case of another heat shock protein HSP40, SFN increased its levels when was administered alone but not in conditions when cells were exposed to the effects of DOX. Sulforaphane also reversed negative effects of DOX on activities of superoxide dismutases (SODs) and up-regulation of autophagy markers (LC3A/B-II, Atg5, and Atg12). In conclusion, the changes observed in HSP60 are of particular importance in terms of protecting cells from the effects of DOX. Finding that under conditions where SFN reduced cytotoxic effects of DOX were significantly increased protein levels of both Nrf-2 and HSP60 point to the role of HSP60 in mechanisms of redox signaling underlying effects of SFN on DOX-induced toxicity in HEK293 cells. Moreover, data confirmed an important role of autophagy in effects of SFN on DOX-induced toxicity.
Collapse
Affiliation(s)
- B Boťanská
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
3
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Romero-Cortes T, Tamayo-Rivera L, Morales-Ovando MA, Aparicio Burgos JE, Pérez España VH, Peralta-Gil M, Cuervo-Parra JA. Growth and Yield of Purple Kculli Corn Plants under Different Fertilization Schemes. J Fungi (Basel) 2022; 8:jof8050433. [PMID: 35628689 PMCID: PMC9146194 DOI: 10.3390/jof8050433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Globally, corn is the most economically important crop, surpassing other cereals of economic importance. However, the tillage methods, monoculture and the abuse of synthetic agrochemicals used in Mexico have led to the loss of fertility and soil yield. In this sense, the application of alternative fertilization methods based on chemical fertilizer, organic matter and biofertilizer, applied alone or in combination, can stimulate the defense systems of corn plants and increase their yield. Therefore, in this research, some fertilization schemes were tested on purple corn plants of the Kculli race through the evaluation of some growth and yield variables, as well as the subsequent evaluation of the chemical characteristics of the corn grain produced in each fertilization scheme. The results indicate highly significant differences (p ≤ 0.05) between treatments, for the different growth and yield variables studied. Of all the fertilization schemes evaluated, treatment T7 obtained the best grain yield of 6.19 ± 0.07 t ha−1, with respect to treatment T1 of 1.02 ± 0.01 t ha−1, as well as the highest protein content and starch quality. Being clear the positive effect of the adequate contribution of the macro and micronutrients used exerts on the corn crop in each of the fertilization schemes studied. On the other hand, the analysis carried out on the grains was found within the values reported by other authors.
Collapse
Affiliation(s)
- Teresa Romero-Cortes
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Chimalpa Tlalayote, Apan 43900, Hidalgo, Mexico; (T.R.-C.); (L.T.-R.); (J.E.A.B.); (V.H.P.E.); (M.P.-G.)
| | - Lis Tamayo-Rivera
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Chimalpa Tlalayote, Apan 43900, Hidalgo, Mexico; (T.R.-C.); (L.T.-R.); (J.E.A.B.); (V.H.P.E.); (M.P.-G.)
| | - Mario A. Morales-Ovando
- Sede Acapetahua, Universidad de Ciencias y Artes de Chiapas, Calle Central Norte s/n Entre 4ª y 5ª Norte, Acapetahua 30580, Chiapas, Mexico;
| | - José E. Aparicio Burgos
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Chimalpa Tlalayote, Apan 43900, Hidalgo, Mexico; (T.R.-C.); (L.T.-R.); (J.E.A.B.); (V.H.P.E.); (M.P.-G.)
| | - Victor H. Pérez España
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Chimalpa Tlalayote, Apan 43900, Hidalgo, Mexico; (T.R.-C.); (L.T.-R.); (J.E.A.B.); (V.H.P.E.); (M.P.-G.)
| | - Martin Peralta-Gil
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Chimalpa Tlalayote, Apan 43900, Hidalgo, Mexico; (T.R.-C.); (L.T.-R.); (J.E.A.B.); (V.H.P.E.); (M.P.-G.)
| | - Jaime A. Cuervo-Parra
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Chimalpa Tlalayote, Apan 43900, Hidalgo, Mexico; (T.R.-C.); (L.T.-R.); (J.E.A.B.); (V.H.P.E.); (M.P.-G.)
- Correspondence: ; Tel.: +52-771-717-2000 (ext. 5805)
| |
Collapse
|
5
|
Carpenter EL, Becker AL, Indra AK. NRF2 and Key Transcriptional Targets in Melanoma Redox Manipulation. Cancers (Basel) 2022; 14:cancers14061531. [PMID: 35326683 PMCID: PMC8946769 DOI: 10.3390/cancers14061531] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Melanocytes are dendritic, pigment-producing cells located in the skin and are responsible for its protection against the deleterious effects of solar ultraviolet radiation (UVR), which include DNA damage and elevated reactive oxygen species (ROS). They do so by synthesizing photoprotective melanin pigments and distributing them to adjacent skin cells (e.g., keratinocytes). However, melanocytes encounter a large burden of oxidative stress during this process, due to both exogenous and endogenous sources. Therefore, melanocytes employ numerous antioxidant defenses to protect themselves; these are largely regulated by the master stress response transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2). Key effector transcriptional targets of NRF2 include the components of the glutathione and thioredoxin antioxidant systems. Despite these defenses, melanocyte DNA often is subject to mutations that result in the dysregulation of the proliferative mitogen-activated protein kinase (MAPK) pathway and the cell cycle. Following tumor initiation, endogenous antioxidant systems are co-opted, a consequence of elevated oxidative stress caused by metabolic reprogramming, to establish an altered redox homeostasis. This altered redox homeostasis contributes to tumor progression and metastasis, while also complicating the application of exogenous antioxidant treatments. Further understanding of melanocyte redox homeostasis, in the presence or absence of disease, would contribute to the development of novel therapies to aid in the prevention and treatment of melanomas and other skin diseases.
Collapse
Affiliation(s)
- Evan L. Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
| | - Alyssa L. Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (E.L.C.); (A.L.B.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
6
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
7
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
8
|
Yin SJ, Wang YL, Chen H, Hu G, Zheng GC, Yang FQ. Investigation on the Metabolism of Curcumin and Baicalein in Zebrafish by Liquid Chromatography-tandem Mass Spectrometry Analysis. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190522083850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Curcumin (CUR) and baicalein (BAI) are the main active ingredients in
Curcuma longa and Scutellaria baicalensis, which are used together in Jiang-Qin-Si-Wu decoction to
treat gynecological diseases. On the other hand, zebrafish, as a metabolic model has become more
popular, therefore, the metabolism of CUR and BAI in zebrafish is investigated in the present study.
Methods:
Zebrafish embryos after hatching 48 hours were divided into four experimental groups.
The blank group was exposed to 1 mL of ultra-pure water. Three drug-treated groups were exposed
to CUR (8 μM, 1 mL), BAI (8 μM, 1 mL), CUR and BAI (8 μM, 2 mL), respectively. After
homogenization, they were analyzed by liquid chromatography-tandem mass spectrometry (LCMS/
MS). The structure of the metabolites was determined by comparing their corresponding mass
spectra with those of relevant literature. According to the change of metabolite content, the metabolic
effect of curcumin and baicalein was explored.
Results:
Five and six metabolites of CUR and BAI in zebrafish were identified by LC-MS/MS,
respectively. Their metabolic pathways in zebrafish were glucuronidation and sulfation. Reduction
and methylation reactions also occurred for CUR and BAI, respectively. In addition, after combined
exposure of both the drugs, CUR reduced the BAI glucuronide metabolites and inhibited the
metabolism of BAI in zebrafish, which is consistent with the mammalian metabolism.
Conclusion:
Using LC-MS/MS analysis, zebrafish is a feasible model for drug metabolism study.
The results of metabolic study indicated that CUR might affect the therapeutic effect of BAI.
Collapse
Affiliation(s)
- Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Ya-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guo-Can Zheng
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
9
|
Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020; 152:650-658. [PMID: 31953150 PMCID: PMC7382945 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) is the leading non-pharmaceutical dietary intervention to improve health- and lifespan in most model organisms. A wide array of cellular pathways is induced in response to CR and CR-mimetics, including the transcriptional activator Nuclear factor erythroid-2-related factor 2 (Nrf2), which is essential in the upregulation of multiple stress-responsive and mitochondrial enzymes. Nrf2 is necessary in tumor protection but is not essential for the lifespan extending properties of CR in outbred mice. Here, we sought to study Nrf2-knockout (KO) mice and littermate controls in male C57BL6/J, an inbred mouse strain. Deletion of Nrf2 resulted in shortened lifespan compared to littermate controls only under ad libitum conditions. CR-mediated lifespan extension and physical performance improvements did not require Nrf2. Metabolic and protein homeostasis and activation of tissue-specific cytoprotective proteins were dependent on Nrf2 expression. These results highlight an important contribution of Nrf2 for normal lifespan and stress response.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA; National Institute on General Medical Sciences, National Institute of Health, Bethesda, MD, 20892, USA
| | - Theresa Dill
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Bethany Carboneau
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Sophia Levan
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Jonathan Kato
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
10
|
Paul S, Ghosh S, Mandal S, Sau S, Pal M. NRF2 transcriptionally activates the heat shock factor 1 promoter under oxidative stress and affects survival and migration potential of MCF7 cells. J Biol Chem 2018; 293:19303-19316. [PMID: 30309986 DOI: 10.1074/jbc.ra118.003376] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/02/2018] [Indexed: 01/07/2023] Open
Abstract
Functional up-regulation of heat shock factor 1 (HSF1) activity through different posttranslational modifications has been implicated in the survival and proliferation of various cancers. It is increasingly recognized that the HSF1 gene is also up-regulated at the transcriptional level, a phenomenon correlated with poor prognosis for patients with different cancers, including breast cancer. Here, we analyzed the transcriptional up-regulation of HSF1 in human cells upon arsenite- or peroxide-induced oxidative stress. Sequential promoter truncation coupled with bioinformatics analysis revealed that this activation is mediated by two antioxidant response elements (AREs) located between 1707 and 1530 bp upstream of the transcription start site of the HSF1 gene. Using shRNA-mediated down-regulation, ChIP of NRF2, site-directed mutagenesis of the AREs, and DNase I footprinting of the HSF1 promoter, we confirmed that nuclear factor erythroid-derived 2-like 2 (NRF2, also known as NFE2L2) interacts with these AREs and up-regulates HSF1 expression. We also found that BRM/SWI2-related gene 1 (BRG1), a catalytic subunit of SWI2/SNF2-like chromatin remodeler, is involved in this process. We further show that NRF2-dependent HSF1 gene regulation plays a crucial role in cancer cell biology, as interference with NRF2-mediated HSF1 activation compromised survival, migration potential, and the epithelial-to-mesenchymal transition and autophagy in MCF7 breast cancer cells exposed to oxidative stress. Taken together, our findings unravel the mechanistic basis of HSF1 gene regulation in cancer cells and provide molecular evidence supporting a direct interaction between HSF1 and NRF2, critical regulators of two cytoprotective mechanisms exploited by cancer cells.
Collapse
Affiliation(s)
| | | | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, India 700054
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, India 700054
| | | |
Collapse
|
11
|
Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci 2018; 75:2897-2916. [PMID: 29774376 PMCID: PMC11105406 DOI: 10.1007/s00018-018-2836-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
Various stress factors leading to protein damage induce the activation of an evolutionarily conserved cell protective mechanism, the heat shock response (HSR), to maintain protein homeostasis in virtually all eukaryotic cells. Heat shock factor 1 (HSF1) plays a central role in the HSR. HSF1 was initially known as a transcription factor that upregulates genes encoding heat shock proteins (HSPs), also called molecular chaperones, which assist in refolding or degrading injured intracellular proteins. However, recent accumulating evidence indicates multiple additional functions for HSF1 beyond the activation of HSPs. Here, we present a nearly comprehensive list of non-HSP-related target genes of HSF1 identified so far. Through controlling these targets, HSF1 acts in diverse stress-induced cellular processes and molecular mechanisms, including the endoplasmic reticulum unfolded protein response and ubiquitin-proteasome system, multidrug resistance, autophagy, apoptosis, immune response, cell growth arrest, differentiation underlying developmental diapause, chromatin remodelling, cancer development, and ageing. Hence, HSF1 emerges as a major orchestrator of cellular stress response pathways.
Collapse
Affiliation(s)
- János Barna
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
12
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
13
|
Shen W, Wei Y, Tang D, Jia X, Chen B. Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole-time-of-flight MS. J Ginseng Res 2016; 41:78-84. [PMID: 28123325 PMCID: PMC5223078 DOI: 10.1016/j.jgr.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/24/2015] [Accepted: 12/30/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In the present study, metabolite profiles of ginsenosides Rk1 and Rg5 from red ginseng or red notoginseng in zebrafish were qualitatively analyzed with ultraperformance liquid chromatography/quadrupole-time-of-flight MS, and the possible metabolic were pathways proposed. METHODS After exposing to zebrafish for 24 h, we determined the metabolites of ginsenosides Rk1 and Rg5. The chromatography was accomplished on UPLC BEH C18 column using a binary gradient elution of 0.1% formic acetonitrile-0.1% formic acid water. The quasimolecular ions of compounds were analyzed in the negative mode. With reference to quasimolecular ions and MS2 spectra, by comparing with reference standards and matching the empirical molecular formula with that of known published compounds, and then the potential structures of metabolites of ginsenosides Rk1 and Rg5 were acquired. RESULTS Four and seven metabolites of ginsenoside Rk1 and ginsenoside Rg5, respectively, were identified in zebrafish. The mechanisms involved were further deduced to be desugarization, glucuronidation, sulfation, and dehydroxymethylation pathways. Dehydroxylation and loss of C-17 residue were also metabolic pathways of ginsenoside Rg5 in zebrafish. CONCLUSION Loss of glucose at position C-3 and glucuronidation at position C-12 in zebrafish were regarded as the primary physiological processes of ginsenosides Rk1 and Rg5.
Collapse
Affiliation(s)
- Wenwen Shen
- Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China; Key Laboratory of New Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yingjie Wei
- Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Daoquan Tang
- Key Laboratory of New Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaobin Jia
- Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Bin Chen
- Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Xia B, Bai L, Li X, Xiong J, Xu P, Xue M. Structural analysis of metabolites of asiatic acid and its analogue madecassic acid in zebrafish using LC/IT-MSn. Molecules 2015; 20:3001-19. [PMID: 25685908 PMCID: PMC6272356 DOI: 10.3390/molecules20023001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 12/28/2022] Open
Abstract
Although zebrafish has become a significant animal model for drug discovery and screening, drug metabolism in zebrafish remains largely unknown. Asiatic acid (AA) and madecassic acid (MA), two natural pentacyclic triterpenoids mainly obtained from Centella asiatica (L.) Urban, have been found to possess many pharmacological effects. This study is to probe the metabolic capability of zebrafish via investigation of the drug metabolism of AA and MA in zebrafish, using a sensitive LC/IT-MSn method. In addition, the main fragmentation pathways of AA and MA were reported for the first time. Nineteen metabolites of AA and MA were firstly identified after zebrafish was exposed to the drug, which all were the phase I metabolites and mainly formed from hydroxylation, dehydrogenation, hydroxylation and dehydrogenation, dihydroxylation and dehydrogenation, and dehydroxylation reaction. The results indicated that zebrafish possessed strong metabolic capacity, and the metabolites of AA and MA were formed via similar metabolic pathways and well matched with the known metabolic rules in vivo and in vitro, which supports the widely use of this system in drug metabolism research. This investigation would also contribute to the novel information on the structural elucidation, in vivo metabolites and metabolic mechanism of pentacyclic triterpenoids.
Collapse
Affiliation(s)
- Binbin Xia
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Lu Bai
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Xiaorong Li
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Jie Xiong
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Pinxiang Xu
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Ming Xue
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Metabolism of ginsenosides Rk3 and Rh4 from steamed notoginseng in zebrafish by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Arch Pharm Res 2014; 38:1468-76. [DOI: 10.1007/s12272-014-0538-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/21/2014] [Indexed: 11/27/2022]
|
16
|
Dayalan Naidu S, Kostov RV, Dinkova-Kostova AT. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol Sci 2014; 36:6-14. [PMID: 25465722 DOI: 10.1016/j.tips.2014.10.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/30/2022]
Abstract
Transcription factors heat shock factor (Hsf)1 and nuclear factor-erythroid 2 p45-related factor (Nrf)2 are critical for adaptation and survival. Each is maintained at low basal levels, but is robustly activated by various stimuli, including cysteine-reactive small molecules (inducers). Although each is regulated by distinct mechanisms, it is emerging that these transcription factors engage in crosstalk by sharing overlapping transcriptional targets, such as heat shock protein (HSP)70, p62, and activating transcription factor (ATF)3, and in certain cases, compensating for each other. Critically, activation of Hsf1 or Nrf2 affects the cellular redox balance by promoting the reduced state. Conversely, deletion of Hsf1 or Nrf2 is associated with oxidative stress and impaired mitochondrial function. Transient activation of Hsf1 and Nrf2 is cytoprotective, but their persistent upregulation may be detrimental, causing cardiomyopathy or accelerating carcinogenesis, and should be considered when designing strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland, UK
| | - Rumen V Kostov
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland, UK; Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Abstract
The use of transgenics in fish is a relatively recent development for advancing understanding of genetic mechanisms and developmental processes, improving aquaculture, and for pharmaceutical discovery. Transgenic fish have also been applied in ecotoxicology where they have the potential to provide more advanced and integrated systems for assessing health impacts of chemicals. The zebrafish (Daniorerio) is the most popular fish for transgenic models, for reasons including their high fecundity, transparency of their embryos, rapid organogenesis and availability of extensive genetic resources. The most commonly used technique for producing transgenic zebrafish is via microinjection of transgenes into fertilized eggs. Transposon and meganuclease have become the most reliable methods for insertion of the genetic construct in the production of stable transgenic fish lines. The GAL4-UAS system, where GAL4 is placed under the control of a desired promoter and UAS is fused with a fluorescent marker, has greatly enhanced model development for studies in ecotoxicology. Transgenic fish have been developed to study for the effects of heavy metal toxicity (via heat-shock protein genes), oxidative stress (via an electrophile-responsive element), for various organic chemicals acting through the aryl hydrocarbon receptor, thyroid and glucocorticoid response pathways, and estrogenicity. These models vary in their sensitivity with only very few able to detect responses for environmentally relevant exposures. Nevertheless, the potential of these systems for analyses of chemical effects in real time and across multiple targets in intact organisms is considerable. Here we illustrate the techniques used for generating transgenic zebrafish and assess progress in the development and application of transgenic fish (principally zebrafish) for studies in environmental toxicology. We further provide a viewpoint on future development opportunities.
Collapse
Affiliation(s)
- Okhyun Lee
- Biosciences, College of Life & Environmental Sciences, University of Exeter , Exeter, Devon , UK
| | | | | |
Collapse
|
18
|
Emter R, van der Veen JW, Adamson G, Ezendam J, van Loveren H, Natsch A. Gene expression changes induced by skin sensitizers in the KeratinoSens™ cell line: Discriminating Nrf2-dependent and Nrf2-independent events. Toxicol In Vitro 2013; 27:2225-32. [PMID: 24055896 DOI: 10.1016/j.tiv.2013.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/19/2013] [Accepted: 09/11/2013] [Indexed: 11/17/2022]
Abstract
The KeratinoSens™ assay is an in vitro screen for the skin sensitization potential of chemicals. It is based on a luciferase reporter gene under the control of the antioxidant response element of the aldoketoreductase gene AKR1C2. The transferability, reproducibility, and predictivity of the KeratinoSens™ assay have been investigated in detail and it is currently under assessment at the European Center for Validation of Alternatives to animal testing (ECVAM). Here we investigate the sensitizer-induced gene expression in the KeratinoSens™ cell line at the mRNA level and discriminate Nrf2-dependent and Nrf2-independent events by using siRNA to better characterize this test system at the molecular level. The results show that (i) the sensitizer-induced luciferase signal in KeratinoSens™ cells is completely dependent on Nrf2. The same holds true for the luciferase induction observed for the false positive chemical Tween80, indicating that the false positive result is not due to recruitment of an alternative transcription factor. (ii) Luciferase induction parallels the induction of endogenous Nrf2-dependent genes, indicating that the luciferase signal is representative for the sensitizer-induced Nrf2-response. (iii) The induction by sensitizers of additional genetic markers related to heat shock proteins and cellular stress could be reproduced in the KeratinoSens™ cell line and they were shown to be Nrf2-independent. These results confirm that the KeratinoSens™ cell line is a rapid and adequate screening tool to assess the sensitizer-induced Nrf2-response in keratinocytes.
Collapse
Affiliation(s)
- Roger Emter
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Hensen SMM, Heldens L, van Genesen ST, Pruijn GJM, Lubsen NH. A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant. Cell Stress Chaperones 2013; 18:455-73. [PMID: 23321918 PMCID: PMC3682012 DOI: 10.1007/s12192-012-0400-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/30/2022] Open
Abstract
To assess the consequences of inactivation of heat shock factor 1 (HSF1) during aging, we analyzed the effect of HSF1 K80Q, a mutant unable to bind DNA, and of dnHSF1, a mutant lacking the activation domain, on the transcriptome of cells 6 and 24 h after heat shock. The primary response to heat shock (6 h recovery), of which 30 % was HSF1-dependent, had decayed 24 h after heat shock in control cells but was extended in HSF1 K80Q and dnHSF1 cells. Comparison with literature data showed that even the HSF1 dependent primary stress response is largely cell specific. HSF1 K80Q, but not HSF1 siRNA-treated, cells showed a delayed stress response: an increase in transcript levels of HSF1 target genes 24 h after heat stress. Knockdown of NRF2, but not of ATF4, c-Fos or FosB, inhibited this delayed stress response. EEF1D_L siRNA inhibited both the delayed and the extended primary stress responses, but had off target effects. In control cells an antioxidant response (ARE binding, HMOX1 mRNA levels) was detected 6 h after heat shock; in HSF1 K80Q cells this response was delayed to 24 h and the ARE complex had a different mobility. Inactivation of HSF1 thus affects the timing and nature of the antioxidant response and NRF2 can activate at least some HSF1 target genes in the absence of HSF1 activity.
Collapse
Affiliation(s)
- Sanne M. M. Hensen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lonneke Heldens
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Siebe T. van Genesen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicolette H. Lubsen
- 271 Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
20
|
Hensen SMM, Heldens L, van Enckevort CMW, van Genesen ST, Pruijn GJM, Lubsen NH. Activation of the antioxidant response in methionine deprived human cells results in an HSF1-independent increase in HSPA1A mRNA levels. Biochimie 2013; 95:1245-51. [PMID: 23395854 DOI: 10.1016/j.biochi.2013.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/29/2013] [Indexed: 12/30/2022]
Abstract
In cells starved for leucine, lysine or glutamine heat shock factor 1 (HSF1) is inactivated and the level of the transcripts of the HSF1 target genes HSPA1A (Hsp70) and DNAJB1 (Hsp40) drops. We show here that in HEK293 cells deprived of methionine HSF1 was similarly inactivated but that the level of HSPA1A and DNAJB1 mRNA increased. This increase was also seen in cells expressing a dominant negative HSF1 mutant (HSF379 or HSF1-K80Q), confirming that the increase is HSF1 independent. The antioxidant N-acetylcysteine completely inhibited the increase in HSPA1A and DNAJB1 mRNA levels upon methionine starvation, indicating that this increase is a response to oxidative stress resulting from a lack of methionine. Cells starved for methionine contained higher levels of c-Fos and FosB mRNA, but knockdown of these transcription factors had no effect on the HSPA1A or DNAJB1 mRNA level. Knockdown of NRF2 mRNA resulted in the inhibition of the increase in the HSPA1A mRNA, but not the DNAJB1 mRNA, level in methionine starved cells. We conclude that methionine deprivation results in both the amino acid deprivation response and an antioxidant response mediated at least in part by NRF2. This antioxidant response includes an HSF1 independent increase in the levels of HSPA1A and DNAJB1 mRNA.
Collapse
Affiliation(s)
- Sanne M M Hensen
- Department of Biomolecular Chemistry, Radboud University Nijmegen, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Dinkova-Kostova AT. The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response. SCIENTIFICA 2012; 2012:606104. [PMID: 24278719 PMCID: PMC3820647 DOI: 10.6064/2012/606104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 05/28/2023]
Abstract
The KEAP1/NRF2 pathway and the heat shock response are two essential cytoprotective mechanisms that allow adaptation and survival under conditions of oxidative, electrophilic, and thermal stress by regulating the expression of elaborate networks of genes with versatile protective functions. The two pathways are independently regulated by the transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2) and heat shock factor 1 (HSF1), respectively. The activity of these transcriptional master regulators increases during conditions of stress and also upon encounter of small molecules (inducers), both naturally occurring as well as synthetically produced. Inducers have a common chemical property: the ability to react with sulfhydryl groups. The protein targets of such sulfhydryl-reactive compounds are equipped with highly reactive cysteine residues, which serve as sensors for inducers. The initial cysteine-sensed signal is further relayed to affect the expression of large networks of genes, which in turn can ultimately influence complex cell fate decisions such as life and death. The paper summarizes the multiple lines of experimental evidence demonstrating that the reactivity with sulfhydryl groups is a major determinant of the mechanism of action of small molecule dual activators of the KEAP1/NRF2 pathway and the heat shock response.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, James Arrott Drive, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Metabolism of tanshinone IIA, cryptotanshinone and tanshinone I from Radix Salvia miltiorrhiza in zebrafish. Molecules 2012; 17:8617-32. [PMID: 22810195 PMCID: PMC6269062 DOI: 10.3390/molecules17078617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/02/2023] Open
Abstract
The study aimed to investigate the potential of zebrafish in imitating mammal phase I metabolism of natural compounds. Three diterpenoid quinones from Radix Salvia miltiorrhiza, namely tanshinone IIA (TIIA), cryptotanshinone (Cry) and tanshinone I (TI) were selected as model compounds, and their metabolites mediated by zebrafish were characterized using a high-performance liquid chromatography coupled ion-trap mass spectrometry (HPLC/IT-MSn) method with electrospray ionization in positive mode. The separation was performed with a Zorbax C-18 column using a binary gradient elution of 0.05% formic acid acetonitrile/0.05% formic acid water. According to the MS spectra and after comparison with reference standards and literature reports, hydroxylation, dehydrogenation or D-ring hydrolysis metabolites of TIIA and Cry but not of TI were characterized, which coincided with those reported using regular in vivo or in vitro metabolic analysis methods, thus verifying that zebrafish can successfully imitate mammalian phase I metabolism which instills further confidence in using zebrafish as a novel and prospective metabolism model.
Collapse
|
23
|
Ahmed K, Furusawa Y, Tabuchi Y, Emam HF, Piao JL, Hassan MA, Yamamoto T, Kondo T, Kadowaki M. Chemical inducers of heat shock proteins derived from medicinal plants and cytoprotective genes response. Int J Hyperthermia 2012; 28:1-8. [PMID: 22235779 DOI: 10.3109/02656736.2011.627408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins, the so-called stress or heat shock proteins (HSPs). HSPs are known to function as molecular chaperones which are involved in the therapeutic approach of many diseases. Therefore in the current study we searched nontoxic chaperone inducers in chemical compounds isolated from medicinal plants. Screening of 80 compounds for their Hsp70-inducing activity in human lymphoma U937 cells was performed by western blotting. Five compounds showed significant Hsp70 up-regulation among them shikonin was most potent. Shikonin was able to induce Hsp70 at 0.1 µM after 3 h without activation of heat shock transcription factor 1 (HSF-1). It also induces significant reactive oxygen species generation. The expression level of genes responsive to shikonin was studied using global-scale microarrays and computational gene expression analysis tools. Significant increase in the nuclear factor erythroid 2-related factor 2 (Nrf2, NFEL2L2) -mediated oxidative stress response was observed that leads to the activation of HSP. The results of gene chip analysis were further confirmed by real-time qPCR assay. In short, the detailed mechanisms of Hsp70 induction by shikonin is not fully understood, Nrf2 and its target genes might be involved in the Hsp70 up-regulation in U937 cells.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|