1
|
Touraki M, Chanou A, Mavridou V, Tsertseli V, Tsiridi M, Panteris E. Administration of probiotics affects Artemia franciscana metanauplii intestinal ultrastructure and offers resistance against a Photobacterium damselae ssp . piscicida induced oxidative stress response. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100113. [PMID: 37671319 PMCID: PMC10475491 DOI: 10.1016/j.fsirep.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The effects of Photobacterium damselae ssp. piscicida (Phdp) on immune responses and intestinal ultrastructure of Artemia franciscana following infection and their amelioration by the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis were evaluated. Pathogen growth inhibition in coculture with each probiotic and its virulence against Artemia were confirmed with an LC50 of 105 CFU mL-1. Phdp administration to Artemia at sublethal levels resulted in depletion of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase activities, extensive lipid peroxidation and reduced survival. Following a combined administration of each probiotic and the pathogen, enzyme activities and survival were significantly higher, while lipid peroxidation was reduced, compared to the infected group with no probiotic treatment (P < 0.05). The transmission electron microscopy study revealed that pathogen infection resulted in disarranged and fragmented microvilli, formation of empty or pathogen containing cytoplasmic vacuoles and damaged mitochondria. In the probiotic-treated and Phdp-infected series, intestinal cells showed normal appearance, except for the presence of pathogen-containing vacuoles and highly ordered but laterally stacked microvilli. The results of the present study indicate that Phdp induces cell death through an oxidative stress response and probiotics enhance Artemia immune responses to protect it against the Phdp induced damage.
Collapse
Affiliation(s)
- Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Anna Chanou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Mavridou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Tsertseli
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Maria Tsiridi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
2
|
De Marco G, Cappello T, Maisano M. Histomorphological Changes in Fish Gut in Response to Prebiotics and Probiotics Treatment to Improve Their Health Status: A Review. Animals (Basel) 2023; 13:2860. [PMID: 37760260 PMCID: PMC10525268 DOI: 10.3390/ani13182860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal tract (GIT) promotes the digestion and absorption of feeds, in addition to the excretion of waste products of digestion. In fish, the GIT is divided into four regions, the headgut, foregut, midgut, and hindgut, to which glands and lymphoid tissues are associated to release digestive enzymes and molecules involved in the immune response and control of host-pathogens. The GIT is inhabited by different species of resident microorganisms, the microbiota, which have co-evolved with the host in a symbiotic relationship and are responsible for metabolic benefits and counteracting pathogen infection. There is a strict connection between a fish's gut microbiota and its health status. This review focuses on the modulation of fish microbiota by feed additives based on prebiotics and probiotics as a feasible strategy to improve fish health status and gut efficiency, mitigate emerging diseases, and maximize rearing and growth performance. Furthermore, the use of histological assays as a valid tool for fish welfare assessment is also discussed, and insights on nutrient absorptive capacity and responsiveness to pathogens in fish by gut morphological endpoints are provided. Overall, the literature reviewed emphasizes the complex interactions between microorganisms and host fish, shedding light on the beneficial use of prebiotics and probiotics in the aquaculture sector, with the potential to provide directions for future research.
Collapse
Affiliation(s)
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.D.M.); (M.M.)
| | | |
Collapse
|
3
|
Song HC, Yang YX, Lan QG, Cong W. Immunological effects of recombinant Lactobacillus casei expressing pilin MshB fused with cholera toxin B subunit adjuvant as an oral vaccine against Aeromonas veronii infection in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023:108934. [PMID: 37419434 DOI: 10.1016/j.fsi.2023.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Aeromonas veronii is a zoonotic agent capable of infecting fish and mammals, including humans, posing a serious threat to the development of aquaculture and public health safety. Currently, few effective vaccines are available through convenient routes against A. veronii infection. Herein, we developed vaccine candidates by inserting MSH type VI pili B (MshB) from A. veronii as an antigen and cholera toxin B subunit (CTB) as a molecular adjuvant into Lactobacillus casei and evaluated their immunological effect as vaccines in a crucian carp (Carassius auratus) model. The results suggested that recombinant L. casei Lc-pPG-MshB and Lc-pPG-MshB-CTB can be stably inherited for more than 50 generations. Oral administration of recombinant L. casei vaccine candidates stimulated the production of high levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP) superoxide dismutase (SOD), lysozyme (LZM), complement 3 (C3) and C4 in crucian carp (carassius auratus) compared to the control group (Lc-pPG612 group and PBS group) without significant changes. Moreover, the expression levels of interleukin-10 (IL-10), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) genes in the gills, liver, spleen, kidney and gut of crucian carp orally immunized with recombinant L. casei were significantly upregulated compared to the control groups, indicating that recombinant L. casei induced a significant cellular immune response. In addition, viable recombinant L. casei can be detected and stably colonized in the intestine tract of crucian carp. Particularly, crucian carp immunized orally with Lc-pPG-MshB and Lc-pPG-MshB-CTB exhibited higher survival rates (48% for Lc-pPG-MshB and 60% for Lc-pPG-MshB-CTB) and significantly reduced loads of A. veronii in the major immune organs after A. veronii challenge. Our findings indicated that both recombinant L. casei strains provide favorable immune protection, with Lc-pPG-MshB-CTB in particular being more effective and promising as an ideal candidate for oral vaccination.
Collapse
Affiliation(s)
- Hai-Chao Song
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China
| | - Yi-Xuan Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Qi-Guan Lan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China.
| |
Collapse
|
4
|
Dong R, Zhou C, Wang S, Yan Y, Jiang Q. Probiotics ameliorate polyethylene microplastics-induced liver injury by inhibition of oxidative stress in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:261-272. [PMID: 36122639 DOI: 10.1016/j.fsi.2022.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastic particles (MPs) are environmental pollutants that can cause varying levels of aquatic toxicity. Probiotics have been shown to reduce the negative effects of toxic substances. However, the protective effect of probiotics against the adverse effects of MPs has yet to be reported. The current study sought to determine the effects of the commercial probiotic AquaStar® Growout on polystyrene (PS)-MPs-mediated hepatic oxidative stress in Nile tilapia (Oreochromis niloticus). Fishes were assigned into four groups: the first group was the control, the second group was exposed to 1 mg/L of 0.5 μm PS-MPs, and the third and fourth groups were exposed to 1 mg/L of 0.5 μm PS-MPs and pre-fed with probiotics at levels of 3 g/kg and 6 g/kg diet, respectively. At the end of the experiment, probiotics administration reversed liver damage caused by the PS-MPs, reducing serum levels of malondialdehyde, aspartate aminotransferase, and alanine aminotransferase, and increasing the total antioxidant capacity. Furthermore, probiotics alleviated PS-MPs-induced oxidative stress by restoring antioxidant enzyme activities (superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase) and reducing oxidized glutathione and enhancing the redox state. Besides, probiotics supplementation decreased the transcriptional level of C-reactive protein and tumor necrosis factor-α following PS-MPs exposure. Furthermore, probiotics counteracted PS-MPs-associated reactive oxygen species production and mitogen-activated protein kinases (MAPKs) phosphorylation status. These findings suggested that probiotics could decrease liver damage caused by PS-MPs through their antioxidant properties and modulation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Changlei Zhou
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Shuyue Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
5
|
Lee JW, Chiu ST, Wang ST, Liao YC, Chang HT, Ballantyne R, Lin JS, Liu CH. Dietary SYNSEA probiotic improves the growth of white shrimp, Litopenaeus vannamei and reduces the risk of Vibrio infection via improving immunity and intestinal microbiota of shrimp. FISH & SHELLFISH IMMUNOLOGY 2022; 127:482-491. [PMID: 35793747 DOI: 10.1016/j.fsi.2022.06.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The growth performance, immunological status, and intestinal microbiology of white shrimp, Litopenaeus vannamei, were evaluated after dietary administration of the commercial probiotic SYNSEA. Shrimp were fed a control diet (without probiotic supplement) and two levels of SYNSEA probiotic, a low concentration of SYNSEA (LSL) containing 105 CFU (g diet)-1Bacillus subtilis and 105 CFU (g diet)-1 lactic acid bacteria (LAB), and a high concentration of SYNSEA (LSH) containing 106 CFU (g diet)-1B. subtilis and 106 CFU (g diet)-1 LAB, for 12 weeks. Shrimp fed with the LSL diet significantly increased growth performance as well as final weight and feed efficiency compared to the control, but not the LSH diet. After being orally challenged with Vibrio parahaemolyticus, shrimp fed with LSL diet prior to the challenge or fed with LSL and pathogen simultaneously showed significantly lower mortality compared to the control. SYNSEA probiotic significantly improved shrimp immune response, including lysozyme activity in LSL and LSH groups, and phagocytic activity in the LSL group in comparison to the control. In addition, the gene expressions of anti-lipopolysaccharide factor 2 in LSL and LSH groups, and penaeidin 4 in LSL were also up-regulated. Although there was no significant difference among groups for hepatopancreas and intestinal morphology, the muscular layer thickness and villi height were slightly improved in the intestines of shrimp fed SYNSEA. The 16S rDNA gene amplicon sequence analysis using next-generation sequencing revealed a significant decrease in α-diversity (Margalef's species richness) after oral administration of SYNSEA due to an increase in the relative abundance of beneficial bacteria in the gut flora of shrimp, such as Lactobacillus, Shewanella, and Bradymonadales and a decrease in harmful bacteria, such as Vibrio, Candidatus_Berkiella, and Acinetobacter baumannii. Together the data suggest that the provision of SYNSEA probiotic at 105 CFU (g diet)-1B. subtilis and 105 CFU (g diet)-1 LAB can improve shrimp growth, enhance immunity, and disease resistance status of the host. In addition, these findings conclude that SYNSEA probiotic has great preventive and therapeutic potential for Vibrio infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Shieh-Tsung Chiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Sz-Tsan Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Hsiao-Tung Chang
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan
| | - Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 821, Taiwan.
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
6
|
Plant-based and immunostimulant-enhanced diets modulate oxidative stress, immune and haematological indices in rainbow trout (Oncorhynchus mykiss). ACTA VET BRNO 2021. [DOI: 10.2754/avb202190020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate the effects of three commercial diets, standard, immunostimulant-supplemented (β-glucan, vitamins C and E) and plant-based, on the degree of oxidative stress in tissues of rainbow trout (Oncorhynchus mykiss). Selected immune and haematological indices were measured and challenge with Aeromonas salmonicida was conducted. The plant-based diet systemically modulated all oxidative stress biomarkers (thiobarbituric acid reactive substances; reduced and oxidised glutathione and their ratio) in the intestine. The ratio was elevated in all organs (liver, kidney, muscle and intestine) and an enhancement of respiratory burst and complement activity was observed even in the control fish. With the standard diet, an elevation of thiobarbituric acid reactive substances in the intestine and a decrease in some immune indices appeared after challenge. Less distinctive changes and the lowest mortality rate (the highest being with the plant-based feed) were obtained with immunostimulants. Increased total immunoglobulin, relative lymphocytosis and a decrease in the phagocyte count were observed. This study contributes especially by a thorough examination of oxidative stress indices in different tissues. The exact composition of these commercial diets is a trade secret; however, knowledge of their effects is extremely important for fish farmers using them; therefore, this study has a great practical impact.
Collapse
|
7
|
Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol 2021; 12:653025. [PMID: 33986745 PMCID: PMC8110931 DOI: 10.3389/fimmu.2021.653025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
8
|
Hasan MT, Jang WJ, Lee BJ, Hur SW, Lim SG, Kim KW, Han HS, Lee EW, Bai SC, Kong IS. Dietary Supplementation of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 Combinations Enhance Growth and Cellular and Humoral Immunity in Olive Flounder (Paralichthys olivaceus). Probiotics Antimicrob Proteins 2021; 13:1277-1291. [PMID: 33713023 DOI: 10.1007/s12602-021-09749-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Experiments were conducted to identify different ratios of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 mixtures at a concentration of 1 × 108 CFU/g diet; the effects on growth and cellular and humoral immune responses and the characteristics of disease protection in olive flounder (Paralichthys olivaceus). Flounder were divided into six groups and fed control diet D-1 (without Bacillus sp. SJ-10 and L. plantarum KCCM 11322), positive control diets D-2 (Bacillus sp. SJ-10 at 1 × 108 CFU/g feed) and D-3 (L. plantarum KCCM 11322 at 1 × 108 CFU/g feed); or treatment diets D-4 (3:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.75 + 0.25 × 108 CFU/g feed), D-5 (1:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.50 + 0.50 × 108 CFU/g feed), or D-6 (1:3 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.25 + 0.75 × 108 CFU/g feed) for 8 weeks. Group D-4 demonstrated better growth and feed utilization (P < 0.05) compared with the controls and positive controls. Similar modulation was also observed in respiratory burst for all treatments and in the expression levels of TNF-α, IL-1β, IL-6, and IL-10 in different organs in D-4. D-4 and D-5 increased respiratory burst, superoxide dismutase, lysozyme, and myeloperoxidase activities compared with the controls, and only D-4 increased microvilli length. When challenged with 1 × 108 CFU/mL Streptococcus iniae, the fish in the D-4 and D-5 groups survived up to 14 days, whereas the fish in the other groups reached 100% mortality at 11.50 days. Collectively, a ratio-specific Bacillus sp. SJ-10 and L. plantarum KCCM 11322 mixture (3:1) was associated with elevated growth, innate immunity, and streptococcosis resistance (3:1 and 1:1) compared with the control and single probiotic diets.
Collapse
Affiliation(s)
- Md Tawheed Hasan
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea.,Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Won Je Jang
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Bong-Joo Lee
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Sang Woo Hur
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Sang Gu Lim
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Kang Woong Kim
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea.,Aquaculture Management Division, NIFS, Busan, 46083, Republic of Korea
| | - Hyon-Sob Han
- Faculty of Marine Applied Bioscience, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea
| | - Sungchul C Bai
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan, 608-737, Republic of Korea.
| | - In-Soo Kong
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea.
| |
Collapse
|
9
|
Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Effect of Lyophilized, Encapsulated Lactobacillus fermentum and Lactulose Feeding on Growth Performance, Heavy Metals, and Trace Element Residues in Rainbow Trout (Oncorhynchus mykiss) Tissues. Probiotics Antimicrob Proteins 2020; 11:1257-1263. [PMID: 30456749 DOI: 10.1007/s12602-018-9487-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heavy metals naturally occur in the environment and are causing great concern all around the world. Accumulation of heavy metals in fish tissues can lead to serious adverse effects in humans when consumed in the amounts exceeding the safe consumption levels. In this study, Lactobacillus fermentum 1744 (ATCC 14931) and lactulose were used in the fish diet in order to investigate their effects on growth performance, intestinal villous morphology, and heavy metals residues. Fishes were randomly allocated into three replicates of five different treatments. The control group received the basal diet, while the experimental groups were fed on the basal diet supplemented with encapsulated and lyophillized probiotic, lactulose (prebiotic) and L. fermentum, and lactulose as synbiotic. All the groups were fed three times daily for a period of 56 days. At the end of growth period, 10 fish per replicate were randomly collected in order to take the samples of the fillet, gills, and liver. Results showed that the encapsulated L. fermentum plus lactulose improve growth performance and exclude absorption and accumulation of heavy metals in rainbow trout liver and gills. The villous height were increased in all the samples except the group 2 fed on the lactulose (p < 0.05).
Collapse
|
11
|
Pooljun C, Daorueang S, Weerachatyanukul W, Direkbusarakom S, Jariyapong P. Enhancement of shrimp health and immunity with diets supplemented with combined probiotics: application to Vibrio parahaemolyticus infections. DISEASES OF AQUATIC ORGANISMS 2020; 140:37-46. [PMID: 32618287 DOI: 10.3354/dao03491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The application of probiotics for disease control in aquaculture is now a convincing approach towards replacement of antibiotics, which can cause adverse effects in aquatic animals and humans. In this study, we combined 2 probiotics, Lactobacillus acidophilus and Saccharomyces cerevisiae, with shrimp feed to create 2 formulas (WU8 and WU9), which were fed for 10 d to juvenile shrimp Penaeus vannamei. The shrimps were then subjected to a challenge infection with Vibrio parahaemolyticus, the causative agent of acute hepatopancreas necrosis disease (AHPND). The protective effects of probiotics against bacterial infection were investigated through histopathology of the hepatopancrease and immunological evaluation of shrimp. Both WU8 and WU9 probiotic mixtures (1:1, at 108 and 109 CFU kg diet-1) increased blasenzellen hepatopancreatic epithelial cells and reduced pathology caused by AHPND. After 10 d of feeding, hemocyte parameters, including the total hemocyte count, percent of granular hemocytes, and phenoloxidase activity, increased significantly and were still increasing at 24 h post infection. Crustin and penaeidin 3 genes were also highly upregulated in hemocytes before and after 24 h of bacterial challenge and significantly upregulated in the hepatopancreas 1 to 5 d post-infection. A significantly higher survival rate was observed in shrimp fed with the probiotic supplemented diet (>90%) in comparison to the control group (60%). In conclusion, probiotic mixtures of L. acidophilus and S. cerevisiae reduced hepatopancreas pathology and protected shrimp from a challenge with AHPND.
Collapse
Affiliation(s)
- Chettupon Pooljun
- Research Center of Excellence on Shrimp, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand
| | | | | | | | | |
Collapse
|
12
|
Wang YC, Hu SY, Chiu CS, Liu CH. Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1050-1058. [PMID: 30419396 DOI: 10.1016/j.fsi.2018.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The probiotic efficiencies of the mixed probiotics containing Lactobacillus pentosus BD6, Lac. fermentum LW2, Bacillus subtilis E20, and Saccharomyces cerevisiae P13 for shrimp growth and health status improvement were better than those when using single probiotics. The probiotic mixture at a level of 108 colony-forming units (cfu) (kg diet)-1 and the diets containing BD6 and E20 at 109 cfu (kg diet)-1 significantly improved the growth and health status of shrimp, whereas the diets containing P13 or LW2 did not significantly affect the growth of shrimp. No significant difference in the carcass composition was recorded among the control and treatments. After 56 days of feeding, shrimp fed the diet containing the probiotic mixture (107∼109 cfu (kg diet)-1) had higher survival after injection with the V. alginolyticus, but 109 cfu (kg diet)-1 of single probiotics (except for S. cerevisiae P13) had to be administered to improve shrimp survival. The better disease resistance of shrimp in groups fed the probiotic mixture might have been due to increased phenoloxidase activity, respiratory bursts, and lysozyme activity of hemocytes. Therefore, we considered that the probiotic mixture could adequately provide probiotic efficiency for white shrimp, and a diet containing 108 cfu (kg diet)-1 probiotic mixture is recommended.
Collapse
Affiliation(s)
- Yu-Chu Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chiu-Shia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
13
|
Peixoto MJ, Domingues A, Batista S, Gonçalves JFM, Gomes AM, Cunha S, Valente LMP, Costas B, Ozório ROA. Physiopathological responses of sole (Solea senegalensis) subjected to bacterial infection and handling stress after probiotic treatment with autochthonous bacteria. FISH & SHELLFISH IMMUNOLOGY 2018; 83:348-358. [PMID: 30227256 DOI: 10.1016/j.fsi.2018.09.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to evaluate the protective effects of four autochthonous bacteria isolated from juvenile sole (Solea senegalensis) intestine as dietary probiotic supplement against bacterial pathogen infection and handling/transport stressors. Growth performance and immune responses were evaluated after 85 days of feeding trial. Sole (IBW = 16.07 ± 0.11 g) were fed six experimental diets, a control diet (CTRL, without the dietary probiotic supplementation), and five diets supplemented with probiotic bacteria: PB1 (Shewanella hafniensis), PB2 (Enterococcus raffinosus), PB3 (Shewanella hafniensis + Arthrobacter soli), PB4 (Pseudomonas protegens + Arthrobacter soli) and PB5 (Shewanella hafniensis + Arthrobacter soli + Enterococcus raffinosus). All bacteria were selected based on their in vitro antimicrobial activity. After the growth trial, fish were submitted to a stress factor (transport) and then each dietary group was divided in two additional groups: non-infected (placebo) and infected with Photobacterium damselae subsp. piscicida. Immune and antioxidant responses were evaluated at day 10 post-infection. In infection trial A, fish were infected on the same day of transport, whereas in trial B fish were infected after a 7-day recovery from the transport stress. At the end of the feeding trial, fish fed with PB2 and PB4 showed lower final body weight when compared with the other dietary groups. Respiratory burst activity and nitric oxide production were not affected by probiotic supplementation. Fish fed with PB5 presented lower peroxidase activity compared to CTRL. Lysozyme and alternative complement pathway activity (ACH50) showed no significant differences between treatments. The innate immune responses were significantly affected after handling stress and bacterial infection. In trial A, the ACH50 levels of infected fish were significantly lower than the placebo groups. On the other hand, in trial B fish infected with Pdp demonstrated higher ACH50 levels when compared to placebos. Peroxidase levels were strongly modulated by bacterial infection and handling stress. In trials A and B, infection had a clear downgrade effect in peroxidase levels. Lipid peroxidation, catalase, glutathione S-transferase and glutathione reductase were altered by both bacterial infection and transport. Overall, dietary probiotic supplementation did not influence growth performance of sole. The immune and oxidative defenses of sole responded differently to infection depending on the probiotic and the synergy between pathogen infection and transport.
Collapse
Affiliation(s)
- M J Peixoto
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - A Domingues
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ESTM - Escola Superior de Turismo e Tecnologia do Mar, Instituto Politécnico de Leiria, Santuário Nossa Senhora dos Remédios, 2520-641, Peniche, Portugal
| | - S Batista
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - J F M Gonçalves
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - A M Gomes
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquitecto Lobão Vital, 4200-072, Porto, Portugal
| | - S Cunha
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino Almeida, 400, 4200-072, Porto, Portugal; Departamento de Biología Funcional y Ciencias de la Salud, Universidad de Vigo, Ciudad Universitaria de Vigo, Campus Universitario Lagoas-Marcosende, s/n, 36310, Vigo, Pontevedra, Spain
| | - L M P Valente
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - B Costas
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - R O A Ozório
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
14
|
|
15
|
Wang C, Zhou Y, Lv D, Ge Y, Li H, You Y. Change in the intestinal bacterial community structure associated with environmental microorganisms during the growth of Eriocheir sinensis. Microbiologyopen 2018; 8:e00727. [PMID: 30311433 PMCID: PMC6528601 DOI: 10.1002/mbo3.727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
As an important organ to maintain the host's homeostasis, intestinal microbes play an important role in development of the organism. In contrast to those of terrestrial animals, the intestinal microbes of aquatic organisms are affected by environmental microorganisms (including water microorganisms and sediment microorganisms). In the present study, the compositional differences of intestinal microbes in three representative developmental stages of the Chinese mitten crab (Eriocheir sinensis) were studied. Meanwhile, network association analysis, and visualization of the water microorganisms of the crabs’ habitat, the environment microorganisms in the pond, and the intestinal microbes, was carried out. The results showed that the gut microbiota diversity index decreased continuously with age, and the four bacteria of Aeromonas (Proteobacteria), Defluviitaleaceae (Firmicutes), Candidatus Bacilloplasma (Tenericutes), and Dysgonomonas (Bacteroidetes) were the “indigenous” flora of the crab. In the network‐related analysis with the environment, we found that as the culture time increased, the effect of environmental microorganisms on the intestinal microbes of crabs gradually decreased, and the four “indigenous” bacteria were always unaffected by the environmental microorganisms. The results of this study identified the core bacteria of the crab and, for the first time, studied the relationship between intestinal environmental microorganisms, which will aid the practical production of crabs and will promote research into the relationship between specific bacteria and the physiological metabolism of crabs.
Collapse
Affiliation(s)
- Chenhe Wang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Yanfeng Zhou
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Dawei Lv
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - You Ge
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Huan Li
- Nextomics Biosciences Co., Ltd, Wuhan, China
| | - Yang You
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China.,Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| |
Collapse
|
16
|
Almeida E, Serra CR, Albuquerque P, Guerreiro I, Teles AO, Enes P, Tavares F. Multiplex PCR identification and culture-independent quantification of Bacillus licheniformis by qPCR using specific DNA markers. Food Microbiol 2018; 74:1-10. [PMID: 29706322 DOI: 10.1016/j.fm.2018.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/29/2017] [Accepted: 02/17/2018] [Indexed: 11/26/2022]
Abstract
Probiotics benefits in fish farming have been usually inferred appraising the effects observed on the host and not through the direct assessment of probiotic dynamics in the host gut microbiota. To overcome this gap, quantitative PCR (qPCR) can be a powerful approach to study the bacterial dynamics in fish gut microbiota. The presented work proposes four B. licheniformis-specific DNA markers and details a qPCR method to track putative probiotics B. licheniformis on fish gut. The four B. licheniformis-specific DNA markers - BL5B (hypothetical protein BL00303), BL8A (serA2), BL13C (rfaB) and BL18A (ligD) - were selected and validated by PCR and multiplex-PCR with 20 B. licheniformis isolates and a broad range of non-target bacteria. To assess the dynamics of B. licheniformis in the digesta of farmed fish, a qPCR was validated using markers BL8A and BL18A and calibration curves obtained for both markers with digesta samples spiked with B. licheniformis cells showed a high correlation (R2 > 0.99) over 6 log units (CFU/reaction), and a limit of detection (LOD) as low as 247 CFUs/reaction. Furthermore, the consistent qPCR repeatability and reproducibility underline the specificity and reliability of the qPCR proposed. Ultimately, the possibility to monitor the dynamics of B. licheniformis probiotics in the gut microbiota of farmed fish might be instrumental to optimize best practices in aquaculture.
Collapse
Affiliation(s)
- Eduarda Almeida
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Edifício FC4 - Via Panorâmica nº 36, 4150-564 Porto, Portugal
| | - Cláudia R Serra
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Pedro Albuquerque
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Inês Guerreiro
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Edifício FC4 - Via Panorâmica nº 36, 4150-564 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Aires Oliva Teles
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Edifício FC4 - Via Panorâmica nº 36, 4150-564 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Paula Enes
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Fernando Tavares
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Edifício FC4 - Via Panorâmica nº 36, 4150-564 Porto, Portugal.
| |
Collapse
|
17
|
Sutthi N, Thaimuangphol W, Rodmongkoldee M, Leelapatra W, Panase P. Growth performances, survival rate, and biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in water treated with probiotic. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-017-2633-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Martinez MP, Gonzalez Pereyra ML, Pena GA, Poloni V, Fernandez Juri G, Cavaglieri LR. Pediococcus acidolactici and Pediococcus pentosaceus isolated from a rainbow trout ecosystem have probiotic and ABF1 adsorbing/degrading abilities in vitro. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:2118-2130. [PMID: 28854862 DOI: 10.1080/19440049.2017.1371854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Probiotics are being used in biological control of bacterial pathogens, as an alternative to antibiotics, to improve health and production parameters in fish farming. Fish farming production is severely affected by aflatoxins (AFs), which are a significant problem in aquaculture systems. Aflatoxins exert substantial impact on production, causing disease with high mortality and a gradual decline of reared fish stock quality. Some aspects of aflatoxicosis in fish, particularly its effects on the gastrointestinal tract, have not been well documented. The aim of the present study was to evaluate probiotic properties of lactic acid bacterial (LAB) strains isolated from rainbow trout intestine and feed. Moreover, AFB1-binding and/or degrading abilities were also evaluated to assess their use in the formulation of feed additives. Growth at pH 2, the ability to co-aggregate with bacterial pathogens, inhibition of bacterial pathogens, and determination of the inhibitory mechanism were tested. Aflatoxin B1 (AFB1) adsorption and degradation ability were also tested. All strains were able to maintain viable (107 cells ml-1) at pH 2. Pediococcus acidilactici RC001 and RC008 showed the strongest antimicrobial activity, inhibiting all the pathogens tested. The strains produced antimicrobial compounds of different nature, being affected by different treatments (catalase, NaOH and heating), which indicated that they could be H2O2, organic acids or proteins. All LAB strains tested showed the ability to coaggregate pathogenic bacteria, showing inhibition percentages above 40%. Pediococcus acidilactici RC003 was the one with the highest adsorption capacity and all LAB strains were able to degrade AFB1 with percentages higher than 15%, showing significant differences with respect to the control. The ability of some of the LAB strains isolated in the present work to compete with pathogens, together with stability against bile and gastric pH, reduction of bioavailability and degradation of AFB1, may indicate the potential of LAB for use in rainbow trout culture.
Collapse
Affiliation(s)
- Maria Pia Martinez
- a Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas , Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto , Argentina.,b Cordoba , Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Río Cuarto , Argentina
| | - Maria Laura Gonzalez Pereyra
- a Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas , Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto , Argentina.,c Cordoba , Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Río Cuarto , Argentina
| | - Gabriela Alejandra Pena
- a Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas , Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto , Argentina.,c Cordoba , Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Río Cuarto , Argentina
| | - Valeria Poloni
- a Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas , Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto , Argentina.,b Cordoba , Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Río Cuarto , Argentina
| | - Guillermina Fernandez Juri
- a Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas , Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto , Argentina.,c Cordoba , Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Río Cuarto , Argentina
| | - Lilia Reneé Cavaglieri
- a Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas , Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto , Río Cuarto , Argentina.,c Cordoba , Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Río Cuarto , Argentina
| |
Collapse
|
19
|
Safari R, Hoseinifar SH, Nejadmoghadam S, Khalili M. Apple cider vinegar boosted immunomodulatory and health promoting effects of Lactobacillus casei in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2017; 67:441-448. [PMID: 28602743 DOI: 10.1016/j.fsi.2017.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
The present study was performed to investigate the immunomodulatory and health promoting effects of combined or singular administration of apple cider vinegar (ACV) and Lactobacillus casei in common carp (Cyprinus carpio) diet. An 8-week feeding trial was designed with following treatments: Control (basal diet), Pro (contains 107 CFU g-1L. casei), LACV (contains 1% ACV), HACV (contains 2% ACV), Pro + LACV (contains 107 CFU g-1L. casei plus 1% ACV) and Pro + HACV (contains 107 CFU g-1L. casei plus 2% ACV). Evaluation of skin mucus revealed notable increase of total Ig level and lysozyme activity in Pro + LACV and Pro + HACV treatments compared other groups (P < 0.05). Similarly, serum total Ig and lysozyme activity in HACV, Pro + LACV and Pro + HACV fed carps was remarkably higher than other groups (P < 0.05). However, regarding serum alternative complement (ACH50) activity significant difference was observed just between Pro + HACV and control treatment (P < 0.05). The highest expression of immune related (LYZ, TNF-alpha, IL1b, IL8) and antioxidant enzymes genes (GSR, GST) were observed in carps fed Pro + HACV and Pro + LACV. The expression of GH gene expression in Pro, LACV and HACV treatments was significantly higher than those in control group (P < 0.05). The highest expression level of GH and IGF1 was observed in fish fed combined Pro and ACV (P < 0.05). These results indicated that co-administration of ACV boosted immunomodulatory and health promoting effects of L. casei and can be considered as a promising immunostimulants in early stage of common carp culture.
Collapse
Affiliation(s)
- Roghieh Safari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Shabnam Nejadmoghadam
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Khalili
- Medical Cellular & Molecular Research Center, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
20
|
Giarma E, Amanetidou E, Toufexi A, Touraki M. Defense systems in developing Artemia franciscana nauplii and their modulation by probiotic bacteria offer protection against a Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 66:163-172. [PMID: 28478257 DOI: 10.1016/j.fsi.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The alterations of immune responses of Artemia franciscana nauplii as a function of culture time and after a challenge with the pathogen Vibrio anguillarum were studied. The effect of the administration of the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis either alone or in combination with the pathogen was evaluated. The activity of the antioxidant enzymes superoxide dismutase (SOD), Glutathione reductase (GRed), Glutathione transferase (GST) and Phenoloxidase (PO) presented a significant increase as a function of culture time, appeared elevated following probiotic administration and were depleted 48 h following the experimental challenge. Lipid peroxidation reached peak levels at 48 h of culture, when nauplii start feeding and returned to lower values at 144 h, remaining however significantly higher than control (P < 0.05). The three probiotics significantly reduced lipid peroxidation in comparison with the corresponding control, while challenge with the pathogen resulted in its threefold increase. Survival of nauplii remained high throughout culture and was either increased or remained at control levels following the administration of the probiotics. The challenge with the pathogen resulted in a significantly decreased survival of 15.3% for the positive control, while in the probiotic treated series survival values were not significantly different from the negative control (P > 0.05). Following a combined administration of each probiotic and the pathogen the activities of all enzymes tested were significantly lower (P < 0.001) than the negative control (no treatment), but higher than the positive control (challenge, no probiotic). Lipid peroxidation was significantly lower in the probiotic treated series in comparison to the positive control (P < 0.001). The results of the present study provide evidence that major alterations take place as a function of culture time of Artemia nauplii. In addition the pathogen induces an oxidative stress response. The probiotics B. subtilis, L. plantarum and L. lactis protect Artemia against a V. anguillarum challenge by enhancing its immune responses thus contributing to reduced oxidative damage and increased survival.
Collapse
Affiliation(s)
- Eleni Giarma
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Eleni Amanetidou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Alexia Toufexi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| |
Collapse
|
21
|
Truong Thy HT, Tri NN, Quy OM, Fotedar R, Kannika K, Unajak S, Areechon N. Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). FISH & SHELLFISH IMMUNOLOGY 2017; 60:391-399. [PMID: 27836719 DOI: 10.1016/j.fsi.2016.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
The study used the mixed probiotics of Bacillus amyloliquefaciens 54A and B. pumilus 47B isolated from striped catfish (Pangasianodon hypophthalmus) intestine aiming to stimulate growth performance, innate immunity, stress tolerance of striped catfish. The average weight gain (AWG), specific growth rate (SGR), and feed conversion ratio (FCR) were analyzed after fish were fed the mixture of probiotics (B. amyloliquefaciens 54A and B. pumilus 47B) at concentrations of 1 × 108, 3 × 108, and 5 × 108 CFU g-1 feed for 90 days. Immunity parameters, survival rate of fish challenged with Edwardsiella ictaluri and ammonia tolerance were also investigated. The amounts of B. amyloliquefaciens and B. pumilus were counted and identified by specific primer pairs of Ba1-F/Ba1-R, and 16-F/Bpu-R to confirm the presence of probiotics in fish intestine. The AWG (476.6 ± 7.81 g fish-1) of fish fed probiotics at 5 × 108 CFU g-1 was significant higher than the control (390 ± 25.7 g fish-1) after 90 days of feeding, but there was no significant (P > 0.05) effect of probiotics on FCR and SGR. Fish fed diet containing probiotics at 5 × 108 CFU g-1 also expressed resistance to E. ictaluri infection and higher immune parameters such as phagocytic activity, respiratory bursts, and lysozyme activity than the control. Stress response with ammonia showed significantly lower mortality rate (25%, 20% and 27%) of fish fed probiotics at all three levels of 1, 3 and 5 × 108 CFU g-1 than the fish fed control diet (75%). The study also demonstrated that the probiotics survived in the intestine of striped catfish after 90 days of feeding. Therefore, the dietary supplementation of a mixture of B. amyloliquefaciens and B. pumilus at 5 × 108 CFU g-1 can be used to improve the health and growth rate of striped catfish.
Collapse
Affiliation(s)
- Ho Thi Truong Thy
- Department of Aquaculture, Faculty of Fisheries, Linh Trung Ward, Thu Duc District, Nong Lam University, Viet Nam; Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Nguyen Nhu Tri
- Department of Aquaculture, Faculty of Fisheries, Linh Trung Ward, Thu Duc District, Nong Lam University, Viet Nam
| | - Ong Moc Quy
- Department of Aquaculture, Faculty of Fisheries, Linh Trung Ward, Thu Duc District, Nong Lam University, Viet Nam
| | - Ravi Fotedar
- Curtin Aquatic Research Laboratory, Department of Environment & Agriculture, Curtin University of Technology, Bentley 6102, WA, Australia
| | - Korntip Kannika
- Division of Fisheries, School of Agricultural and Natural Resources, University of Phayao, Phayao 56000, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
22
|
Lin HL, Shiu YL, Chiu CS, Huang SL, Liu CH. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2017; 60:474-482. [PMID: 27838565 DOI: 10.1016/j.fsi.2016.11.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Six bacteria, including, Lactobacillus casei M15, Lac. plantarum D8, Lac. pentosus BD6, Lac. fermentum LW2, Enterococcus faecium 10-10, and Bacillus subtilis E20, and one yeast, Saccharomyces cerevisiae P13 were selected as probiotics for Asian seabass, Lates calcarifer, by tracking the growth performance and disease resistance of fish against Aeromonas hydrophila in the first trial. The probiotic efficiency screening results showed that B. subtilis E20 and Lac. pentosus BD6, and S. cerevisiae P13 and Lac. fermentum LW2 respectively improved either the growth performance or disease resistance. Therefore, these four probiotics were then selected to prepare a probiotics mixture, and this was incorporated in equal proportions into diets for Asian seabass at levels of 0 (control), and 106 (MD6), 107 (MD7), 108 (MD8), and 109 (MD9) colony-forming units (cfu) (kg diet)-1. A synergistic effect of the combined probiotics was investigated in this study, and the probiotics mixture was able to improve both the growth performance and health status of fish. After 56 days of feeding, fish fed the MD9 diet had a higher final weight and percentage of weight gain. In addition, protein contents in the dorsal muscle of fish fed the MD8 and MD9 diets were significantly higher compared to the control. For the pathogen challenge test, fish fed the MD7, MD8, and MD9 diets had significantly lower cumulative mortalities after A. hydrophila infection compared to those of fish fed the control and MD6 diets, which might have been due to increased respiratory bursts, decreased superoxide dismutase activity in leucocytes, and increased phagocytic activity. Therefore, we considered that the probiotics mixture could adequately provide probiotic efficiency for Asian seabass, and the diet containing 109 cfu (kg diet)-1 probiotic mixture is recommended to improve the growth and health status of Asian seabass.
Collapse
Affiliation(s)
- Hsueh-Li Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Ya-Li Shiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Chiu-Shia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Shih-Ling Huang
- Freshwater Aquaculture Research Center, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Changhua, 50562, Taiwan, ROC.
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
23
|
Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal 2017; 11:1259-1269. [DOI: 10.1017/s1751731116002792] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Lamari F, Mahdhi A, Chakroun I, Esteban MA, Mazurais D, Amina B, Gatesoupe FJ. Interactions between candidate probiotics and the immune and antioxidative responses of European sea bass (Dicentrarchus labrax) larvae. JOURNAL OF FISH DISEASES 2016; 39:1421-1432. [PMID: 27133829 DOI: 10.1111/jfd.12479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The use of lactic acid bacteria (LAB) as probiotics in aquaculture may improve the quality of seed production and limit the use of antibiotics in fish hatcheries. This study attempted to further characterize the candidate probiotic Lactobacillus casei X2, and the immune and physiological responses of the sea bass larvae. L. casei X2 was confirmed as a good candidate, due to its wide antibacterial spectrum against both Gram-positive and Gram-negative bacteria, and its free radical scavenging activity. In addition, if the strain did not seem able to form biofilm on abiotic surfaces, it adhered strongly to Hep-2 cells. However, these characteristics did not seem efficient in vivo. At 20 days post-hatch (dph), the expression level of CAT gene was significantly different between group fed without probiotic and the two groups treated with either Pediococcus acidilactici or L. casei. This gene was upregulated in the group treated with strain X2 and downregulated in the group with a commercial probiotic strain P. acidilactici, suggesting a better antioxidant activity with the later strain. At the same sampling date, the IL-1β gene was upregulated in the group treated with P. acidilactici, and the HSP70 gene was overexpressed at 41 dph. As the stimulation of these two last genes, such transcriptomic indicators must be cautiously interpreted.
Collapse
Affiliation(s)
- F Lamari
- Ifremer, UMR 6539 LEMAR, Laboratoire 'Adaptation, Reproduction, Nutrition' (ARN), Centre de Bretagne, Plouzané, France.
- Laboratory of Analysis, Treatment and Valorization of Environment Pollutants and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia.
| | - A Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Environment Pollutants and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - I Chakroun
- Laboratory of Analysis, Treatment and Valorization of Environment Pollutants and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - M A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - D Mazurais
- Ifremer, UMR 6539 LEMAR, Laboratoire 'Adaptation, Reproduction, Nutrition' (ARN), Centre de Bretagne, Plouzané, France
| | - B Amina
- Laboratory of Analysis, Treatment and Valorization of Environment Pollutants and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - F-J Gatesoupe
- Ifremer, UMR 6539 LEMAR, Laboratoire 'Adaptation, Reproduction, Nutrition' (ARN), Centre de Bretagne, Plouzané, France
- NUMEA, INRA, Université de Pau et des Pays de l'Adour, Saint Pée sur Nivelle, France
| |
Collapse
|
25
|
Standen BT, Peggs DL, Rawling MD, Foey A, Davies SJ, Santos GA, Merrifield DL. Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2016; 49:427-435. [PMID: 26672904 DOI: 10.1016/j.fsi.2015.11.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
The growth performance, immunological status, intestinal morphology and microbiology of tilapia, Oreochromis niloticus, were investigated after dietary administration of the commercial probiotic AquaStar(®) Growout. Tilapia (29.02 ± 0.33 g) were split into five treatments; control (CON), 1.5 g kg(-1) probiotic (PRO-1.5), 3 g kg(-1) probiotic (PRO-3), pulsed probiotic feeding (PRO-PULSE) or an initial probiotic feed followed by control feeding (PRO-INI). After six weeks of experimental feeding, fish fed PRO-3 displayed significantly higher final weight, weight gain and SGR compared to the CON or PRO-INI treatments. Supplementation of the probiotic at this dose induced an up-regulation of intestinal caspase-3, PCNA and HSP70 mRNA levels compared to the CON fed fish. Immuno-modulatory pathways were also affected; significantly higher expression of TLR2, pro-inflammatory genes TNFα and IL-1β, and anti-inflammatory genes IL-10 and TGFβ suggest that the probiotic may potentiate a higher state of mucosal tolerance and immuno-readiness. Histological appraisal revealed significantly higher numbers of intraepithelial leucocytes in the intestine of PRO-3 fed fish compared with treatments CON, PRO-PULSE and PRO-INI but not PRO-1.5. Additionally, fish receiving PRO-3 had a significantly higher abundance of goblet cells in their mid-intestine when compared with fish from all other treatments. Together, these data suggest that continuous provision of AquaStar(®) Growout at 3 g kg(-1) can improve tilapia growth and elevate the intestinal immunological status of the host.
Collapse
Affiliation(s)
- B T Standen
- Aquaculture and Fish Nutrition Research Group, School of Biological Sciences, Plymouth, Devon, PL4 8AA, UK.
| | - D L Peggs
- Aquaculture and Fish Nutrition Research Group, School of Biological Sciences, Plymouth, Devon, PL4 8AA, UK
| | - M D Rawling
- Aquaculture and Fish Nutrition Research Group, School of Biological Sciences, Plymouth, Devon, PL4 8AA, UK
| | - A Foey
- School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - S J Davies
- Department Animal Production, Welfare and Veterinary Science, Harper Adams University, Newport, TF10 8NB, UK
| | - G A Santos
- Biomin Holding GmbH, Industriestrasse 21, 3130, Herzogenburg, Austria
| | - D L Merrifield
- Aquaculture and Fish Nutrition Research Group, School of Biological Sciences, Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|