1
|
Luo C, Yu Y, Meng G, Yuan J. Slowly digestible starch impairs growth performance of broiler chickens offered low-protein diet supplemental higher amino acid densities by inhibiting the utilization of intestinal amino acid. J Anim Sci Biotechnol 2025; 16:12. [PMID: 39844287 PMCID: PMC11755884 DOI: 10.1186/s40104-024-01142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/08/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The synchronized absorption of amino acids (AAs) and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body. The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion, transport and metabolism, breast muscle protein metabolism, and growth in grower broilers. A total of 720 21-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments, each with 6 replicates of 10 birds. The treatments comprised 3 different starch [corn: control, cassava: rapidly digestible starch (RDS), and pea: slowly digestible starch (SDS)] with 4 different AA levels [based on standardized ileal digestible lysine (SID Lys), 0.92%, 1.02% (as the standard), 1.12% and 1.22%]. RESULTS An interaction between dietary starch sources and SID Lys levels significantly affected breast muscle yield (P = 0.033). RDS and SDS diets, or SID Lys levels of 0.92%, 1.02%, or 1.22%, significantly decreased the breast muscle yield of broilers in contrast to the corn starch diet with 1.12% SID Lys (P = 0.033). The SID Lys levels of 1.12% and 1.22% markedly improved body weight (BW), body weight gain (BWG) from 22 to 42 days of age, and mRNA expression of y+LAT1 and mTOR while reducing feed intake (FI) and feed/gain ratio (F/G) compared to the 0.92% SID Lys level (P < 0.05). The SDS diet significantly decreased BW and BWG of broilers from 22 to 42 days of age, distal ileal starch digestibility, jejunal amylase and chymotrypsin activities, and mRNA expression of GLUT2 and y+LAT1 compared to the corn starch diet (P < 0.05). The RDS diet suppressed the breast muscle mass by down-regulating expression of mTOR, S6K1, and eIF4E and up-regulating expression of MuRF, CathepsinB, Atrogin-1, and M-calpain compared to the corn starch diet (P < 0.05). Targeted metabolomics analysis revealed that the SDS diet significantly increased acetyl-CoA and α-ketoglutaric acid levels in the tricarboxylic acid (TCA) cycle (P < 0.05) but decreased the ileal digestibility of Lys, Tyr, Leu, Asp, Ser, Gly, Pro, Arg, Ile, and Val compared to the corn starch group (P < 0.05). CONCLUSION The SDS diet impaired broiler growth by reducing intestinal starch digestibility, which inhibited intestinal AA and glucose absorption and utilization, increased AA oxidation for energy supply, and lowered the efficiency of protein synthesis. Although the RDS diet resulted in growth performance similar to the corn starch diet, it reduced breast muscle mass by inhibiting protein synthesis and promoting degradation.
Collapse
Affiliation(s)
- Caiwei Luo
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Yu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gang Meng
- Ningxia Eppen Biotech Co., Ltd., Ningxia, 750100, China
| | - Jianmin Yuan
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Li X, Wu X, Li X, Wei N, Jiang M, Zhu Y, Zhu T. Effect of Different Opening Diet on the Growth, the Structure of the Digestive Tract and Digestive Enzyme Activity of Larval and Juvenile Mystus macropterus. BIOLOGY 2024; 13:749. [PMID: 39336176 PMCID: PMC11444140 DOI: 10.3390/biology13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
One of the crucial factors influencing the growth and viability of larvae and juveniles is their opening diets. The objective of this study was to identify suitable initial feed options for M. macropterus larvae and juveniles. A total of 1200 newly hatched M. macropterus with an average weight of 18.3 mg and an average length of 11.58 mm were selected and randomly divided into four groups. The fish were fed with different opening diets, including rotifer, Artemia nauplii, Tubifex, and micro-diet from six days after hatching (dahs), respectively. Growth indices and activities of digestive enzymes were assessed at 10, 15, 20, 25, 30, 35, and 40 dahs. Histological examination of the structure of the digestive tract was performed at 40 dahs, while survival rates were also documented. The results demonstrated that different diets had no effect on the survival rate of larvae and juveniles of M. macropterus. The growth performance indices were ranked as follows: Tubifex group > Artemia nauplii group > micro-diet group > rotifer group. Remarkably, the Tubifex group exhibited superior growth performance, which was also reflected in the structure of the digestive tract and digestive enzyme activity. Therefore, it is recommended to include Tubifex in the diet of M. macropterus larvae and juvenile during the standardized farming process.
Collapse
Affiliation(s)
- Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xingbing Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xuemei Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nian Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongjiu Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Tingbing Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
3
|
Wang S, Xu G, Zou J. Soluble non-starch polysaccharides in fish feed: implications for fish metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1-22. [PMID: 36219350 DOI: 10.1007/s10695-022-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Because of their unique glycosidic bond structure, non-starch polysaccharides (NSP) are difficult for the stomach to break down. NSP can be classified as insoluble NSP (iNSP, fiber, lignin, etc.) and soluble NSP (sNSP, oligosaccharides, β-glucan, pectin, fermentable fiber, inulin, plant-derived polysaccharides, etc.). sNSP is viscous, fermentable, and soluble. Gut microbiota may catabolize sNSP, which can then control fish lipid, glucose, and protein metabolism and impact development rates. This review examined the most recent studies on the impacts of various forms of sNSP on the nutritional metabolism of various fish in order to comprehend the effects of sNSP on fish. According to certain investigations, sNSP can enhance fish development, boost the activity of digestive enzymes, reduce blood sugar and cholesterol, enhance the colonization of good gut flora, and modify fish nutrition metabolism. In-depth research on the mechanism of action is also lacking in most studies on the effects of sNSP on fish metabolism. It is necessary to have a deeper comprehension of the underlying processes by which sNSP induce host metabolism. This is crucial to address the main issue of the sensible use of carbohydrates in fish feed.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Huang D, Gu J, Xue C, Zhang L, Chen X, Wang Y, Liang H, Ren M. Different Starch Sources Affect the Growth Performance and Hepatic Health Status of Largemouth Bass ( Micropterus salmoides) in a High-Temperature Environment. Animals (Basel) 2023; 13:3808. [PMID: 38136845 PMCID: PMC10741064 DOI: 10.3390/ani13243808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The experiment was designed to investigate the effects of different starch types on the growth performance and liver health status of largemouth bass in a high-temperature environment (33-35 °C). In this study, we designed five diets using corn starch (CS), tapioca starch (TS), sweet potato starch (SPS), potato starch (PS), and wheat starch (WS) as the starch sources (10%). We selected 225 healthy and uniformly sized largemouth bass (199.6 ± 0.43 g) and conducted the feeding experiment for 45 days. The results showed that the WS group had the highest WGR, SGR, and SR and the lowest FCR. Among the five groups, the WS group had the highest CAT activity, SOD activity, and GSH content, while the SPS group had the highest MDA content. Furthermore, oil red O staining of liver samples showed that the TS group had the largest positive region, indicating high lipid accumulation. Lastly, the gene expression results revealed that compared with the WS group, the CS, TS, and SPS groups showed suppressed expression of nrf2, keap1, cat, sod, gpx, il-8, and il-10. Therefore, our results demonstrated the effect of different starch sources on largemouth bass growth performance and hepatic health in a high-temperature environment.
Collapse
Affiliation(s)
- Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
5
|
Effects of Dietary Amylose-Amylopectin Ratio on Growth Performance and Intestinal Digestive and Absorptive Function in Weaned Piglet Response to Lipopolysaccharide. Animals (Basel) 2022; 12:ani12141833. [PMID: 35883380 PMCID: PMC9311517 DOI: 10.3390/ani12141833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
This study investigated the effects of diet with different amylose−amylopectin ratios (AAR) on the growth performance, intestinal morphology, digestive enzyme activities and mRNA expression of nutrients transporters in piglets with short-term lipopolysaccharide (LPS) intraperitoneal injections. Sixty 21 days-old piglets (Landrace × Yorkshire; 6.504 ± 0.079) were randomly assigned based on their body weight (BW) and litters of origins to five groups with experimental diets with an AAR of 0.00, 0.20, 0.40, 0.60, or 0.80 (namely, the 0.00, 0.20, 0.40, and 0.80 groups), respectively. Each treatment included 12 piglets (one piglet per pen). This experiment lasted for 28 days. On the 28th day, six piglets in each treatment were randomly selected for an LPS intraperitoneal injection (100 μg/kg BW), and other piglets were injected with normal saline. Twelve hours after LPS injection, all piglets were sacrificed to collect small intestinal mucosa for analysis. Although different AAR did not influence the final BW in piglets, the piglets in the 0.40 group represented the poorest feed-to-gain ratio (F/G) in the first, second and fourth week (p < 0.05) and the lowest average daily gain (ADG) in the fourth week (p < 0.05) compared with other groups. In terms of the small intestinal morphology, piglets in the 0.20 and 0.60 groups showed better ileal villous width (p < 0.05). Piglets in the 0.60 group presented greater activities of jejunal maltase, sucrase and alkaline phosphatase (p < 0.05) than those of 0.20 and 0.40. However, a low amylose diet increased the mRNA expression of jejunal glucose and amino acid transporters (p < 0.05). In addition, compared to saline injection, the LPS challenge significantly lessened jejunal digestive enzyme activities (p < 0.01) and, ileal villous width and downregulated the gene expression of glucose and amino acid transporters (p < 0.05) in piglets. Interestingly, certain diet -LPS interactions on duodenal VH/CD, jejunal maltase activity (p < 0.05) and the expression of glucose transporters (p < 0.05) were observed. Taken together, in terms of small intestinal digestion and absorption capacity, these results demonstrated that a diet with an AAR of 0.60 diets could improve the intestinal digestive and absorptive capability by affecting small intestinal morphology, digestive enzymes, and nutrients absorptions in piglets. In addition, the diets containing an AAR of 0.40−0.60 were more likely to resist the damage of LPS stress to intestinal morphology and nutrient absorption.
Collapse
|
6
|
Farias CVTD, Oshiro AM, Sousa LC, Almeida VDNSD, Takahashi LS. Amylose and amylopectin levels affect the growth performance and metabolism in pacu Piaractus mesopotamicus. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Ma S, Wang H, Li J, Xue M, Cheng H, Qin Y, Blecker C. Effect of the ratio of wheat flour and cassava and process parameters on the pellet qualities in low starch feed recipe extrusion. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Starch in aquafeeds: the benefits of a high amylose to amylopectin ratio and resistant starch content in diets for the carnivorous fish, largemouth bass ( Micropterus salmoides). Br J Nutr 2020; 124:1145-1155. [PMID: 32624026 DOI: 10.1017/s0007114520002214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aquafeeds for carnivorous species face a nutritional-technological conundrum: containing sufficient starch to meet specific manufacturing requirements for binding, extrusion and expansion, but ideally containing as little starch as possible owing to their limited ability to utilise carbohydrates. The present study evaluated the effects of dietary starch with different amylose to amylopectin ratios and resistant starch contents on growth performance, hepatic glycogen accumulation and glucose metabolism of an important cultured carnivorous finfish, largemouth bass (Micropterus salmoides). A common starch source (α-cassava starch (CS)) was tested as is or after being enzymatically de-branched at three different inclusion levels in diets for largemouth bass. Results showed that the increased dietary starch levels compromised performance and high dietary α-CS content led to obvious liver damage. However, the growth performances of fish fed the diets with de-branched starch (DS) were improved, and no manifest liver damages were observed even at the higher inclusion level. The increasing dietary starch contents significantly increased hepatic glycogen accumulation, but not when DS was used. High dietary starch content, without regard to starch sources, had no effect on the expression of glucose metabolism-related genes, except for down-regulation of insulin receptor expression. However, the use of dietary DS promoted the expression of genes involved in the insulin pathway and glycolysis. In conclusion, this study showed that the use of starch sources with a high amylose to amylopectin ratio and resistant starch in the feed for cultured carnivorous finfish could alleviate the hepatic glycogen deposition through regulating the insulin pathway and glycolysis.
Collapse
|
9
|
Ma J, Yang T, Yang M, Yan Z, Zhao L, Yao L, Chen J, Chen Q, Tan B, Li T, Yin J, Yin Y. Effects of dietary amylose/amylopectin ratio and amylase on growth performance, energy and starch digestibility, and digestive enzymes in broilers. J Anim Physiol Anim Nutr (Berl) 2020; 104:928-935. [PMID: 32141136 DOI: 10.1111/jpn.13338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
This study was conducted to investigate the effects of dietary amylose/amylopectin (AM/AP) ratio and amylase on growth performance, apparent digestibility of energy and starch, serum biochemical index, and digestive enzymes. The experiment used a 4 × 3 factor design, and 960 one-day-old Arbor Acres (AA) broilers were randomly divided into 12 groups fed diets containing different AM/AP ratio of 0.11, 0.23, 0.35 and 0.47 and combined with 0, 3,000 and 6,000 U/kg amylase. Results showed that 0.23-0.35 AM/AP ratio increased growth performance, while dietary addition of 6,000 U/kg amylase significantly reduced average daily weight gain in broilers. The energy digestibility was significantly reduced along with the increase of dietary AM/AP ratio and in the 6,000 U/Kg amylase-supplemented groups. The digestibility of starch also decreased significantly with the increase of dietary AM/AP ratio, but high dose (6,000 U/Kg) of amylase increased. High AM/AP diet reduced serum insulin concentration, which was increased in amylase-supplemented groups. Furthermore, exogenous amylase increased amylase activity in the jejunal chyme. In conclusion, dietary 0.23-0.35 AM/AP ratio was suggested to maintain a higher growth performance in broilers and high AM/AP ratio diets reduced energy and starch digestibility and serum insulin concentration, which was reversed by dietary amylase.
Collapse
Affiliation(s)
- Jie Ma
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Tai Yang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Mei Yang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Zhaoming Yan
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Lei Zhao
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Linglong Yao
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| |
Collapse
|
10
|
Liu YS, Zhang YY, Li JL, Wang XF, Xing T, Zhu XD, Zhang L, Gao F. Growth performance, carcass traits and digestive function of broiler chickens fed diets with graded levels of corn resistant starch. Br Poult Sci 2019; 61:146-155. [PMID: 31735080 DOI: 10.1080/00071668.2019.1694137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. This study was conducted to assess the effects of graded levels of dietary corn resistant starch (RS) on growth performance, carcass traits, nutrient retention, digestive organ index, intestinal morphology, digestive enzyme activities, and mRNA expression of certain nutrient transporters in broiler chickens.2. A total of 320, 1-d-old Arbor Acres broiler chickens were randomly assigned to five dietary treatments, with eight replicates of eight birds in each. These treatments included one corn-soybean control diet, a corn-soybean based diet containing 20% corn starch, and three diets supplemented with 4%, 8% and 12% RS by replacing corn starch with 6.67%, 13.33% and 20% of Hi-Maize 260® (identified as control, RS1, RS2, RS3 and RS4, respectively). The feeding period lasted 42 days.3. Performance parameters including feed consumption, feed conversion, body weight gain and percentage of abdominal fat at d 42 of age, nutrient retention (including dry matter, fat, total starch and nitrogen free extract), and apparent metabolisable energy was measured from d 18 to 20 and d 39 to 41 and showed negative linear responses to increasing dietary RS level (P < 0.05). Birds fed the RS3 and RS4 diets showed higher relative weight of duodenum, jejunum and ileum, as well as lower villus height and villus height/crypt depth compared to the control (P < 0.05). The activity of pancreatic trypsin of birds at d 21 and 42 of age decreased linearly in response to the increase of dietary RS level (P < 0.01). There were linear changes in up-regulated mRNA expression of SGLT-1 and down-regulated mRNA expression of GLUT-2 with increasing proportion of RS at d 21 and 42 of age (P < 0.05), respectively.4. It was concluded that feeding broilers with diets containing higher concentrations of RS impaired the development of small intestine, which resulted in lower apparent total tract retention of nutrients and poorer body weight gain, feed efficiency and carcass traits of broiler chickens.
Collapse
Affiliation(s)
- Y S Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Y Y Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Vizcaíno AJ, Rodiles A, López G, Sáez MI, Herrera M, Hachero I, Martínez TF, Cerón-García MC, Alarcón FJ. Growth performance, body composition, and digestive functionality of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles fed diets including microalgae freeze-dried biomass. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:661-677. [PMID: 29354886 DOI: 10.1007/s10695-018-0462-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Senegalese sole is one of the most promising fish species cultivated in the Southern European countries. This study was aimed at assessing the effects of microalgae biomass added to diets for Senegalese sole juveniles on fish growing and condition status. Three isoproteic (52%) and isolipidic (10%) were formulated containing 15% Tisochrysis lutea (TISO), Nannochloropsis gaditana (NAN), or Scenedesmus almeriensis (SCE) biomass, respectively. An experimental microalgae-free diet (CT) and a commercial diet (COM) were used as controls. Fish were fed at 3% of their body weight for 85 days. Final body weight of fish fed microalgae-supplemented diets did not differ from group fed CT diet. Fish-fed CT, TISO, NAN, and SCE showed higher growth performance and nutrient utilization figures than specimen-fed COM diet. The highest carcass lipid content was found in COM group (141 g kg-1), and no differences were observed in body protein content. Ash was significantly higher in TISO, NAN, and SCE groups compared to fish-fed CT. Muscle EPA and DHA contents were not modified owing to the different dietary treatments. The n3/n6 and EPA/DHA ratios in muscle were similar in all the experimental groups. The quantification of digestive proteolytic activities did not differ among experimental groups, although differences in the protease pattern in digestive extracts by zymography were revealed in those fish fed on COM diet. Both α-amylase activity in the intestinal lumen and leucine aminopeptidase in the intestinal tissue were significantly lower in COM fish. Specimens fed on SCE diet showed a higher leucine aminopeptidase activity associated to the intestinal tissue compared to NAN-fed fish (0.40 and 0.25 U g tissue-1, respectively). The ultrastructural study revealed that the dietary inclusion of algal biomass, especially T. lutea and N. gaditana, had a positive impact on the absorptive capacity of the intestinal mucosa. The highest values for the parameters microvilli length and microvilli absorption surface were observed in fish fed on NAN diet (1.99 μm and 45.93 μm2, respectively). Even though further studies aimed at optimizing commercial formulas for Senegalese sole are required prior to any large-scale practical utilization, the results obtained clearly suggest the potential of microalgae as dietary ingredients for this fish species.
Collapse
Affiliation(s)
- A J Vizcaíno
- Departamento de Biología y Geología, Escuela Superior de Ingeniería, Universidad de Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - A Rodiles
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - G López
- Departamento de Biología y Geología, Escuela Superior de Ingeniería, Universidad de Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - M I Sáez
- Departamento de Biología y Geología, Escuela Superior de Ingeniería, Universidad de Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - M Herrera
- IFAPA Centro Agua del Pino, Huelva, Spain
| | - I Hachero
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, 36390, Vigo, Spain
| | - T F Martínez
- Departamento de Biología y Geología, Escuela Superior de Ingeniería, Universidad de Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - M C Cerón-García
- Departamento de Ingeniería Química, CITE II-A, Universidad de Almería, La Cañada de San Urbano, 04120, Almería, Spain
| | - F Javier Alarcón
- Departamento de Biología y Geología, Escuela Superior de Ingeniería, Universidad de Almería, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
12
|
Yang C, He J, Chen DW, Yu B, Yu J, Mao XB, Yang KY, Yuan ZC. Effects of corn type and fasting time before slaughter on growth and plasma index in weaning pigs. J Anim Sci 2016; 94:106-16. [PMID: 26812317 DOI: 10.2527/jas.2015-9257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A 2 × 2 factorial experiment was conducted to evaluate the effects of dietary corn type (waxy corn [WC] vs. nonwaxy corn [NC]) and fasting period (2 h vs. 12-16 h) before slaughter on growth and plasma index in weaning pigs. Twenty-four crossbred barrows (8.26 ± 0.47 kg) were allotted to 4 treatments with 6 replications of 1 pig per replicate metabolism cage. Waxy corn contained less fat, a lower amylase:amylopectin ratio, more CP, and more starch than NC. Pigs fed the WC diet had lower jejunum digesta pH compared with those fed the NC diet ( < 0.05). Maltase activity in the jejunum and ileum mucosa ( < 0.01), sucrose activity in the ileum mucosa ( < 0.01), and amylase activity in the pancreas and jejunum digesta ( < 0.05) were increased in pigs fed the WC diet relative to those fed the NC diet. But the total tract apparent digestibility (TTAD) of starch and CP was lower for the WC group ( < 0.05). Ingestion of the NC diet resulted in higher ( < 0.05) ADG and ADFI in the second week but did not affect ADG ( = 0.091) and the feed:gain ratio (F:G; = 0.077) during the whole experiment period. The plasma glucose ( < 0.01) concentration was higher and high-density lipoprotein cholesterol (HDL-C; < 0.01) concentrations was lower in the hepatic portal vein in pigs fed the WC diet relative to those fed the NC diet. Fasting 2 h before slaughter decreased the jejunum and ileum digesta pH compared with the 12-h fasting group ( < 0.01). Villus height increased in the duodenum ( < 0.01) and jejunum ( < 0.05) and the villus height:crypt depth ratio increased in the duodenum ( < 0.05) of pigs after shortening the fasting period before slaughter. Shortening the fasting time before slaughter resulted in higher plasma glucose ( < 0.05) concentrations and a higher HDL-C:low-density lipoprotein cholesterol (LDL-C) ratio ( < 0.05) whereas the LDL-C ( < 0.05) concentrations were reduced in the hepatic portal vein. The results of this experiment indicate that although the production performance of both WC and NC diets is equal, the glucose concentration is higher and HDL-C is lower in the portal vein for the WC diet, and fasting time before slaughter has an influence on the plasma index and intestinal morphology in weaning pigs.
Collapse
|