1
|
Wu D, Peng D, Liang XF, Xie R, Zeng M, Chen J, Lan J, Yang R, Hu J, Lu P. Dietary soybean lecithin promoted growth performance and feeding in juvenile Chinese perch (Siniperca chuatsi) could be by optimizing glucolipid metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1097-1114. [PMID: 37855970 DOI: 10.1007/s10695-023-01241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023]
Abstract
To explore the potential benefits of dietary phospholipids (PLs) in fish glucose metabolism and to promote feed culture of Chinese perch (Siniperca chuatsi), we set up six diets to feed Chinese perch (initial mean body weight 37.01 ± 0.20 g) for 86 days, including: Control diet (CT), 1% (SL1), 2% (SL2), 3% (SL3), 4% (SL4) soybean lecithin (SL) and 2% (KO2) krill oil (KO) supplemental diets (in triplicate, 20 fish each). Our study found that the SL2 significantly improved the weight gain rate and special growth rate, but the KO2 did not. In addition, the SL2 diet significantly improved feed intake, which is consistent with the mRNA levels of appetite-related genes (npy, agrp, leptin A). Additionally, in the CT and SL-added groups, leptin A expression levels were nearly synchronized with serum glucose levels. Besides, the SL2 significantly upregulated expression levels of glut2, gk, cs, fas and downregulated g6pase in the liver, suggesting that it may enhance glucose uptake, aerobic oxidation, and conversion to fatty acids. The SL2 also maintained the hepatic crude lipid content unchanged compared to the CT, possibly by significantly down-regulating the mRNA level of hepatic lipase gene (hl), and by elevating serum low-density lipoprotein (LDL) level and intraperitoneal fat ratio in significance. Moreover, the serum high-density lipoprotein levels were significantly increased by PL supplementation, and the SL2 further significantly increased serum total cholesterol and LDL levels, suggesting that dietary PLs promote lipid absorption and transport. Furthermore, dietary SL at 1% level could enhance non-specific immune capacity, with serum total protein level being markedly higher than that in the CT group. In conclusion, it is speculated that the promotion of glucose utilization and appetite by 2% dietary SL could be linked. We suggest a 1.91% supplementation of SL in the diet for the best growth performance in juvenile Chinese perch.
Collapse
Affiliation(s)
- Dongliang Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Ruipeng Xie
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ming Zeng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Junliang Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jie Lan
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ru Yang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiacheng Hu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Peisong Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
2
|
Markevich GN, Pavlova NS, Kapitanova DV, Esin EV. Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism. Evol Dev 2023; 25:274-288. [PMID: 37540043 DOI: 10.1111/ede.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.
Collapse
Affiliation(s)
- Grigorii N Markevich
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Scientific Department, Kronotsky Nature Reserve, Yelizovo, Kamchatka Region, Russia
| | - Nadezhda S Pavlova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Daria V Kapitanova
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Lab of Postnatal Ontogenesis, N.K. Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Esin
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Blanco AM, Soengas JL. Leptin signalling in teleost fish with emphasis in food intake regulation. Mol Cell Endocrinol 2021; 526:111209. [PMID: 33588023 DOI: 10.1016/j.mce.2021.111209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Leptin, the product of the obese (ob or Lep) gene, was first cloned in teleost fish in 2005, more than a decade after its identification in mammals. This was because bony fish and mammalian leptins share a very low amino acid sequence identity, which suggests different functionality of the leptin system in fish compared to that of mammals. Indeed, major differences are evident between the mammalian and fish leptin system. Thus, for instance, mammalian leptin is synthesized and released by the adipose tissue in response to the amount of fat depots, while several tissues (mainly the liver) are the main sources of leptin in fish, whose determining factors of production are still unclear. In mammals, the main physiological role for leptin is its involvement in the maintenance of energy balance by decreasing food intake and increasing energy expenditure, although a wide variety of actions have been attributed to this hormone (e.g., regulation of lipid and carbohydrate metabolism, reproduction and immune functions). In fish, available literature also points towards a multifunctional nature for leptin, although knowledge on its functions is limited. In this review, we offer an overview of teleostean leptin structure and mechanism of action, and discuss the available knowledge on the role of this hormone in food intake regulation in teleost fish, aiming to provide a comparative overview between the functioning of the teleostean and mammalian leptin systems.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - José Luis Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain.
| |
Collapse
|
5
|
Mankiewicz JL, Deck CA, Taylor JD, Douros JD, Borski RJ. Epinephrine and glucose regulation of leptin synthesis and secretion in a teleost fish, the tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2021; 302:113669. [PMID: 33242479 DOI: 10.1016/j.ygcen.2020.113669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Acute stress is regulated through the sympathetic adrenergic axis where catecholamines mobilize energy stores including carbohydrates as a principal element of the endocrine stress response. Leptin is a cytokine critical for regulating energy expenditure in vertebrates and is stimulated by various stressors in fish such as fasting, hyperosmotic challenge, and hypoxia. However, little is known about the regulatory interactions between leptin and the endocrine stress axis in fishes and other ectothermic vertebrates. We evaluated the actions of epinephrine and glucose in regulating leptin A (LepA) in vivo and in vitro in tilapia. Using hepatocyte incubations and a homologous LepA ELISA, we show that LepA synthesis and secretion decline as ambient glucose levels increase (10-25 mM). By contrast, bolus glucose administration in tilapia increases lepa mRNA levels 14-fold at 6 h, suggesting systemic factors regulated by glucose may counteract the direct inhibitory effects of glucose on hepatic lepa mRNA observed in vitro. Epinephrine stimulated glucose and LepA secretion from hepatocytes in a dose-dependent fashion within 15 min but had little effect on lepa mRNA levels. An in vivo injection of epinephrine into tilapia stimulated a rapid rise in blood glucose which was followed by a 4-fold increase in hepatic lepa mRNA levels at 2.5 and 6 h. Plasma LepA was also elevated by 6 h relative to controls. Recombinant tilapia LepA administration in vivo did not have any significant effect on plasma epinephrine levels. The results of this study demonstrate LepA is negatively regulated by rises in extracellular glucose at the level of the hepatocyte but stimulated by hyperglycemia in vivo. Further, epinephrine increases LepA. This, along with previous work demonstrating a hyperglycemic and glycogenolytic effect of LepA in tilapia, suggests that epinephrine may stimulate leptin secretion to augment and fine tune glucose mobilization and homeostasis as part of the integrated, adaptive stress response.
Collapse
Affiliation(s)
- Jamie L Mankiewicz
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Courtney A Deck
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Jordan D Taylor
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA
| | - Jonathan D Douros
- Duke University, Molecular Physiology Institute, Durham, NC 27701, USA
| | - Russell J Borski
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Abstract
In all vertebrates, the thyroid axis is an endocrine feedback system that affects growth, differentiation, and reproduction, by sensing and translating central and peripheral signals to maintain homeostasis and a proper thyroidal set-point. Fish, the most diverse group of vertebrates, rely on this system for somatic growth, metamorphosis, reproductive events, and the ability to tolerate changing environments. The vast majority of the research on the thyroid axis pertains to mammals, in particular rodents, and although some progress has been made to understand the role of this endocrine axis in non-mammalian vertebrates, including amphibians and teleost fish, major gaps in our knowledge remain regarding other groups, such as elasmobranchs and cyclostomes. In this review, we discuss the roles of the thyroid axis in fish and its contributions to growth and development, metamorphosis, reproduction, osmoregulation, as well as feeding and nutrient metabolism. We also discuss how thyroid hormones have been/can be used in aquaculture, and potential threats to the thyroid system in this regard.
Collapse
|
7
|
Tomato Juice Supplementation Influences the Gene Expression Related to Steatosis in Rats. Nutrients 2018; 10:nu10091215. [PMID: 30200543 PMCID: PMC6165399 DOI: 10.3390/nu10091215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
The objective of this work was to identify the effect of tomato juice on the expression of genes and levels of metabolites related to steatosis in rats. Male Sprague Dawley rats (8 weeks-old) were grouped (6 rats/group) in four experimental groups: NA (normal diet and water), NL (normal diet and tomato juice), HA (high-fat diet and water), and HL (high-fat diet and tomato juice). After an intervention period of 5 weeks, rats were sacrificed and biochemical parameters, biomarkers of oxidative stress, liver metabolites, and gene expression were determined. Although the H diet provoked dislipemia related to steatosis, no changes in isoprostanes or liver malondialdehyde (MDA) were observed. Changes in the gene expression of the HA group were produced by the high consumption of fat, whereas the consumption of tomato juice had different effects, depending on the diet. In the NL group, the genes involved in β-oxidation were upregulated, and in groups NL and HL upregulation of CD36 and downregulation of APOB and LPL were observed. In addition, in the HL group the accumulation of lycopene upregulated the genes FXR and HNF4A, which have been suggested as preventive factors in relation to steatosis. Regarding the metabolomics study, intake of tomato juice stimulated the biosynthesis of glutathione and amino acids of the transulfurization pathway, increasing the levels of metabolites related to the antioxidant response.
Collapse
|
8
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|