1
|
Yao J, Du H, Zhou H, Leng X, Wu J, He S, Luo J, Liang X, Liu H, Wang Q, Wei Q, Tan Q. Molecular characterization and expression profiles of six genes involved in vitellogenic deposition and hydrolysis of Chinese sturgeon (Acipenser sinensis) suggesting their transcriptional regulation on ovarian development. Theriogenology 2021; 162:59-66. [PMID: 33444917 DOI: 10.1016/j.theriogenology.2020.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023]
Abstract
Ovary development of Chinese sturgeon (Acipenser sinensis) in controlled breeding has been reported to respond to dietary lipid levels. However, the corresponding molecular regulatory mechanism about ovary development of Chinese sturgeon is still unclear. To elucidate the molecular mechanism of vitellogenic deposition and hydrolysis, six key genes, namely, vtgr (vitellogenin receptor), atp6v1c1 (Vacuolar H+-ATPase subunit c1), atp6v1h (Vacuolar H+-ATPase subunit h), ctsb (cathepsin B), ctsd (cathepsin D) and ctsl (cathepsin L) involved in vitellogenic deposition and hydrolysis of Chinese sturgeon were cloned and characterized, and their spatio-temporal mRNA expression profiles as well as transcriptional responses to dietary lipid level were investigated. The full-length cDNA sequences of these six genes showed similar domain structure to their respective orthologous genes from other vertebrates. Tissue-specific expression patterns of these genes were observed in ovary, liver, muscle, spleen, brain, gill, intestine, heart, stomach and kidney. Ovarian expression level of vtgr was the highest in stage II, and ctsl expression was the highest in stage IV, while the mRNA expressions of other 4 genes were the highest in stage III. The increase of dietary lipid level promoted ovary development and elevated the expressions of vtgr, atp6v1c1, atp6v1h, ctsb and ctsd in the ovary. The results of the present study indicated that these genes are crucial for vitellogenic deposition, and provided a preliminary understanding on the molecular regulation of vitellogenic deposition and hydrolysis during ovary development of Chinese sturgeon.
Collapse
Affiliation(s)
- Junpeng Yao
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hai Zhou
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xiaoqian Leng
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Jinping Wu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Shan He
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Jiang Luo
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Xufang Liang
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture/Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China.
| | - Qingsong Tan
- College of Fisheries, Huazhong Agricultural University/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture/Hubei Collaborative Innovation Center for Freshwater Aquaculture/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
2
|
Pan G, Zhang K, Li C, Hu X, Kausar S, Gu H, Yang L, Cui H. A hemocyte-specific cathepsin L-like cysteine protease is involved in response to 20-hydroxyecdysone and microbial pathogens stimulation in silkworm, Bombyx mori. Mol Immunol 2020; 131:78-88. [PMID: 33376000 DOI: 10.1016/j.molimm.2020.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023]
Abstract
Cathepsin L protease belongs to the papain-like cysteine proteases family, plays indispensable roles in animals' pathological and physiological processes. However, little is known about Cathepsin L in silkworm, Bombyx mori. Herein, a novel Cathepsin L-like (Cat L-like) was cloned and identified from silkworm by the rapid amplification of cDNA ends (RACE). Cat L-like contains an intact open reading frame (ORF) of 1 668 bp and encodes 556 amino acid residues, consisting of a signal peptide, typical cathepsins' inhibitor_I29, and pept_C1 domain. Cat L-like is specifically and highly expressed in hemocytes. The cathepsin (including Cathepsin L, B, and H) crude extract from hemocytes had typical substrate specific catalytic activities and were sensitive to pH and temperature. Cat L-like up-regulated considerably after 20-hydroxyecdysone (20-E) administration, indicating that Cat L-like may be regulated by insect hormone. The responses of Cat L-like against bacterial infection suggest it may play essential roles in silkworm immunity. Overall, our studies provide a theoretical basis and insights to further investigate the functions of Cat L-like and in insects' innate immunity mechanisms.
Collapse
Affiliation(s)
- Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Ma KX, Song GG, Wu M, Zhang HC, Chen GW, Liu DZ. Identification of a potential tissue-specific biomarker cathepsin L-like gene from the planarian Dugesia japonica: Molecular cloning, characterization, and expression in response to heavy metal exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:73-79. [PMID: 31075718 DOI: 10.1016/j.ecoenv.2019.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution is a global health issue affecting people worldwide, and the exploration of sensitive biomarkers to assess the toxicity of heavy metals is an important work for researchers. Cathepsin L, role as a tissue-specific biomarker to assess the biological effects of environmental pollutants, has not received much attention. In this work, the full-length cDNA of cathepsin L gene from the planarian Dugesia japonica (designated DjCatL) was cloned by rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of DjCatL is 1161 bp, which encodes a protein of 346 amino acids with a molecular weight of 39.03 kDa. Sequence analysis revealed that DjCatL contains highly conserved ERF/WNIN, GNFD, and GCXGG motifs, which are the features of the cathepsin L protein family. Whole-mount in situ hybridization (WISH) results revealed that the transcripts of DjCatL are specifically distributed in the intestinal system, suggesting that this gene is related to food digestion in planarians. Both quantitative polymerase chain reaction (qPCR) and WISH results revealed that the transcriptional levels of DjCatL are inhibited significantly by heavy metal (Cd2+, Hg2+, and Cu2+) exposure in a dose-dependent manner. Therefore, we proposed that cathepsin L can be used as a tissue-specific biomarker to assess the heavy metal pollution in the aquatic environment.
Collapse
Affiliation(s)
- Ke-Xue Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ge-Ge Song
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Meng Wu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
5
|
Lv Z, Qiu L, Liu Z, Wang W, Chen H, Jia Y, Jia Z, Jiang S, Wang L, Song L. Molecular characterization of a cathepsin L1 highly expressed in phagocytes of pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:152-162. [PMID: 30144489 DOI: 10.1016/j.dci.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin L1 (CTSL1) is a lysosomal cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of immune response against pathogen infection based on the proteolytic activity. In the present study, a CTSL1 homologue (designated as CgCTSL1) was identified from Crassostrea gigas. It contained a typically single Pept_C1 domain with three conserved catalytically essential residues (Gln25, His135 and Asn178). The mRNA of CgCTSL1 was ubiquitously expressed in oyster tissues with the highest expression level in important immune tissues such as gill and hemocytes. CgCTSL1 proteins were mainly detected in gill and hepatopancreas by immunohistochemistry. Recombinant CgCTSL1 (rCgCTSL1) exhibited proteolytic activity to cleave the substrate Ac-FR-amino-4-trifluoromethyl coumarin (AFC) in a dose-dependent manner, and the inhibitor could reduce its proteolytic activity. After the interference of CgCTSL1 mRNA, the proteolytic activity of oyster hemocytes was significantly down-regulated with the released AFC fluorescence value decreasing from 375.84 to 179.21 (p < 0.05). Flow cytometry analysis revealed that the expression of CgCTSL1 protein was higher in phagocytes with the mean fluorescence intensity (MFI) value of 21,187 (4.13-fold, p < 0.01) compared to the MFI value of 5,130 in non-phagocytic hemocytes. The further confocal analysis demonstrated that the actively phagocytic hemocytes with green bead signals were co-localized with stronger CgCTSL1 positive signals. The mRNA expression levels of CgCTSL1 in phagocyte-like sub-populations of granulocytes and semi-granulocytes were 298.12-fold (p < 0.01) and 2.75-fold (p < 0.01) of that in agranulocytes, respectively. Western blotting analysis of the hemocyte proteins revealed that CgCTSL1 was relatively abundant in granulocytes and semi-granulocytes compared to that in agranulocytes. These results collectively suggested that CgCTSL1, a CTSL1 homologue highly expressed in phagocyte-like hemocytes, was possibly involved in cellular immune response dependent on its conserved proteolytic activity, which might provide clues for the divergence between phagocytes and non-phagocytic hemocytes as well as the identification of promising molecular markers for phagocytes in oyster C. gigas.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoqun Liu
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Liang FR, Hong YH, Ye CC, Deng H, Yuan JP, Hao YF, Wang JH. Molecular characterization and gene expression of cathepsin L in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 67:280-292. [PMID: 28602734 DOI: 10.1016/j.fsi.2017.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Cathepsin L (CatL) has been widely known for its involvement in the innate immunity. However, it still remains poorly understand how CatL modulates the immune system of teleosts. Moreover, the CatL of Nile tilapia (NtCatL) has not been cloned or characterized. In this study, the gene encoding NtCatL was cloned, and was characterized by bioinformatics analysis, heterologous expression and protease activity assay. The coding sequence of NtCatL is 1017 bp in length and encodes 338 amino acid residues with a predicted molecular weight of 38.487 kDa and a theoretical isoelectric point of 5.79. NtCatL possesses the features of a typical cathepsin L, including one signal peptide, one propeptide region, and one papain family cysteine protease domain containing four active site residues (Gln135, Cys141, His281, and Asn305). The prediction of protein-protein interaction shows that NtCatL may interact with some functional proteins for realizing an immune function. Real-time quantitative PCR revealed the widespread transcriptional expression of NtCatL in six tissues of healthy Nile tilapia, and the NtCatL mRNA is significantly up-regulated after Streptococcus agalactiae challenge. These results suggest that NtCatL is likely to be involved in the immune reaction of Nile tilapia. Recombinant proteins from the mature domain (residues 117-337) of NtCatL were obtained by heterologous expression using pET28a and Rosetta (DE3) competent cells. A protein product with the high purity was obtained by using TALON Superflow purification rather than adopting HisTrap HP columns. The protease activity of the recombinant protein was verified by using a substrate hydrolyzing assay. This work has cloned and characterized the CatL from Nile tilapia for the first time, and contributes to elucidating the immunological functions of CatL.
Collapse
Affiliation(s)
- Fu-Rui Liang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Yue-Hui Hong
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Cong-Cong Ye
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Hailin Deng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jian-Ping Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China; South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Yun-Fang Hao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China; South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|