1
|
Ke X, Zhang R, Yao Q, Duan S, Hong W, Cao M, Zhou Q, Zhong X, Zhao H. Alternative splicing of medaka bcl6aa and its repression by Prdm1a and Prdm1b. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1229-1242. [PMID: 34218391 DOI: 10.1007/s10695-021-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bcl6 and Prdm1 (Blimp1) are a pair of transcriptional factors that repressing each other in mammals. Prdm1 represses the expression of bcl6 by binding a cis-element of the bcl6 gene in mammals. The homologs of Bcl6 and Prdm1 have been identified in teleost fish. However, whether these two factors regulate each other in the same way in fish like that in mammals is not clear. In this study, the regulation of bcl6aa by Prdm1 was investigated in medaka. The mRNA of bcl6aa has three variants (bcl6aaX1-X3) at the 5'-end by alternative splicing detected by RT-PCR. The three variants can be detected in adult tissues and developing embryos of medaka. Prdm1a and prdm1b are expressed in the tissues and embryos where and when bcl6aa is expressed. The expression of prdm1a was high while the expression of bcl6aa was low, and vice versa, detected in the spleen after stimulation with LPS or polyI:C. In vitro reporter assay indicated that bcl6aa could be directly repressed by both Prdm1a and Prdm1b in a dosage-dependent manner. After mutation of the key base, G, of all predicted binding sites in the core promoter region of bcl6aa, the repression by Prdm1a and/or Prdm1b disappeared. The binding site of Prdm1 in the bcl6aa gene is GAAAA(T/G). These results indicate that both Prdm1a and Prdm1b directly repress the expression of bcl6aa by binding their binding sites where the 5'-G is critical in medaka fish.
Collapse
Affiliation(s)
- Xiaomei Ke
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Runshuai Zhang
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shi Duan
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Wentao Hong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
2
|
Perdiguero P, Goméz-Esparza MC, Martín D, Bird S, Soleto I, Morel E, Díaz-Rosales P, Tafalla C. Insights Into the Evolution of the prdm1/Blimp1 Gene Family in Teleost Fish. Front Immunol 2020; 11:596975. [PMID: 33193451 PMCID: PMC7662092 DOI: 10.3389/fimmu.2020.596975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, Blimp1 (B lymphocyte-induced maturation protein 1) encoded by the prdm1 gene and its homolog Hobit (homolog of Blimp1 in T cells) encoded by znf683, represent key transcriptional factors that control the development and differentiation of both B and T cells. Despite their essential role in the regulation of acquired immunity, this gene family has been largely unexplored in teleosts to date. Until now, one prdm1 gene has been identified in most teleost species, whereas a znf683 homolog has not yet been reported in any of these species. Focusing our analysis on rainbow trout (Oncorhynchus mykiss), an in silico identification and characterization of prdm1-like genes has been undertaken, confirming that prdm1 and znf683 evolved from a common ancestor gene, acquiring three gene copies after the teleost-specific whole genome duplication event (WGD) and six genes after the salmonid-specific WGD. Additional transcriptional studies to study how each of these genes are regulated in homeostasis, in response to a viral infection or in B cells in different differentiation stages, provide novel insights as to how this gene family evolved and how their encoded products might be implicated in the lymphocyte differentiation process in teleosts.
Collapse
Affiliation(s)
| | | | - Diana Martín
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | |
Collapse
|
3
|
Martorell Ribera J, Nipkow M, Viergutz T, Brunner RM, Bochert R, Koll R, Goldammer T, Gimsa U, Rebl A. Early response of salmonid head-kidney cells to stress hormones and toll-like receptor ligands. FISH & SHELLFISH IMMUNOLOGY 2020; 98:950-961. [PMID: 31770645 DOI: 10.1016/j.fsi.2019.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/25/2023]
Abstract
The functional spectrum of the teleostean head kidney covers haematopoietic, immune and endocrine signalling pathways with physiological effects that are likely to conflict if activated at the same time. An in vivo experiment on the salmonid fish maraena whitefish (Coregonus maraena) revealed that the head kidney shows a remarkably strong response after injection of Aeromonas salmonicida within 48 h. In order to investigate the potential influence of endocrine signalling on the initiation of immune responses, we established a primary culture of head-kidney cells of maraena whitefish. For the characterisation of this model system, we used flow cytometry complemented with an extensive panel of immunological/haematological and stress-physiological/neuroendocrinological qPCR assays. More than one third of the cells expressed the characteristic signature of myeloid cells, while more than half of the cells expressed those genes typical for lymphocytes and monocytes. In parallel, we quantified the expression of genes encoding endocrine receptors and identified ADRA2D as by far the most highly expressed adrenergic-receptor gene in head-kidney cells. The stimulation of the head-kidney cells with toll-like receptor ligands induced the expression of typical immune genes (IL1B, CXCL8, TNF, SAA) after only 1 h. The incubation with the stress hormones cortisol, adrenaline and noradrenaline also had an immune-activating effect, though less pronounced. However, cortisol had the strongest suppressive effect on the stimulation-induced immune response, while adrenaline exerted a comparably weaker effect and noradrenaline was almost ineffective. Moreover, we found that cortisol reduced the expression of genes coding for adrenergic and some glucocorticoid receptors, while noradrenaline increased it. In conclusion, the primary head-kidney cells of maraena whitefish reflect the immunological and neuroendocrinological diversity of the entire organ. This in vitro system allowed thus identifying the correlative changes between the activities of hormones and immune factors in salmonid fish in order to contribute to a better understanding of the regulation circuit between stress and immune defence.
Collapse
Affiliation(s)
- Joan Martorell Ribera
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany; FBN, Institute of Behavioural Physiology, Psychophysiology Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Mareen Nipkow
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Torsten Viergutz
- FBN, Institute of Reproductive Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald M Brunner
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Research Station Aquaculture Born, Institute of Fisheries, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Südstraße 8, 18375, Born/Darss, Germany
| | - Raphael Koll
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ulrike Gimsa
- FBN, Institute of Behavioural Physiology, Psychophysiology Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
4
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
5
|
Li P, Wang B, Cao D, Liu Y, Zhang Q, Wang X. Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter. Comp Biochem Physiol B Biochem Mol Biol 2017; 212:32-40. [PMID: 28669662 DOI: 10.1016/j.cbpb.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
Abstract
PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression.
Collapse
Affiliation(s)
- Peizhen Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Dandan Cao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Ministry of Education, Qingdao, China.
| |
Collapse
|