1
|
Ezatrahimi N, Soltanian S, Hoseinifar SH. Skin mucosal immune parameters and expression of the immune-relevant genes in Danio rerio treated by white button mushroom (Agaricus bisporus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2343-2356. [PMID: 39105975 DOI: 10.1007/s10695-024-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
This study evaluates using different levels of the white button mushroom powder (WBMP) on some mucosal innate immune parameters (lysozyme, protease, esterase, alkaline phosphatase activities, and total immunoglobulin levels), and the relative expression of some principal immune-relevant genes (lysozyme, TNF-α, and IL-1β) in the zebra danio intestine. Zebrafish specimens (1.75 ± 0.25 g) were divided into experimental units based on the additives to a diet including 5, 10, and 20 g of WBMP per kilogram of food weight, alone or in conjunction with the antibiotic (10 mg/kg BW), and the AGRIMOS (1 g/kg food weight). Following the 11-day experimental duration, the skin mucus and intestine were sampled. To assess the immune gene expression, the real-time PCR detection system was conducted according to the ΔΔCt method using the IQ5 software (Bio-RAD). Results showed that all groups had a significant increase in terms of mucosal lysozyme activity compared to the control group. Examination of total immunoglobulin, protease, esterase, and ALP activity in fish under experimental treatment showed that there was no significant difference between the trial groups and the control groups. The most expression of the lysozyme gene was related to the group that was separately taken the lower concentration (5 g per kg of FW) of WBMP. In conclusion, the amount of 1% mushroom powder in the diet can improve its immune function. Our recommendation is that given the positive effects that mushroom powder added on the diet alone, avoid taking antibiotics for this purpose.
Collapse
Affiliation(s)
- Narmin Ezatrahimi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Administration of Mazandaran Province, Iran Fisheries Organization, Sari, Iran
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Tao J, Wang S, Qiu H, Xie R, Zhang H, Chen N, Li S. Modulation of growth performance, antioxidant capacity, non-specific immunity and disease resistance in largemouth bass (Micropterus salmoides) upon compound probiotic cultures inclusion. FISH & SHELLFISH IMMUNOLOGY 2022; 127:804-812. [PMID: 35843521 DOI: 10.1016/j.fsi.2022.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
An 8-week feeding trial was conducted to evaluate the effects of dietary supplementation of compound probiotic cultures (CPC; Bacillus subtilis, Lactobacillus plantarum and Saccharomyces cerevisiae) on the growth performance, antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass. Triplicate groups of largemouth bass (average weight 42.05 ± 0.02 g), with a destiny of 30 individuals per tank, were fed diets supplemented with different concentration of compound probiotic cultures (CPC) (0%, CPC (0.0); 0.5%, CPC (0.5); 1.0%, CPC (1.0); 2.0%, CPC (2.0)). After the feeding trial, tissue samples of largemouth bass were collected and the challenge test with Aeromonas hydrophila was performed. Results indicated that the CPC supplementation produced no significant difference on the growth performance, feed utilization and body composition of largemouth bass, while significantly increased the cumulative survival rate in the Aeromonas hydrophila challenge test. Meanwhile, the inclusion of CPC elevated the hepatic antioxidant capacity, and the highest activity of antioxidant enzymes, including T-AOC, CAT, GPx and T-SOD, was observed in the CPC (2.0) group. Meanwhile, the transcription of Nrf2/keap1 and antioxidant related genes, including CAT, GPx, GST, SOD1 and SOD2, was significantly elevated with the inclusion of CPC. In addition, the inclusion of CPC improved the non-specific immunity of largemouth bass. The activity of serum lysozyme was significantly elevated in the CPC (2.0) group, while the transcription of RelA and pro-inflammatory factors, including TNF-α and IL-1β, was inhibited with the inclusion of CPC. Meanwhile, related genes potentially linked to RelA, including TLR2 and p38 MAPK, were detected that their relative expression was significantly inhibited with the inclusion of CPC. The current findings indicated that the inclusion of 2% CPC improved the antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass, and suggested that 2% CPC as a functional additive could be applied to the diet of juvenile largemouth bass in aquaculture practice.
Collapse
Affiliation(s)
- Jiajie Tao
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shilin Wang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongjie Qiu
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524000, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524000, China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Abidin Z, Huang HT, Hu YF, Chang JJ, Huang CY, Wu YS, Nan FH. Effect of dietary supplementation with Moringa oleifera leaf extract and Lactobacillus acidophilus on growth performance, intestinal microbiota, immune response, and disease resistance in whiteleg shrimp (Penaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2022; 127:876-890. [PMID: 35810967 DOI: 10.1016/j.fsi.2022.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effect of the moringa (Moringa oleifera) leaf extract and Lactobacillus acidophilus individually or combined on growth performance, enzyme activity, intestinal and hepatopancreatic histology, intestinal microbiota, immune response, and resistance against Vibrio alginolyticus and Vibrio parahaemolyticus in whiteleg shrimp (Penaeus vannamei). Six diets were formulated: three diets without L. acidophilus containining 0 (control, ME0), 2.5 (ME2.5), and 5.0 g/kg of moringa (ME5.0) and the same three diets containing L. acidophilus at 1 × 107 CFU/g of diet (ME0+P, ME2.5 + P, and ME5.0 + P, respectively). Growth performance was measured after 60 days of the rearing period. On the final day, the shrimp were sampled to assess enzyme activity, intestinal and hepatopancreatic histology, and gut microbiota. Shrimp hemocytes were examined on Days 0, 1, 2, 4, 7, 14, 21, and 28 to measure the immune response in terms of the total hemocyte count, phenoloxidase activity, phagocytosis, and superoxide anion production. Furthermore, the shrimp were challenged with V. alginolyticus and V. parahaemolyticus. The results revealed that ME2.5 + P significantly increased (P < 0.05) final weight, weight gain, specific growth rate, enzyme activities, and villi height compared with ME2.5 and control. Wall thickness was increased in the shrimp fed diet supplemented with moringa and L. acidophilus compared with the control shrimp. Hepatopancreatic histology revealed that R cells were more abundant in the shrimp fed diet containing moringa and L. acidophilus compared with those fed diet containing moringa alone (P < 0.05) at the same concentration. High-throughput sequencing analysis indicated that the dietary supplementation with moringa and L. acidophilus affected the gut microbiota composition. All gene functions, members of KEGG level 2, related to metabolism were increased in diet supplemented with moringa with or without L. acidophilus compared with the control group. The immune assay revealed that the total hemocyte count, phenoloxidase activity, phagocytic rate, superoxide anion production, and immune-related gene expression (including those of prophenoloxidase II, alpha-2-macroglobulin, penaeidin2, antilipopolysaccharide factor, crustin, lysozyme, glutathione peroxidase, and superoxide dismutase) were higher in the experimental groups than in the control group on several observed days; however, the increases were observed more often in the ME2.5 + P group than in the other treatment groups. Furthermore, the ME2.5 + P group exhibited a significantly higher survival rate (P < 0.05) in the challenge test against V. alginolyticus and V. parahaemolyticus. In conclusion, supplementation with dietary moringa and L. acidophilus at ME2.5 + P improved growth performance, immune system, and resistance against Vibrio in the shrimp.
Collapse
Affiliation(s)
- Zaenal Abidin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
4
|
Khieokhajonkhet A, Aeksiri N, Ratanasut K, Kannika K, Suwannalers P, Tatsapong P, Inyawilert W, Kaneko G. Effects of dietary Hericium erinaceus powder on growth, hematology, disease resistance, and expression of genes related immune response against thermal challenge of Nile tilapia (Oreochromis niloticus). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Zakariaee H, Sudagar M, Hosseini SS, Paknejad H, Baruah K. In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Front Microbiol 2021; 12:758758. [PMID: 34671338 PMCID: PMC8521104 DOI: 10.3389/fmicb.2021.758758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we tested the compatibility of two extracts from the plant Jerusalem artichokes and button mushrooms with two different Lactobacillus probiotics (Lactobacillus acidophilus; La and Lactobacillus delbrueckii subsp. Bulgaricus; Lb) to develop a synbiotic formulation to improve the growth, survival, and reproductive performances of farmed fishes. Initially, we employed in vitro approach to monitor the growth of the probiotic lactobacilli in the presence of the different doses of the plant-based prebiotics, with the aim of selecting interesting combination(s) for further verification under in vivo conditions using zebrafish as a model. Results from the in vitro screening assay in the broth showed that both the probiotic species showed a preference for 50% mushroom extract as a source of prebiotic. A synbiotic formulation, developed with the selected combination of L. acidophilus, L. bulgaricus, and 50% mushroom extract, showed a positive influence on the growth and reproductive performances of the zebrafish. Our findings also imply that the improvement in the reproductive indices was associated with the upregulation of a cyp19a gene. Overall results suggest that a combination of L. acidophilus, L. bulgaricus, and mushroom extract can be considered as a potential synbiotic for the successful production of aquaculture species.
Collapse
Affiliation(s)
- Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Sudagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Seyede Sedighe Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Ching JJ, Shuib AS, Abdullah N, Majid NA, Taufek NM, Sutra J, Amal Azmai MN. Hot water extract of Pleurotus pulmonarius stalk waste enhances innate immune response and immune-related gene expression in red hybrid tilapia Oreochromis sp. following challenge with pathogen-associated molecular patterns. FISH & SHELLFISH IMMUNOLOGY 2021; 116:61-73. [PMID: 34157396 DOI: 10.1016/j.fsi.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
In aquaculture, commercial fish such as red hybrid tilapia are usually raised at high density to boost the production within a short period of time. This overcrowded environment, however, may cause stress to the cultured fish and increase susceptibility to infectious diseases. Antibiotics and chemotherapeutics are used by fish farmers to overcome these challenges, but this may increase the production cost. Studies have reported on the potential of mushroom polysaccharides that can act as immunostimulants to enhance the immune response and disease resistance in fish. In the current study, hot water extract (HWE) from mushroom stalk waste (MSW) was used to formulate fish feed and hence administered to red hybrid tilapia to observe the activation of immune system. Upon 30 days of feeding, the fish were challenged with pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (poly (I:C)) to mimic bacterial and viral infection, respectively. HWE supplementation promoted better feed utilisation in red hybrid tilapia although it did not increase the body weight gain and specific growth rate compared to the control diet. The innate immunological parameters such as phagocytic activity and respiratory burst activity were significantly higher in HWE-supplemented group than that of the control group following PAMPs challenges. HWE-supplemented diet also resulted in higher mRNA transcription of il1b and tnfa in midgut, spleen and head kidney at 1-day post PAMPs injection. Tlr3 exhibited the highest upregulation in the HWE fed fish injected with poly (I:C). At 3-days post PAMPs injection, both ighm and tcrb expression were upregulated significantly in the spleen and head kidney. Results showed that HWE supplementation enhances the immune responses of red hybrid tilapia and induced a higher serum bactericidal activity against S. agalactiae.
Collapse
Affiliation(s)
- Joo Jie Ching
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adawiyah Suriza Shuib
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Noorlidah Abdullah
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Norhidayah Mohd Taufek
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; AquaNutri Biotech Research Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jumria Sutra
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Kumar H, Bhardwaj K, Sharma R, Nepovimova E, Cruz-Martins N, Dhanjal DS, Singh R, Chopra C, Verma R, Abd-Elsalam KA, Tapwal A, Musilek K, Kumar D, Kuča K. Potential Usage of Edible Mushrooms and Their Residues to Retrieve Valuable Supplies for Industrial Applications. J Fungi (Basel) 2021; 7:427. [PMID: 34071432 PMCID: PMC8226799 DOI: 10.3390/jof7060427] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Currently, the food and agricultural sectors are concerned about environmental problems caused by raw material waste, and they are looking for strategies to reduce the growing amount of waste disposal. Now, approaches are being explored that could increment and provide value-added products from agricultural waste to contribute to the circular economy and environmental protection. Edible mushrooms have been globally appreciated for their medicinal properties and nutritional value, but during the mushroom production process nearly one-fifth of the mushroom gets wasted. Therefore, improper disposal of mushrooms and untreated residues can cause fungal disease. The residues of edible mushrooms, being rich in sterols, vitamin D2, amino acids, and polysaccharides, among others, makes it underutilized waste. Most of the published literature has primarily focused on the isolation of bioactive components of these edible mushrooms; however, utilization of waste or edible mushrooms themselves, for the production of value-added products, has remained an overlooked area. Waste of edible mushrooms also represents a disposal problem, but they are a rich source of important compounds, owing to their nutritional and functional properties. Researchers have started exploiting edible mushroom by-products/waste for value-added goods with applications in diverse fields. Bioactive compounds obtained from edible mushrooms are being used in media production and skincare formulations. Furthermore, diverse applications from edible mushrooms are also being explored, including the synthesis of biosorbent, biochar, edible films/coating, probiotics, nanoparticles and cosmetic products. The primary intent of this review is to summarize the information related to edible mushrooms and their valorization in developing value-added products with industrial applications.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (H.K.); (R.S.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (K.B.); (R.V.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (H.K.); (R.S.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (D.S.D.); (R.S.); (C.C.)
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (D.S.D.); (R.S.); (C.C.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; (D.S.D.); (R.S.); (C.C.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (K.B.); (R.V.)
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center (ARC), Plant Pathology Research Institute, Giza 12619, Egypt;
| | - Ashwani Tapwal
- Forest Protection Division, Himalayan Forest Research Institute, Shimla 171013, India;
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; (H.K.); (R.S.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Kazuń B, Małaczewska J, Kazuń K, Kamiński R, Adamek-Urbańska D, Żylińska-Urban J. Dietary administration of β-1,3/1,6-glucan and Lactobacillus plantarum improves innate immune response and increases the number of intestine immune cells in roach (Rutilus rutilus). BMC Vet Res 2020; 16:216. [PMID: 32586321 PMCID: PMC7318362 DOI: 10.1186/s12917-020-02432-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The aim of the study has been to compare the effect of dietary supplementation of β-1,3/1,6-glucan, Lactobacillus plantarum bacteria or their mixture on the growth performance, selected parameters of the immune system as well as the liver and intestinal histology of roach. Fish were fed for 14 days with four different diets, each treatment being carried out in triplicate. In control group, fish were fed dry commercial starter feed Aller Performa 2 (Aller Aqua, Denmark). The other experimental fish groups received the same commercial starter feed supplemented with: 1% β-1,3/1,6-glucan (Leiber® Beta-S) in group G; 108 cfu L. plantarum g- 1 in group L; 1% β-1,3/1,6-glucan + 108 cfu L. plantarum g- 1 in group G + L. The stimulating effect of the tested preparations was evaluated once the feeding with commercial feed exclusively was resumed and 2 weeks afterwards. RESULTS No effect on the survivability and growth performance of the fish was observed in any of the groups. Supplementation of feed with β-1,3/1,6-glucan improved (P < 0.05) selected parameters of innate humoral immunity and the pinocytotic activity of phagocytes. Increased respiratory burst activity of head kidney phagocytes (RBA) was observed in groups L and G + L (P < 0.05), and the effect persisted for 2 weeks after the commercial feed regime was resumed. An analogous tendency was determined for the killing activity of phagocytes (PKA) of the head kidney with respect to Aeromonas hydrophila, although this effect appeared only during the feed supplementation period. Supplying roach with β-1,3/1,6-glucan, singly or with L. plantarum, had no effect (P > 0.05) on the proliferation of mitogen-activated lymphocytes. However, an increase in the number of CD3-positive cells and goblet cells was noticed in the digestive system of the L group fish (P < 0.05). CONCLUSIONS The results show that feeding fish with added L. plantarum and β-1,3/1,6-glucan stimulates the non-specific resistance mechanisms and raises the counts of intestinal immune cells. Synbiotic may help to control serious bacterial diseases and offer an alternative to antibiotics commonly used in fish farming, and its prolonged immunostimulatory effect could increase fish surviving after release to the natural environment.
Collapse
Affiliation(s)
- Barbara Kazuń
- Department of Fish Pathology and Immunology, Stanisław Sakowicz Inland Fisheries Institute, Olsztyn, Poland
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Krzysztof Kazuń
- Department of Fish Pathology and Immunology, Stanisław Sakowicz Inland Fisheries Institute, Olsztyn, Poland.
| | - Rafał Kamiński
- Pond Fishery Department, Stanisław Sakowicz Inland Fisheries Institute, Olsztyn, Poland
| | - Dobrochna Adamek-Urbańska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Żylińska-Urban
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
- Department of Technology and Biotechnology of Medicines, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
9
|
Safari O, Sarkheil M. Dietary administration of eryngii mushroom (Pleurotus eryngii) powder on haemato-immunological responses, bactericidal activity of skin mucus and growth performance of koi carp fingerlings (Cyprinus carpio koi). FISH & SHELLFISH IMMUNOLOGY 2018; 80:505-513. [PMID: 29960061 DOI: 10.1016/j.fsi.2018.06.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The aim of present study was to evaluate the effects of edible eryngii mushroom powder, Pleurotus eryngii (PE), for 63 days on haematological parameters, the serum immune responses, skin mucus, bactericidal activity, stress resistance, growth performance and digestive enzyme activities of Koi carp fingerlings (Cyprinus carpio koi). Fish were divided into five groups and each group was fed with dietary PE with five graded levels (0, 0.5, 1, 1.5 and 2%). The results showed a significant dose-dependent increase of Ht, Hb, MCV and MCH levels in fish fed dietary PE (P < 0.05). The highest levels of WBCs, lymphocytes and monocytes were measured in fish fed 1.5% and 2% of dietary PE (P < 0.05). The activities of total IG, lysozyme, Alternative haemolytic complement activity in serum of fish fed with 2% of dietary PE for 63 days as well as 5-min air exposure challenge test were significantly higher than other groups (P < 0.05). The most bactericidal activity was observed in skin mucus of fish fed with 1.5% of dietary PE against Streptococcus iniae (P < 0.05). The highest ratio of the lactobacillus count to the total viable count was observed in fish fed 2% of dietary PE. The α-amylase activity of fish fed with dietary PE (1, 1.5 and 2%) were significantly higher than control group (P < 0.05). Feeding fish 2% of dietary PE increased the trypsin and lipase activity compared to others groups (P < 0.05). The growth performance of fish fed 1.5% of dietary PE improved compared to control group (P < 0.05). The results revealed that feeding koi fish with dietary supplementation of PE (1.5 and 2%) improved the selected humoral innate immune responses, bactericidal activity of skin mucus and growth performance of koi fish.
Collapse
Affiliation(s)
- Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic Acid Bacteria in Finfish-An Update. Front Microbiol 2018; 9:1818. [PMID: 30147679 PMCID: PMC6096003 DOI: 10.3389/fmicb.2018.01818] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
A complex and dynamic community of microorganisms, play important roles within the fish gastrointestinal (GI) tract. Of the bacteria colonizing the GI tract, are lactic acid bacteria (LAB) generally considered as favorable microorganism due to their abilities to stimulating host GI development, digestive function, mucosal tolerance, stimulating immune response, and improved disease resistance. In early finfish studies, were culture-dependent methods used to enumerate bacterial population levels within the GI tract. However, due to limitations by using culture methods, culture-independent techniques have been used during the last decade. These investigations have revealed the presence of Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Streptococcus, Carnobacterium, Weissella, and Pediococcus as indigenous species. Numerous strains of LAB isolated from finfish are able to produce antibacterial substances toward different potential fish pathogenic bacteria as well as human pathogens. LAB are revealed be the most promising bacterial genera as probiotic in aquaculture. During the decade numerous investigations are performed on evaluation of probiotic properties of different genus and species of LAB. Except limited contradictory reports, most of administered strains displayed beneficial effects on both, growth-and reproductive performance, immune responses and disease resistance of finfish. This eventually led to industrial scale up and introduction LAB-based commercial probiotics. Pathogenic LAB belonging to the genera Streptococcus, Enterococcus, Lactobacillus, Carnobacterium, and Lactococcus have been detected from ascites, kidney, liver, heart, and spleen of several finfish species. These pathogenic bacteria will be addressed in present review which includes their impacts on finfish aquaculture, possible routes for treatment. Finfish share many common structures and functions of the immune system with warm-blooded animals, although apparent differences exist. This similarity in the immune system may result in many shared LAB effects between finfish and land animals. LAB-fed fish show an increase in innate immune activities leading to disease resistances: neutrophil activity, lysozyme secretion, phagocytosis, and production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α). However, some LAB strains preferentially induces IL-10 instead, a potent anti-inflammatory cytokine. These results indicate that LAB may vary in their immunological effects depending on the species and hosts. So far, the immunological studies using LAB have been focused on their effects on innate immunity. However, these studies need to be further extended by investigating their involvement in the modulation of adaptive immunity. The present review paper focuses on recent findings in the field of isolation and detection of LAB, their administration as probiotic in aquaculture and their interaction with fish immune responses. Furthermore, the mode of action of probiotics on finfish are discussed.
Collapse
Affiliation(s)
- Einar Ringø
- Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Bo Ram Beck
- School of Life Science, Handong University, Pohang, South Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, Pohang, South Korea
| |
Collapse
|
11
|
Gou C, Wang J, Wang Y, Dong W, Shan X, Lou Y, Gao Y. Hericium caput-medusae (Bull.:Fr.) Pers. polysaccharide enhance innate immune response, immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 72:604-610. [PMID: 29146446 DOI: 10.1016/j.fsi.2017.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/18/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
The objective was to add 0, 400, 800 or 1200 mg/kg of Hericium caput-medusae polysaccharide (HCMP) to the basal diet of grass carp (Ctenopharyngodon idella) and determine effects on humoral innate immunity, expression of immune-related genes and disease resistance. Adding HCMP enhanced (P < 0.05) bactericidal activity at 1, 2 and 3 weeks and also lysozyme activity, complement C3, and SOD activity at 2 and 3 weeks. Supplementing 800 or 1200 mg/kg of HCMP for 2 or 3 weeks increased (P < 0.05) serum concentrations of total protein, albumin and globulin. Two immune-related genes (IL-1β and TNF-α) were up-regulated (P < 0.05) in HCMP supplemented groups given 800 or 1200 mg/kg HCMP after 2 and 3 weeks of feeding. Expression of anti-inflammatory cytokine IL-10 was down-regulated (P < 0.05) after receiving 800 or 1200 mg/kg HCMP for 2 or 3 weeks. Fish fed 800 mg/kg HCMP had maximal disease resistance against Aeromonas hydrophila (65.4%). In conclusion, HCMP enhanced immune response and expression of immune-related genes and increased disease resistance against Aeromonas hydrophila in grass carp, with greatest effects in fish given 800 mg/kg HCMP for 3 weeks.
Collapse
Affiliation(s)
- Changlong Gou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jiazhen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yuqiong Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlong Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
12
|
Van Doan H, Hoseinifar SH, Tapingkae W, Khamtavee P. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 62:139-146. [PMID: 28088470 DOI: 10.1016/j.fsi.2017.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/15/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
The present study evaluates the effects of dietary kefir and low molecular weight sodium alginate (LWMSA) (singular or combined) on non-specific immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Fish with average weight of 18.60 ± 0.04 g were supplied and randomly stocked in sixteen glass tanks (150 L) at density of 20 fish per tank. Fish were fed experimental diets as follows: 0 g kg-1 LMWSA (Control, Diet 1), 10 g kg-1 LMWSA (Diet 2), 40 g kg-1 kefir (Diet 3), and 10 g kg-1 LMWSA + 40 g kg-1 kefir (Diet 4) for 50 days. At the end of the feeding trial, serum lysozyme (SL), phagocytosis (PI), respiratory burst (RB), and alternative complement (ACH50) activities as well as growth performance were measured. Singular and combined administration of kefir and low molecular weight sodium alginate (LMWSA) significantly increased serum SL, PI, RB, and ACH50 activities compared control group (P < 0.05); the highest innate immune responses were observed in fish fed combinational diet (kefir + LMWSA) (P < 0.05). The results of experimental challenge revealed significantly higher resistance against Streptococcus agalactiae in fish fed supplemented diets and the highest post challenge survival rate was observed in synbiotic diet (P < 0.05). Similar results obtained in case of growth parameters. Feeding on supplemented diet significantly improved SGR and FCR and the highest growth parameters was observed in fish fed synbiotic diet (P < 0.05). These finding revealed that combined administration of dietary kefir and LMWSA can be considered for improving immune response, disease resistance and growth performance of Nile tilapia.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pimporn Khamtavee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
13
|
Riaz Rajoka MS, Shi J, Zhu J, Shao D, Huang Q, Yang H, Jin M. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol 2016; 101:35-45. [PMID: 27888334 DOI: 10.1007/s00253-016-8005-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Lactic acid bacteria are associated with the human gastrointestinal tract. They are important for maintaining the balance of microflora in the human gut. An increasing number of published research reports in recent years have denoted the importance of producing interferon-gamma and IgA for treatment of disease. These agents can enhance the specific and nonspecific immune systems that are dependent on specific bacterial strains. The mechanisms of these effects were revealed in this investigation, where the cell walls of these bacteria were modulated by the cytokine pathways, while the whole bacterial cell mediated the host cell immune system and regulated the production of tumor necrosis factors and interleukins. A supplement of highly active lactic acid bacteria strains provided significant potential to enhance host's immunity, offering prevention from many diseases including some cancers. This review summarizes the current understanding of the function of lactic acid bacteria immunity enhancement and cancer prevention.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing Zhu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| |
Collapse
|