1
|
Alsubaie N, Ibrahim RE, Bawahab AA, Mohamed AAR, Abd-Elhakim YM, Khamis T, Osman A, Metwally MMM, Alotaibi BS, Ghannam HE. Ameliorative role of camel protein hydrolysates diet against alkaline stress in Oreochrmis niloticus: Hematology, immune responses and their regulating genes expression, and histopathological assays. Vet Res Commun 2025; 49:79. [PMID: 39821552 DOI: 10.1007/s11259-024-10637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
This investigation looked at the ameliorative role of camel whey protein hydrolysates-diet (PH) in Oreochromis niloticus stocked under alkaline conditions. One hundred sixty fish (16.02 ± 0.14 g) were allocated equally into four groups with four replications for 30 days. The first (control) and second (alkaline) groups were fed basal diets and maintained in fresh and alkaline water, respectively. The third and fourth groups were fed on a PH diet (basal diet containing 75 g PH/kg) and maintained in fresh water and alkaline water, respectively. The hematology, immune-antioxidant indices, immune-regulatory genes, histopathological investigation of the spleen, and resistance to Aeromonas sobria were investigated. The results showed that the alkaline condition induced hematological disorders (lowered red blood cells, hemoglobin, packed cell volume, and white blood cell count) and immunosuppression (lowered phagocytic activity and index, lysozyme, nitric oxide, and complement 3) in the exposed fish. Alkaline exposure induced oxidative stress through elevation of the malondialdehyde and reduction in the antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione S-reductase, and reduced glutathione). The immune modulatory genes (tolls like receptor-5, interleukin-1beta, interleukin-6, interleukin-8, interleukin-10, interleukin-17, nuclear factor kappa beta, and tumor necrosis factor-alpha) were down-regulated by exposure to alkaline conditions. The microscopic section of the spleen of the fish subjected to alkaline conditions showed notable hyperplasia of the melanomacrophage centers, besides vascular congestion, endothelial cell hypertrophy, and mild hypercellularity in the erythroid and lymphoid elements. In addition, few sections manifested more pronounced erythroid hyperplasia than the lymphoid one. The survival of the fish subjected to alkaline conditions was reduced during the A. sobria challenge. Feeding on a PH diet, the hematology was restored and the immune-antioxidant functions were modulated. Modulation of the immune-regulatory genes and increased survivability of the alkaline-exposed fish were noticed when fed on the PH diet. Consequently, we can recommend enriching the Nile tilapia diet with a 75 g PH/kg diet especially when reared under alkaline conditions to support the immune functions of the fish.
Collapse
Affiliation(s)
- Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hala Elshahat Ghannam
- Pollution Laboratory, Freshwater and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
2
|
El-Raghi AA, El-Mezayen MM, Areda HA. Potential effects of probiotics (immunobacteryne; IMB) on growth performance, feed efficacy, blood biochemical, redox balance, nonspecific immunity and heat-shock protein expression of Nile tilapia (Oreochromis niloticus) fingerlings. J Anim Physiol Anim Nutr (Berl) 2024; 108:691-699. [PMID: 38226768 DOI: 10.1111/jpn.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
The supplementation of aquafeed with probiotics is recommended for feasible aquaculture activities. Therefore, the aim of current study was to investigate the potential effects of probiotics on growth performance, feed utilization, biochemical attributes, redox status and immunity response as well as the transcription of heat-shock protein 70 (HSP70) and insulin-like growth factor-1 (IGF-1) genes of Nile tilapia (Oreochromis niloticus; n = 120). Fish with an initial weight of 8.17 ± 0.02 g/fish were randomly divided into four treatment groups and were fed diets containing 0, 0.5, 1 and 1.5 mg immunobacteryne (IMB)/kg diet respectively. Dietary IMB at 1.5 g/kg diet significantly improved the growth performance, feed consumption and growth hormone secretion of the experimental fish (p < 0.05). The 1 or 1.5 g IMB/kg diet boosted phagocytic activities and innate immune response. Serum total protein, total cholesterol, triglycerides and glucose were significantly increased in the groups that were fed 1 and 1.5 mg IMB/kg diet compared to the control (p < 0.05). Meanwhile, the levels of uric acid, creatinine, liver enzymes (aspartate transaminase and alanine transaminase) and cortisol hormone were significantly reduced in the aforementioned treated groups compared to the control (p < 0.05). All fish fed IMB-supplemented diet showed a significant increase in the expression of IGF-1 gene, while the transcription of HSP70 was significantly decreased (p < 0.05). In conclusion, the dietary inclusion of IMB (1 g/kg diet) enhanced growth promoters, feed efficacy, blood biochemical, redox balance and nonspecific immune responses in Nile tilapia fingerlings.
Collapse
Affiliation(s)
- Ali Ali El-Raghi
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | | | - Hamada A Areda
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
3
|
Kumar Sishu N, Das U, Immanuel Selvaraj C. Indian jujube a potential fruit tree to improve the livelihood. Saudi J Biol Sci 2023; 30:103769. [PMID: 37609543 PMCID: PMC10440574 DOI: 10.1016/j.sjbs.2023.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023] Open
Abstract
Indian Jujube, also known as Ber or Ziziphus Mauritiana Lam., is a fruit-bearing tree endemic to South Asia, including India, Pakistan, Bangladesh, and Sri Lanka. The tree belongs to the buckthorn family and is known for its fruit, a tiny, round, or oblong-shaped drupe roughly the size of a cherry or a small plum. Indian Jujube has been growing for thousands of years. It is a popular fruit throughout the tropical and subtropical regions of Asia, Africa, and South America. Despite the fruit's delicious flavour and health benefits, it is also known for its therapeutic value. Many studies have suggested that various components of ber trees, such as fruit, seed leaves, roots, and flowers, include bioactive substances that demonstrate the potential for antioxidant activity and have anticancer, antibacterial, and antidiabetic effects. Due to the crop's minimal management requirements, it may slow down climate change and the threat of extreme soil and weather conditions, such as drought resistance, strong winds, erosion, high salt, and floods. The main objectives of the current systematic review are to understand Ber's chemical compositions, health benefits, culinary uses, major nutraceutical features, and its function in fostering livelihoods and climatic tolerance.
Collapse
Affiliation(s)
- Nayan Kumar Sishu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Utpal Das
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Chinnadurai Immanuel Selvaraj
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
4
|
Huo Y, Li Y, Guo W, Liu J, Yang C, Li L, Liu H, Song L. Evaluation of Cyanobacterial Bloom from Lake Taihu as a Protein Substitute in Fish Diet-A Case Study on Tilapia. Toxins (Basel) 2021; 13:735. [PMID: 34679028 PMCID: PMC8538822 DOI: 10.3390/toxins13100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The utility of cyanobacterial bloom is often hindered by concerns about the toxin content. Over three years of investigation, we found that the toxin content of cyanobacterial bloom in Lake Taihu was always low in June and higher in late summer and autumn. The findings enabled us to compare the effects of diets containing low and high toxic cyanobacterial blooms on the growth and consumption safety of tilapia. There were no negative effects on the growth of tilapia, and the muscle seemed to be safe for human consumption in the treatment of 18.5% low toxic cyanobacterial bloom. Therefore, limitations of the utilization of cyanobacterial biomass can be overcome by selecting low toxic cyanobacterial bloom that can be found and collected in large lakes.
Collapse
Affiliation(s)
- Yan Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanze Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Cuiping Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| |
Collapse
|
5
|
Ashry AM, Hassan AM, Habiba MM, El-Zayat A, El-Sharnouby ME, Sewilam H, Dawood MA. The Impact of Dietary Curcumin on the Growth Performance, Intestinal Antibacterial Capacity, and Haemato-Biochemical Parameters of Gilthead Seabream ( Sparus aurata). Animals (Basel) 2021; 11:ani11061779. [PMID: 34203579 PMCID: PMC8232219 DOI: 10.3390/ani11061779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary In aquaculture, dietary curcumin has been shown to enhance the growth rate, antioxidative status, immunity, and disease resistance of several finfish species. Nevertheless, the potential role of curcumin has not been evaluated in Gilthead seabream as yet. Herein, we tested the effect of dietary curcumin on the growth performance, intestinal antibacterial capacity, and haemato-biochemical parameters of Gilthead seabream. Curcumin was mixed with the basal diet at rates of 0, 1.5, 2, 2.5, and 3%, then fed to the fish for 150 days. The results indicated marked improvements in the growth performance, feed efficiency, and antibacterial capacity of the fish. Further, curcumin enhanced the hematological indices and regulated the biochemical blood metabolites of Gilthead seabream. Dietary curcumin is recommended at a rate of 2–3% to improve the performance of Gilthead seabream. Abstract The need to replace antibiotics in aquafeed is increasing, and alternative safe substances are now encouraged for sustainable aquaculture activity. Curcumin is regarded as a multifunctional feed additive with growth-promoting and immunostimulant potential. Thus, this study evaluated dietary inclusion of curcumin at rates of 0, 1.5, 2, 2.5, and 3% in the diets of Gilthead seabream for 150 days. The results showed an improved final body weight, weight gain, specific growth rate, and feed conversion ratio in fish treated with curcumin, in a dose-dependent manner. The highest growth performance was observed in fish fed a diet supplemented with 3% curcumin. The results also showed lowered activity of pathogenic bacteria (Vibrio spp. and Faecal coliform) in the intestines of Gilthead seabream fed a diet with curcumin inclusion, in a dose-dependent manner. The hematological indices were within the normal range for healthy fish, without meaningful effects except for hematocrit, hemoglobin, red blood cells (RBCs), and white blood cells (WBCs), which were markedly increased by dietary curcumin. Phagocytic activity was obviously enhanced by dietary curcumin, compared with the control. The biochemical blood metabolites related to liver function (alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT)), renal tissue (urea), and total cholesterol were within the normal values, without significant differences. Overall, the inclusion of curcumin at a rate of 2–3% improved the growth performance and well-being of Gilthead seabream.
Collapse
Affiliation(s)
- Ahmed M. Ashry
- National Institute of Oceanography and Fisheries, NIOF, Cairo 11865, Egypt; (A.M.A.); (M.M.H.)
| | - Aziza M. Hassan
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.H.); (M.E.E.-S.)
| | - Mahmoud M. Habiba
- National Institute of Oceanography and Fisheries, NIOF, Cairo 11865, Egypt; (A.M.A.); (M.M.H.)
| | - Ahmed El-Zayat
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11651, Egypt;
| | - Mohamed E. El-Sharnouby
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.H.); (M.E.E.-S.)
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo 11835, Egypt;
- Department of Engineering Hydrology, RWTH Aachen University, 52062 Aachen, Germany
| | - Mahmoud A.O. Dawood
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo 11835, Egypt;
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33512, Egypt
- Correspondence:
| |
Collapse
|
6
|
Tippayadara N, Dawood MAO, Krutmuang P, Hoseinifar SH, Doan HV, Paolucci M. Replacement of Fish Meal by Black Soldier Fly ( Hermetia illucens) Larvae Meal: Effects on Growth, Haematology, and Skin Mucus Immunity of Nile Tilapia, Oreochromis niloticus. Animals (Basel) 2021; 11:ani11010193. [PMID: 33467482 PMCID: PMC7830215 DOI: 10.3390/ani11010193] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Fish meal (FM) is the primary ingredient of the farmed fish’s diet. However, the decline in wild fish catches, and the growing demand for aquaculture feed have resulted in a dramatic reduction of FM supply. Thus, it is essential to seek for alternatives, such as insect meal (IM), to support sustainable aquafeed production. Among insects, the black soldier fly larvae are promising because they are rich in essential amino acids, minerals, and vitamins. Therefore, the present study was performed to assess the effects of IM as a partial or total replacement of FM on the growth and hematological parameters and skin mucus immunity of Nile tilapia. Growth and feed utilization efficiency indices, feed intake, survival rates, and hematological parameters were not significantly different between FM and IM fed fish, while the mucosal immune response was improved in IM fed fish. In conclusion, these results show that IM can be used to substitute FM in the Nile tilapia diet. These findings can be used to develop alternative aquafeed for sustainable aquaculture. Abstract Fish meal (FM) is no longer a sustainable source for the increasing aquaculture industry. Animal proteins from insects may be used as a FM alternative source as long as they do not create adverse effects in fish. Black soldier fly larvae meal (BSFLM) was tested in a 12-week experiment on Nile tilapia (Oreochromis niloticus). Four hundred and twenty (14.77 ± 2.09 g) fish were divided into seven groups and were fed seven diets: control (0% BSFLM-100% FM), and FM replaced by BSFLM at rates of 10%, 20%, 40%, 60%, 80% and 100%. Growth indexes, feed utilization efficiency indices, feed intake, and survival rate were not significantly different (p > 0.05) between FM and BSFLM fed fish. Values of red blood cell, white blood cells, hemoglobin, hematocrit, mean corpuscular volume and hemoglobin, mean corpuscular hemoglobin concentration, red blood cell distribution width, and platelet values were not affected by BSFLM. Skin, mucus lysozyme, and peroxidase activities were improved in BSFLM fed fish. BSFLM can be used as a substitution for FM in the Nile tilapia (O. niloticus) diet at up to a 100% rate with no adverse effects.
Collapse
Affiliation(s)
- Nisarat Tippayadara
- Faculty of interdisciplinary Studies, Khon Kaen University, Nong Khai 43000, Thailand;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Seyed Hosseini Hoseinifar
- Department of Fisheries Gorgan, University of Agricultural Sciences and Natural Resources, Gorgan, Iran;
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, 82100, Benevento, Italy;
| |
Collapse
|
7
|
Mohammadi G, Rafiee G, El Basuini MF, Abdel-Latif HMR, Dawood MAO. The growth performance, antioxidant capacity, immunological responses, and the resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus) fed Pistacia vera hulls derived polysaccharide. FISH & SHELLFISH IMMUNOLOGY 2020; 106:36-43. [PMID: 32739534 DOI: 10.1016/j.fsi.2020.07.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed at evaluating the supplementation of dietary Pistacia vera hulls derived polysaccharide (PHDP) at varying levels (0, 2.5, 5, and 10 g/kg diet) on the growth rate, digestive enzyme activity, immune response, and antioxidative capacity of Nile tilapia. After the feeding trial (60 days), fish were injected intraperitoneally with Aeromonas hydrophila, and the cumulative mortality was calculated for 10 days. The final body weight, weight gain, specific growth rate, survival rate, amylase activity, red blood cells, hemoglobin, serum total protein, and serum lysozyme activity (LZM) were significantly higher in fish fed PHDP at 5 and 10 g/kg than fish fed 0 and 2.5 g/kg diet (P ≤ 0.05). However, the feed conversion ratio and glucose levels were significantly decreased by 5 and 10 g PHDP/kg diet. Further, the protease digestive activity, serum alkaline phosphatase, and serum alternative complement (ACH50) had higher values in fish fed 5 g PHDP/kg diet than tilapia fed 0 g PHDP/kg diet (P ≤ 0.05). The serum protease and immunoglobulin (Ig) presented the highest values in fish fed 10 g PHDP/kg diet followed by fish fed 5 g PHDP/kg diet (P ≤ 0.05). The LZM, ACH50, and Ig in the mucus samples were significantly higher in fish fed 5 or 10 g PHDP/kg diet than fish fed 0 g PHDP/kg diet (P ≤ 0.05). The levels of superoxide dismutase and catalase in the liver tissue was significantly higher in fish fed 5 or 10 g PHDP/kg diet than fish fed 2.5 g PHDP/kg diet (P ≤ 0.05). On the other hand, malondialdehyde concentration was significantly lower in tilapia fed 5 and 10 g PHDP/kg diet than tilapia fed 0 and 2.5 g PHDP/kg diet (P ≤ 0.05). The lowest mortality rate and the highest relative percentage survival were in fish fed 5 g/kg followed by 10 g level after 10 days of A. hydrophila injection. Accordingly, dietary PHDP at 5-10 g/kg is recommended to improve the growth performance, antioxidative capacity, immune response, and resistance against A. hydrophila in Nile tilapia.
Collapse
Affiliation(s)
- Ghasem Mohammadi
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, 331585-4314, Karaj, Iran
| | - Gholamreza Rafiee
- Department of Fisheries Sciences, Faculty of Natural Resources, University of Tehran, 331585-4314, Karaj, Iran
| | - Mohammed F El Basuini
- Animal Production Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Behera province, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| |
Collapse
|
8
|
Abd El-Naby AS, El Asely AM, Amin AA, Samir F, El-Ashram A, Dawood MAO. Miswak (Salvadora persica) modulated the growth performance, antioxidative response, and histopathological damage induced by zinc toxicity in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31918-31932. [PMID: 32506408 DOI: 10.1007/s11356-020-09429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, Nile tilapia fingerlings with average body weight (8.6 ± 0.06 g) were exposed to zinc (Zn) toxicity and tested its amelioration with miswak (Salvadora persica L.) (SP) supplemented diet. Five fish groups were fed on diets with SP at 0, 0.25, 0.5, 1.0, and 2.0% (T1, T2, T3, T4, and T5, respectively) diet without Zn exposure, while another five groups were exposed to Zn at 7 mg/L and co-supplemented with SP at 0, 0.25, 0.5, 1.0, and 2.0 % (T6, T7, T8, T9, and T10, respectively). After 12 weeks, fish-fed 1.0% SP diet (T4) achieved the highest growth and feed performances, while the lowest one was in Zn-exposed fish (T6) (P < 0.05). T6 and T7 groups showed the most inferior carcass protein and ash contents, while T4 and T5 showed the highest lipid content (P < 0.05). The level of Zn residue increased in fish exposed to Zn (P < 0.05). Fish exposed to Zn and fed SP showed high blood urea, catalase, ALT, AST, and total superoxide dismutase (T-SOD), while the malondialdehyde (MDA) was decreased (P < 0.05). Interestingly, miswak resulted in elevated catalase and T-SOD and reduced MDA in fish without Zn exposure (P < 0.05). Zn exposure causes abnormal histopathological characteristics in gills, hepatopancreas, posterior kidney, and musculature tissues of tilapia, while fish-fed SP showed regular, healthy, and protected histopathological characters. The results suggested that SP can induce the antioxidant responses that prepare Nile tilapia for a further suppressive oxidative condition (i.e., Zn exposure).
Collapse
Affiliation(s)
- Asmaa S Abd El-Naby
- Fish Nutrition and Feed Technology Department, Central Laboratory for Aquaculture Research, Abassa, Abu Hammad, Sharkia, Egypt
| | - Amel M El Asely
- Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Aziza A Amin
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Fatma Samir
- Fish Nutrition and Feed Technology Department, Central Laboratory for Aquaculture Research, Abassa, Abu Hammad, Sharkia, Egypt
| | | | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelshiekh University, Kafr El-Shaikh, Egypt.
| |
Collapse
|