1
|
Dan N, Shah H, Bhatt H, Ladumor R, Salunke A, Ramachandran AV, Pandya P. Decoding the effect of photoperiodic cues in transducing kisspeptin-melatonin circuit during the pubertal onset in common carp. Mol Reprod Dev 2024; 91:e23744. [PMID: 38800960 DOI: 10.1002/mrd.23744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.
Collapse
Affiliation(s)
- Nehareeka Dan
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Himadri Bhatt
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Rahul Ladumor
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Ankita Salunke
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - A V Ramachandran
- Mentor, School of Science, Department of Biomedical and Life Sciences, Navrachana University, Vadodara, India
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| |
Collapse
|
2
|
Arciuch-Rutkowska M, Nowosad J, Gil Ł, Czarnik U, Kucharczyk D. Synergistic Effect of Dietary Supplementation with Sodium Butyrate, β-Glucan and Vitamins on Growth Performance, Cortisol Level, Intestinal Microbiome and Expression of Immune-Related Genes in Juvenile African Catfish ( Clarias gariepinus). Int J Mol Sci 2024; 25:4619. [PMID: 38731838 PMCID: PMC11083991 DOI: 10.3390/ijms25094619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The effect of dietary supplementation with sodium butyrate, β-glucan and vitamins (A, D3, E, K, C) on breeding indicators and immune parameters of juvenile African catfish was examined. The fish were fed with unenriched (group C) and enriched feed with a variable proportion of sodium butyrate/β-glucan, and constant content of vitamins (W1-W3). After the experiment, blood and the middle gut were collected. The microbiome of the gut was determined using Next Generation Sequencing (NGS). Liver tissue was collected for determination of expression of immune-related genes (HSP70, IL-1β, TNFα). W2 and W3 were characterized by the most favorable values of breeding indicators (p < 0.05). The highest blood cortisol concentration was in group C (71.25 ± 10.45 ng/mL), and significantly the lowest in W1 (46.03 ± 7.01 ng/ mL) (p < 0.05). The dominance of Cetobacterium was observed in all study groups, with the largest share in W3 (65.25%) and W1 (61.44%). Gene expression showed an increased number of HSP70 genes in W1. IL-1β and TNFα genes peaked at W3. The W3 variant turns out to be the most beneficial supplementation, due to the improvement of breeding and immunological parameters. The data obtained can be used to create a preparation for commercial use in the breeding of this species.
Collapse
Affiliation(s)
- Martyna Arciuch-Rutkowska
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
| | - Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, ul. M. Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - Łukasz Gil
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, 10-957 Olsztyn, Poland; (M.A.-R.); (J.N.)
- Department of Research and Development, Chemprof, Gutkowo 54B, 11-041 Olsztyn, Poland;
| |
Collapse
|
3
|
Kasihmuddin SM, Cob ZC, Noor NM, Das SK. Effect of different temperature variations on the physiological state of catfish species: a systematic review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:413-434. [PMID: 38367084 DOI: 10.1007/s10695-024-01323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Catfish are a highly diverse group of fish that are found in various regions across the globe. The significance of catfish culture extends to various aspects, including food security, economic advancement, preservation of cultural legacy, and ecological stewardship. The catfish industry is presently encountering unprecedented challenges as a consequence of the variability in water temperature caused by climate change. Temperature is a significant abiotic component that regulates and restricts fish physiology throughout their life cycle. The impact of severe temperatures on various species of catfish is dependent upon the magnitude of the stressor and additional influencing factors. This paper presents an analysis of the effects of temperature fluctuations on various aspects of catfish species, including growth and survival, blood parameters, enzymatic and hormone response, oxygen consumption rates, sound generation and hearing skills, nutritional requirements, and other phenotypic attributes. While this review is certainly not exhaustive, it offers a broad synopsis of the ideal temperature ranges that are most favorable for several catfish species. In-depth research to investigate the interacting impacts of severe temperature occurrences in conjunction with other associated environmental stresses on a wider variety of catfish species is crucial in order to further our understanding of how catfish species will respond to the anticipated climate change in the future.
Collapse
Affiliation(s)
- Sonia Mohd Kasihmuddin
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Zaidi Che Cob
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Noorashikin Md Noor
- Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Simon Kumar Das
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Hattori A, Suzuki N. Receptor-Mediated and Receptor-Independent Actions of Melatonin in Vertebrates. Zoolog Sci 2024; 41:105-116. [PMID: 38587523 DOI: 10.2108/zs230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 04/09/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.
Collapse
Affiliation(s)
- Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama 352-8558, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan,
| |
Collapse
|
5
|
Aizen J, Sharma S, Elizur A, Joy KP, Chaube R. Regulation of steroid production and key genes in catfish Heteropneustes fossilis using recombinant gonadotropins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:911-923. [PMID: 37548828 DOI: 10.1007/s10695-023-01230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The two gonadotropins, FSH and LH, stimulate growth and development of the gonads through gonadal biosynthesis of steroid hormones and growth factors. To date, cDNA sequences encoding gonadotropin subunits have been isolated and characterized from a large number of fish species. Recently, we successfully cloned and characterized gonadotropins (LHβ, FSHβ, and GPα) from the pituitary glands of the catfish, Heteropneustes fossilis. In the present study, we describe herein the production of recombinant stinging catfish, H. fossilis (hf) FSH (rhfFSH) and LH (rhfLH) using the methylotrophic yeast P. pastoris expression system. We further explored the hypothesis that the recombinant gonadotropins can modulate the hypothalamus-pituitary-ovarian (HPO) axis genes (avt, it, gnrh2, kiss2, and cyp19a1a) and regulate their transcriptional profile and steroid levels in relation to their annual developmental stage during preparatory and pre-spawning phases under in-vitro conditions. We found that the different concentrations of recombinant rhfFSH and rhfLH significantly stimulated E2 levels in the preparatory and prespawning season, and also upregulated gonadal aromatase gene expression in a dose dependent manner. Our results demonstrate that the yeast expression system produced biologically active recombinant catfish gonadotropins, enabling the study of their function in the catfish.
Collapse
Affiliation(s)
- Joseph Aizen
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel.
| | - Sandhya Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Mishra S, Chaube R. Impact of ovariectomy and estradiol-17β (E2) replacement on the brain steroid levels of the Indian stinging catfish Heteropneustes fossilis. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Chourasia TK, Chaube R, Joy KP. Seasonal dynamics, kinetics, and effects of 2-hydroxyestradiol-17β on some steroidogenic enzymes in the ovary of the catfish Heteropneustes fossilis. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Senthilkumaran B, Kar S. Advances in Reproductive Endocrinology and Neuroendocrine Research Using Catfish Models. Cells 2021; 10:2807. [PMID: 34831032 PMCID: PMC8616529 DOI: 10.3390/cells10112807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Catfishes, belonging to the order siluriformes, represent one of the largest groups of freshwater fishes with more than 4000 species and almost 12% of teleostean population. Due to their worldwide distribution and diversity, catfishes are interesting models for ecologists and evolutionary biologists. Incidentally, catfish emerged as an excellent animal model for aquaculture research because of economic importance, availability, disease resistance, adaptability to artificial spawning, handling, culture, high fecundity, hatchability, hypoxia tolerance and their ability to acclimate to laboratory conditions. Reproductive system in catfish is orchestrated by complex network of nervous, endocrine system and environmental factors during gonadal growth as well as recrudescence. Lot of new information on the molecular mechanism of gonadal development have been obtained over several decades which are evident from significant number of scientific publications pertaining to reproductive biology and neuroendocrine research in catfish. This review aims to synthesize key findings and compile highly relevant aspects on how catfish can offer insight into fundamental mechanisms of all the areas of reproduction and its neuroendocrine regulation, from gametogenesis to spawning including seasonal reproductive cycle. In addition, the state-of-knowledge surrounding gonadal development and neuroendocrine control of gonadal sex differentiation in catfish are comprehensively summarized in comparison with other fish models.
Collapse
Affiliation(s)
- Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India;
| | | |
Collapse
|
9
|
Lutterschmidt DI, Lucas AR, Summers AR. Trans-seasonal activation of the neuroendocrine reproductive axis: Low-temperature winter dormancy modulates gonadotropin-releasing hormone neurons in garter snakes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:50-64. [PMID: 34270177 DOI: 10.1002/jez.2506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
All animals use external cues from the environment to accurately time life-history events. How the brain decodes environmental stimuli to effect changes in physiology and behavior, however, is poorly understood, particularly with regard to supplementary environmental cues such as temperature. We asked if low-temperature dormancy alters the synthesis and/or release of gonadotropin-releasing hormone (GnRH). We used the well-studied red-sided garter snake (Thamnophis sirtalis) for this study, as low-temperature exposure is both necessary and sufficient to induce reproduction in northern populations of this species. Snakes were collected from the field and hibernated at 4°C or 10°C in complete darkness for up to 16 weeks. In males, increasing duration of low-temperature dormancy significantly increased GnRH-immunoreactive cell number and GnRH soma size (a proxy for relative cell activity) in the forebrain. These changes mirrored those in male reproductive behavior (reported previously) and plasma androgen concentrations. The changes in GnRH cell area observed in males were specific to the neuroendocrine population of cells in the medial preoptic area; soma size in the rostral GnRH cells did not change. Finally, temperature-induced changes in GnRH were sexually dimorphic: neither hibernation temperature nor the duration of winter dormancy significantly modulated GnRH cell number or soma size in females, despite the fact that plasma estradiol and corticosterone increased significantly in response to both. These data demonstrate that the neuroendocrine GnRH system is sensitive to environmental temperature and suggest that GnRH neurons play a conserved but trans-seasonal role in mediating changes in reproductive physiology and behavior in dissociated breeders.
Collapse
Affiliation(s)
| | - Ashley R Lucas
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Andrew R Summers
- Department of Biology, Portland State University, Portland, Oregon, USA
| |
Collapse
|