1
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Cáceres C, Bourtzis K, Gouvi G, Vreysen MJB, Bimbilé Somda NS, Hejníčková M, Marec F, Meza JS. Development of a novel genetic sexing strain of Ceratitis capitata based on an X-autosome translocation. Sci Rep 2023; 13:16167. [PMID: 37758733 PMCID: PMC10533888 DOI: 10.1038/s41598-023-43164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Genetic sexing strains (GSS), such as the Ceratitis capitata (medfly) VIENNA 8 strain, facilitate male-only releases and improve the efficiency and cost-effectiveness of sterile insect technique (SIT) applications. Laboratory domestication may reduce their genetic diversity and mating behaviour and hence, refreshment with wild genetic material is frequently needed. As wild males do not carry the T(Y;A) translocation, and wild females do not easily conform to artificial oviposition, the genetic refreshment of this GSS is a challenging and time-consuming process. In the present study, we report the development of a novel medfly GSS, which is based on a viable homozygous T(XX;AA) translocation using the same selectable markers, the white pupae and temperature-sensitive lethal genes. This allows the en masse cross of T(XX;AA) females with wild males, and the backcrossing of F1 males with the T(XX;AA) females thus facilitating the re-establishment of the GSS as well as its genetic refreshment. The rearing efficiency and mating competitiveness of the novel GSS are similar to those of the T(Y;A)-based VIENNA 8 GSS. However, its advantage to easily allow the genetic refreshment is of great importance as it can ensure the mass production of high-quality males and enhanced efficacy of operational SIT programs.
Collapse
Affiliation(s)
- Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 2444, Seibersdorf, Austria.
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 2444, Seibersdorf, Austria
| | - Georgia Gouvi
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 2444, Seibersdorf, Austria
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 2444, Seibersdorf, Austria
| | - Nanwintoum Séverin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 2444, Seibersdorf, Austria
- Unité de Formation et de Recherche en Sciences et Technologies (UFR/ST), Université Norbert ZONGO (UNZ), BP 376, Koudougou, Burkina Faso
| | - Martina Hejníčková
- Biology Centre CAS, Institute of Entomology, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre CAS, Institute of Entomology, 370 05, České Budějovice, Czech Republic
| | - José S Meza
- Programa Operativo de Moscas, SADER-SENASICA/IICA, Camino a los Cacaotales S/N, CP 30860, Metapa de Domínguez, Chiapas, México
| |
Collapse
|
3
|
Chrostek G, Domaradzka A, Yurchenko A, Kratochvíl L, Mazzoleni S, Rovatsos M. Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos. Genes (Basel) 2023; 14:178. [PMID: 36672918 PMCID: PMC9859368 DOI: 10.3390/genes14010178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16-48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| |
Collapse
|
4
|
Sochorová J, Gálvez F, Matyášek R, Garcia S, Kovařík A. Analyses of the Updated "Animal rDNA Loci Database" with an Emphasis on Its New Features. Int J Mol Sci 2021; 22:11403. [PMID: 34768834 PMCID: PMC8584138 DOI: 10.3390/ijms222111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
We report on a major update to the animal rDNA loci database, which now contains cytogenetic information for 45S and 5S rDNA loci in more than 2600 and 1000 species, respectively.The data analyses show the following: (i) A high variability in 5S and 45S loci numbers, with both showing 50-fold or higher variability. However, karyotypes with an extremely high number of loci were rare, and medians generally converged to two 5S sites and two 45S rDNA sites per diploid genome. No relationship was observed between the number of 5S and 45S loci. (ii) The position of 45S rDNA on sex chromosomes was relatively frequent in some groups, particularly in arthropods (14% of karyotypes). Furthermore, 45S rDNA was almost exclusively located in microchromosomes when these were present (in birds and reptiles). (iii) The proportion of active NORs (positively stained with silver staining methods) progressively decreased with an increasing number of 45S rDNA loci, and karyotypes with more than 12 loci showed, on average, less than 40% of active loci. In conclusion, the updated version of the database provides some new insights into the organization of rRNA genes in chromosomes. We expect that its updated content will be useful for taxonomists, comparative cytogeneticists, and evolutionary biologists. .
Collapse
Affiliation(s)
- Jana Sochorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| | - Francisco Gálvez
- Bioscripts—Centro de Investigación y Desarrollo de Recursos Científicos, 41012 Sevilla, Spain;
| | - Roman Matyášek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Spain;
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| |
Collapse
|
5
|
Abstract
BACKGROUND The Oriental fruit fly, Bactrocera dorsalis, is a highly polyphagous invasive species with a high reproductive potential. In many tropical and subtropical parts of the world it ranks as one of the major pests of fruits and vegetables. Due to its economic importance, genetic, cytogenetic, genomic and biotechnological approaches have been applied to understand its biology and to implement the Sterile Insect Technique, currently a part of area-wide control programmes against this fly. Its chromosome complement includes five pairs of autosomes and the sex chromosomes. The X and Y sex chromosomes are heteromorphic and the highly heterochromatic and degenerate Y harbours the male factor BdMoY. The characterization of the Y chromosome in this fly apart from elucidating its role as primary sex determination system, it is also of crucial importance to understand its role in male biology. The repetitive nature of the Y chromosome makes it challenging to sequence and characterise. RESULTS Using Representational Difference Analysis, fluorescent in situ hybridisation on mitotic chromosomes and in silico genome resources, we show that the B. dorsalis Y chromosome harbours transcribed sequences of gyf, (typo-gyf) a homologue of the Drosophila melanogaster Gigyf gene, and of a non-LTR retrotransposon R1. Similar sequences are also transcribed on the X chromosome. Paralogues of the Gigyf gene are also present on the Y and X chromosomes of the related species B. tryoni. Another identified Y-specific repetitive sequence linked to BdMoY appears to be specific to B. dorsalis. CONCLUSIONS Our random scan of the Y chromosome provides a broad picture of its general composition and represents a starting point for further applicative and evolutionary studies. The identified repetitive sequences can provide a useful Y-marking system for molecular karyotyping of single embryos. Having a robust diagnostic marker associated with BdMoY will facilitate studies on how BdMoY regulates the male sex determination cascade during the embryonic sex-determination window. The Y chromosome, despite its high degeneracy and heterochromatic nature, harbours transcribed sequences of typo-gyf that may maintain their important function in post-transcriptional mRNA regulation. That transcribed paralogous copies of Gigyf are present also on the X and that this genomic distribution is maintained also in B. tryoni raises questions on the evolution of sex chromosomes in Bactrocera and other tephritids.
Collapse
|
6
|
Bayega A, Djambazian H, Tsoumani KT, Gregoriou ME, Sagri E, Drosopoulou E, Mavragani-Tsipidou P, Giorda K, Tsiamis G, Bourtzis K, Oikonomopoulos S, Dewar K, Church DM, Papanicolaou A, Mathiopoulos KD, Ragoussis J. De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genomics 2020; 21:259. [PMID: 32228451 PMCID: PMC7106766 DOI: 10.1186/s12864-020-6672-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly's biology and proposing alternative control methods to pesticide use. RESULTS Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. CONCLUSIONS The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome's organization, function and evolution and is poised to provide avenues for sterile insect technique approaches.
Collapse
Affiliation(s)
- Anthony Bayega
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Haig Djambazian
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Konstantina T. Tsoumani
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Efthimia Sagri
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Eleni Drosopoulou
- Department of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Kristina Giorda
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, Iowa, 52241 USA
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Spyridon Oikonomopoulos
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Deanna M. Church
- Inscripta, Inc., 5500 Central Avenue #220, Boulder, CO 80301 USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Sex Chromosomes of the Iconic Moth Abraxas grossulariata (Lepidoptera, Geometridae) and Its Congener A. sylvata. Genes (Basel) 2018; 9:genes9060279. [PMID: 29857494 PMCID: PMC6027526 DOI: 10.3390/genes9060279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/28/2023] Open
Abstract
The magpie moth, Abraxas grossulariata, is an iconic species in which female heterogamety was discovered at the beginning of the 20th century. However, the sex chromosomes of this species have not yet been cytologically identified. We describe the sex chromosomes of A. grossulariata and its congener, A. sylvata. Although these species split only around 9.5 million years ago, and both species have the expected WZ/ZZ chromosomal system of sex determination and their sex chromosomes share the major ribosomal DNA (rDNA) representing the nucleolar organizer region (NOR), we found major differences between their karyotypes, including between their sex chromosomes. The species differ in chromosome number, which is 2n = 56 in A. grossularita and 2n = 58 in A. sylvata. In addition, A. grossularita autosomes exhibit massive autosomal blocks of heterochromatin, which is a very rare phenomenon in Lepidoptera, whereas the autosomes of A. sylvata are completely devoid of distinct heterochromatin. Their W chromosomes differ greatly. Although they are largely composed of female-specific DNA sequences, as shown by comparative genomic hybridization, cross-species W-chromosome painting revealed considerable sequence differences between them. The results suggest a relatively rapid molecular divergence of Abraxas W chromosomes by the independent spreading of female-specific repetitive sequences.
Collapse
|
8
|
Dalíková M, Zrzavá M, Hladová I, Nguyen P, Šonský I, Flegrová M, Kubíčková S, Voleníková A, Kawahara AY, Peters RS, Marec F. New Insights into the Evolution of the W Chromosome in Lepidoptera. J Hered 2017; 108:709-719. [DOI: 10.1093/jhered/esx063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
|
9
|
Mattos VF, Carvalho LS, Cella DM, Schneider MC. Location of 45S Ribosomal Genes in Mitotic and Meiotic Chromosomes of Buthid Scorpions. Zoolog Sci 2016; 31:603-7. [PMID: 25186932 DOI: 10.2108/zs140005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Buthid scorpions exhibit a high variability in diploid number within genera and even within species. Cytogenetically, Buthidae differs from other families of Scorpiones based on its low diploid numbers, holocentric chromosomes, and complex chromosomal chains, which form during meiosis. In this study, we analyzed the distribution of the 45S ribosomal DNA (rDNA) genes in the mitotic and meiotic chromosomes of seven buthid species belonging to the genera Rhopalurus and Tityus with the ultimate goal of elucidating the chromosome organization in these scorpions. The chromosome number ranged from 2n=6 to 2n=28. Despite the high variance in diploid number, all species examined carried their 45S rDNA sites in the terminal region of exactly two chromosomes. Analyses of meiotic cells revealed 45S rDNA clusters in the chromosomal chains of Rhopalurus agamemnon, Tityus bahiensis, Tityus confluens, and Tityus martinpaechi, or in bivalent-like configuration in Rhopalurus rochai, Tityus bahiensis, Tityus confluens, Tityus fasciolatus, and Tityus paraguayensis. In the species examined, the 45S rDNA sites colocalized with constitutive heterochromatin regions. In light of the high chromosome variability and maintenance of number and terminal position of 45S rDNA sites in buthids, the heterochromatin may act to conserve the integrity of the ribosomal genes.
Collapse
Affiliation(s)
- Viviane Fagundes Mattos
- 1 Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Biologia, Avenida 24-A, 1515, Caixa Postal 199, 13506-900, Rio Claro, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
Gariou-Papalexiou A, Giardini MC, Augustinos AA, Drosopoulou E, Lanzavecchia SB, Cladera JL, Caceres C, Bourtzis K, Mavragani-Tsipidou P, Zacharopoulou A. Cytogenetic Analysis of the South American Fruit Fly Anastrepha fraterculus (Diptera:Tephritidae) Species Complex: Construction of Detailed Photographic Polytene Chromosome Maps of the Argentinian Af. sp.1 Member. PLoS One 2016; 11:e0157192. [PMID: 27362546 PMCID: PMC4928812 DOI: 10.1371/journal.pone.0157192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 01/28/2023] Open
Abstract
Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications.
Collapse
Affiliation(s)
| | - María Cecilia Giardini
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Antonios A. Augustinos
- Biology Department, University of Patras, Patras, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Silvia B. Lanzavecchia
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Jorge L. Cladera
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
11
|
Augustinos AA, Drosopoulou E, Gariou-Papalexiou A, Asimakis ED, Cáceres C, Tsiamis G, Bourtzis K, Penelope Mavragani-Tsipidou, Zacharopoulou A. Cytogenetic and symbiont analysis of five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence of chromosomal or symbiont-based speciation events. Zookeys 2015:273-98. [PMID: 26798263 PMCID: PMC4714073 DOI: 10.3897/zookeys.540.9857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022] Open
Abstract
The Bactroceradorsalis species complex, currently comprising about 90 entities has received much attention. During the last decades, considerable effort has been devoted to delimiting the species of the complex. This information is of great importance for agriculture and world trade, since the complex harbours several pest species of major economic importance and other species that could evolve into global threats. Speciation in Diptera is usually accompanied by chromosomal rearrangements, particularly inversions that are assumed to reduce/eliminate gene flow. Other candidates currently receiving much attention regarding their possible involvement in speciation are reproductive symbionts, such as Wolbachia, Spiroplasma, Arsenophonus, Rickettsia and Cardinium. Such symbionts tend to spread quickly through natural populations and can cause a variety of phenotypes that promote pre-mating and/or post-mating isolation and, in addition, can affect the biology, physiology, ecology and evolution of their insect hosts in various ways. Considering all these aspects, we present: (a) a summary of the recently gained knowledge on the cytogenetics of five members of the Bactroceradorsalis complex, namely Bactroceradorsaliss.s., Bactrocerainvadens, Bactroceraphilippinensis, Bactrocerapapayae and Bactroceracarambolae, supplemented by additional data from a Bactroceradorsaliss.s. colony from China, as well as by a cytogenetic comparison between the dorsalis complex and the genetically close species, Bactroceratryoni, and, (b) a reproductive symbiont screening of 18 different colonized populations of these five taxa. Our analysis did not reveal any chromosomal rearrangements that could differentiate among them. Moreover, screening for reproductive symbionts was negative for all colonies derived from different geographic origins and/or hosts. There are many different factors that can lead to speciation, and our data do not support chromosomal and/or symbiotic-based speciation phenomena in the taxa under study.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Department of Biology, University of Patras, Patras, Greece; Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria; Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Elias D Asimakis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
12
|
Giardini MC, Milla FH, Lanzavecchia S, Nieves M, Cladera JL. Sex chromosomes in mitotic and polytene tissues of Anastrepha fraterculus (Diptera, Tephritidae) from Argentina: a review. Zookeys 2015:83-94. [PMID: 26798255 PMCID: PMC4714065 DOI: 10.3897/zookeys.540.6058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/02/2015] [Indexed: 11/12/2022] Open
Abstract
Cytogenetics, which is considered a fundamental tool to understand basic genetic and genomic issues of species, has greatly contributed to the description of polymorphisms both at inter- and intra-specific level. In fact, cytogenetics was one of the first approaches used to propose Anastrephafraterculus (Diptera: Tephritidae) as a complex of cryptic species. Different morphological variants of sex chromosomes have been reported among Argentinean populations of Anastrephafraterculus. However, since this high structural variability in sex chromosomes does not pose a reproductive barrier, their role in speciation is yet to be unveiled. This review provides an update on general aspects of cytogenetics in Argentinean Anastrephafraterculus populations, focused on the prevalence of X-Y arrangements.
Collapse
Affiliation(s)
- María Cecilia Giardini
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Fabián H Milla
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Silvia Lanzavecchia
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Mariela Nieves
- Grupo de Investigación en Biología Evolutiva, Departamento de Ecología, Genética y Evolución, IEGEBA-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge L Cladera
- Laboratorio de Genética de Insectos de Importancia Económica, Instituto de Genética 'Ewald A. Favret', CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
13
|
Tsoumani KT, Drosopoulou E, Bourtzis K, Gariou-Papalexiou A, Mavragani-Tsipidou P, Zacharopoulou A, Mathiopoulos KD. Achilles, a New Family of Transcriptionally Active Retrotransposons from the Olive Fruit Fly, with Y Chromosome Preferential Distribution. PLoS One 2015; 10:e0137050. [PMID: 26398504 PMCID: PMC4580426 DOI: 10.1371/journal.pone.0137050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Sex chromosomes have many unusual features relative to autosomes. The in depth exploration of their structure will improve our understanding of their origin and divergence (degeneration) as well as the evolution of genetic sex determination pathways which, most often are attributed to them. In Tephritids, the structure of Y chromosome, where the male-determining factor M is localized, is largely unexplored and limited data concerning its sequence content and evolution are available. In order to get insight into the structure and organization of the Y chromosome of the major olive insect pest, the olive fly Bactrocera oleae, we characterized sequences from a Pulse Field Gel Electrophoresis (PFGE)-isolated Y chromosome. Here, we report the discovery of the first olive fly LTR retrotransposon with increased presence on the Y chromosome. The element belongs to the BEL-Pao superfamily, however, its sequence comparison with the other members of the superfamily suggests that it constitutes a new family that we termed Achilles. Its ~7.5 kb sequence consists of the 5'LTR, the 5'non-coding sequence and the open reading frame (ORF), which encodes the polyprotein Gag-Pol. In situ hybridization to the B. oleae polytene chromosomes showed that Achilles is distributed in discrete bands dispersed on all five autosomes, in all centromeric regions and in the granular heterochromatic network corresponding to the mitotic sex chromosomes. The between sexes comparison revealed a variation in Achilles copy number, with male flies possessing 5-10 copies more than female (CI range: 18-38 and 12-33 copies respectively per genome). The examination of its transcriptional activity demonstrated the presence of at least one intact active copy in the genome, showing a differential level of expression between sexes as well as during embryonic development. The higher expression was detected in male germline tissues (testes). Moreover, the presence of Achilles-like elements in different species of the Tephritidae family suggests an ancient origin of this element.
Collapse
Affiliation(s)
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Kostas Bourtzis
- Insect Molecular Genetics Group, IMBB, Vassilika Vouton, 71110 Heraklion, Crete, PO Box 1527, Greece
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Aggeliki Gariou-Papalexiou
- Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Antigone Zacharopoulou
- Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece
| | | |
Collapse
|
14
|
O'Sullivan JM, Pai DA, Cridge AG, Engelke DR, Ganley ARD. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? Biomol Concepts 2015; 4:277-86. [PMID: 25436580 DOI: 10.1515/bmc-2012-0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/15/2022] Open
Abstract
The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.
Collapse
|
15
|
Drosopoulou E, Nakou I, Mavragani-Tsipidou P. The Bactrocera oleae genome: localization of nine genes on the polytene chromosomes of the olive fruit fly (Diptera: Tephritidae). Genome 2015; 57:573-6. [PMID: 25723592 DOI: 10.1139/gen-2014-0172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four homologous and five heterologous gene-specific sequences have been mapped by in situ hybridization on the salivary gland polytene chromosomes of the olive fruit fly, Bactrocera oleae. The nine genes were dispersed on four of the five autosomal chromosomes, thus enriching the available set of chromosome landmarks for this major agricultural pest. Present data further supports the proposed chromosome homologies among B. oleae, Ceratitis capitata, and Drosophila melanogaster and the idea of the conservation of chromosomal element identity throughout dipteran evolution.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki (AUTH), GR-54124, Thessaloniki, Greece
| | | | | |
Collapse
|
16
|
Sagri E, Reczko M, Tsoumani KT, Gregoriou ME, Harokopos V, Mavridou AM, Tastsoglou S, Athanasiadis K, Ragoussis J, Mathiopoulos KD. The molecular biology of the olive fly comes of age. BMC Genet 2014; 15 Suppl 2:S8. [PMID: 25472866 PMCID: PMC4255830 DOI: 10.1186/1471-2156-15-s2-s8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Olive cultivation blends with the history of the Mediterranean countries since ancient times. Even today, activities around the olive tree constitute major engagements of several people in the countryside of both sides of the Mediterranean basin. The olive fly is, beyond doubt, the most destructive pest of cultivated olives. The female fly leaves its eggs in the olive fruit. Upon emergence, the larvae feed on the olive sap, thus destroying the fruit. If untreated, practically all olives get infected. The use of chemical insecticides constitutes the principal olive fly control approach. The Sterile Insect Technique (SIT), an environmentally friendly alternative control method, had been tried in pilot field applications in the 1970's, albeit with no practical success. This was mainly attributed to the low, non-antagonistic quality of the mixed-sex released insects. Many years of experience from successful SIT applications in related species, primarily the Mediterranean fruit fly, Ceratitis capitata, demonstrated that efficient SIT protocols require the availability of fundamental genetic and molecular information. Results Among the primary systems whose understanding can contribute towards novel SIT approaches (or its recently developed alternative RIDL: Release of Insects carrying a Dominant Lethal) is the reproductive, since the ability to manipulate the reproductive system would directly affect the insect's fertility. In addition, the analysis of early embryonic promoters and apoptotic genes would provide tools that confer dominant early-embryonic lethality during mass-rearing. Here we report the identification of several genes involved in these systems through whole transcriptome analysis of female accessory glands (FAGs) and spermathecae, as well as male testes. Indeed, analysis of differentially expressed genes in these tissues revealed higher metabolic activity in testes than in FAGs/spermathecae. Furthermore, at least five olfactory-related genes were shown to be differentially expressed in the female and male reproductive systems analyzed. Finally, the expression profile of the embryonic serendipity-α locus and the pre-apoptotic head involution defective gene were analyzed during embryonic developmental stages. Conclusions Several years of molecular studies on the olive fly can now be combined with new information from whole transcriptome analyses and lead to a deep understanding of the biology of this notorious insect pest. This is a prerequisite for the development of novel embryonic lethality female sexing strains for successful SIT efforts which, combined with improved mass-reared conditions, give new hope for efficient SIT applications for the olive fly.
Collapse
|
17
|
Abstract
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Collapse
|
18
|
Tsoumani KT, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD. Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae. PLoS One 2013; 8:e79393. [PMID: 24244494 PMCID: PMC3828357 DOI: 10.1371/journal.pone.0079393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Satellite repetitive sequences that accumulate in the heterochromatin consist a large fraction of a genome and due to their properties are suggested to be implicated in centromere function. Current knowledge of heterochromatic regions of Bactrocera oleae genome, the major pest of the olive tree, is practically nonexistent. In our effort to explore the repetitive DNA portion of B. oleae genome, a novel satellite sequence designated BoR300 was isolated and cloned. The present study describes the genomic organization, abundance and chromosomal distribution of BoR300 which is organized in tandem, forming arrays of 298 bp-long monomers. Sequence analysis showed an AT content of 60.4%, a CENP-B like-motif and a high curvature value based on predictive models. Comparative analysis among randomly selected monomers demonstrated a high degree of sequence homogeneity (88%-97%) of BoR300 repeats, which are present at approximately 3,000 copies per haploid genome accounting for about 0.28% of the total genomic DNA, based on two independent qPCR approaches. In addition, expression of the repeat was also confirmed through RT-PCR, by which BoR300 transcripts were detected in both sexes. Fluorescence in situ hybridization (FISH) of BoR300 on mitotic metaphases and polytene chromosomes revealed signals to the centromeres of two out of the six chromosomes which indicated a chromosome-specific centromeric localization. Moreover, BoR300 is not conserved in the closely related Bactrocera species tested and it is also absent in other dipterans, but it's rather restricted to the B. oleae genome. This feature of species-specificity attributed to BoR300 satellite makes it a good candidate as an identification probe of the insect among its relatives at early development stages.
Collapse
Affiliation(s)
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
- * E-mail:
| |
Collapse
|
19
|
Vicoso B, Bachtrog D. Reversal of an ancient sex chromosome to an autosome in Drosophila. Nature 2013; 499:332-5. [PMID: 23792562 PMCID: PMC4120283 DOI: 10.1038/nature12235] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 04/30/2013] [Indexed: 01/14/2023]
Abstract
Although transitions of sex-determination mechanisms are frequent in species with homomorphic sex chromosomes, heteromorphic sex chromosomes are thought to represent a terminal evolutionary stage owing to chromosome-specific adaptations such as dosage compensation or an accumulation of sex-specific mutations. Here we show that an autosome of Drosophila, the dot chromosome, was ancestrally a differentiated X chromosome. We analyse the whole genome of true fruitflies (Tephritidae), flesh flies (Sarcophagidae) and soldier flies (Stratiomyidae) to show that genes located on the dot chromosome of Drosophila are X-linked in outgroup species, whereas Drosophila X-linked genes are autosomal. We date this chromosomal transition to early drosophilid evolution by sequencing the genome of other Drosophilidae. Our results reveal several puzzling aspects of Drosophila dot chromosome biology to be possible remnants of its former life as a sex chromosome, such as its minor feminizing role in sex determination or its targeting by a chromosome-specific regulatory mechanism. We also show that patterns of biased gene expression of the dot chromosome during early embryogenesis, oogenesis and spermatogenesis resemble that of the current X chromosome. Thus, although sex chromosomes are not necessarily evolutionary end points and can revert back to an autosomal inheritance, the highly specialized genome architecture of this former X chromosome suggests that severe fitness costs must be overcome for such a turnover to occur.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
20
|
Šíchová J, Nguyen P, Dalíková M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One 2013; 8:e64520. [PMID: 23717623 PMCID: PMC3663796 DOI: 10.1371/journal.pone.0064520] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/15/2013] [Indexed: 01/03/2023] Open
Abstract
Moths of the family Tortricidae constitute one of the major microlepidopteran groups in terms of species richness and economic importance. Yet, despite their overall significance, our knowledge of their genome organization is very limited. In order to understand karyotype evolution in the family Tortricidae, we performed detailed cytogenetic analysis of Grapholita molesta, G. funebrana, Lobesia botrana, and Eupoecilia ambiguella, representatives of two main tortricid subfamilies, Olethreutinae and Tortricinae. Besides standard cytogenetic methods, we used fluorescence in situ hybridization for mapping of major rRNA and histone gene clusters and comparative genomic hybridization to determine the level of molecular differentiation of the W and Z sex chromosomes. Our results in combination with available data in the codling moth, Cydia pomonella, and other tortricids allow us a comprehensive reconstruction of chromosomal evolution across the family Tortricidae. The emerging picture is that the karyotype of a common ancestor of Tortricinae and Olethreutinae differentiated from the ancestral lepidopteran chromosome print of n = 31 by a sex chromosome-autosome fusion. This rearrangement resulted in a large neo-sex chromosome pair and a karyotype with n = 30 conserved in most Tortricinae species, which was further reduced to n = 28 observed in Olethreutinae. Comparison of the tortricid neo-W chromosomes showed differences in their structure and composition presumably reflecting stochasticity of molecular degeneration of the autosomal part of the neo-W chromosome. Our analysis also revealed conservative pattern of the histone distribution, which is in contrast with high rDNA mobility. Despite the dynamic evolution of rDNA, we can infer a single NOR-chromosome pair as an ancestral state not only in tortricids but probably in all Lepidoptera. The results greatly expand our knowledge of the genome architecture in tortricids, but also contribute to the understanding of chromosomal evolution in Lepidoptera in general.
Collapse
Affiliation(s)
- Jindra Šíchová
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Nguyen
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martina Dalíková
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - František Marec
- Institute of Entomology, Biology Centre ASCR, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
21
|
Yoshido A, Síchová J, Kubíčková S, Marec F, Sahara K. Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia ssp. Chromosome Res 2013; 21:149-64. [PMID: 23515983 DOI: 10.1007/s10577-013-9344-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
Our previous studies revealed a considerably high level of chromosomal polymorphism in wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae). Geographical populations of this species complex differ in chromosome numbers and show derived sex chromosome systems including Z0/ZZ in S. cynthia ricini (2n = 27/28; Vietnam), neo-Wneo-Z/neo-Zneo-Z in S. cynthia walkeri (2n = 26/26; Sapporo, Hokkaido) and neo-WZ1Z2/Z1Z1Z2Z2 in S. cynthia subsp. indet. (2n = 25/26; Nagano, Honshu). In this study, we collected specimens of S. cynthia pryeri in Japanese islands Kyushu, Shikoku and Honshu, with an ancestral-like karyotype of 2n = 28 in both sexes and a WZ/ZZ sex chromosome system, except for one population, in which females have lost the W chromosome. However, the S. cynthia pryeri W chromosome showed a very unusual morphology: It was composed of a highly heterochromatic body, which remained condensed throughout the whole cell cycle and of a euchromatin-like "tail." We examined molecular composition of the W and neo-W chromosomes in S. cynthia subspecies by comparative genomic hybridisation and fluorescence in situ hybridisation with W chromosome painting probes prepared from laser-microdissected W chromatin of S. cynthia pryeri. These methods revealed that the molecular composition of highly heterochromatic part of the S. cynthia pryeri W chromosome is very different and lacks homology in the genomes of other subspecies, whereas the euchromatin-like part of the W chromosome corresponds to a heterochromatic part of the neo-W chromosomes in S. cynthia walkeri and S. cynthia subsp. indet. Our findings suggest that the curious WZ system of S. cynthia pryeri may represent an ancestral state of the Samia species complex but do not exclude an alternative hypothesis of its derived origin.
Collapse
Affiliation(s)
- Atsuo Yoshido
- Laboratory of Applied Molecular Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|