1
|
Repkin EA, Gafarova ER, Varfolomeeva MA, Kurjachii DS, Polev DE, Shavarda AL, Maslakov GP, Mullakhmetov RI, Zubova EV, Bariev TB, Granovitch AI, Maltseva AL. Littorina snails and Microphallus trematodes: Diverse consequences of the trematode-induced metabolic shifts. Parasitol Res 2024; 123:229. [PMID: 38819740 DOI: 10.1007/s00436-024-08244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
The intricate relationships between parasites and hosts encompass a wide range of levels, from molecular interactions to population dynamics. Parasites influence not only the physiological processes in the host organism, but also the entire ecosystem, affecting mortality of individuals, the number of offspring through parasitic castration, and matter and energy cycles. Understanding the molecular mechanisms that govern host-parasite relationships and their impact on host physiology and environment remains challenging. In this study, we analyzed how infection with Microphallus trematodes affects the metabolome of two Littorina snail species inhabiting different intertidal zone shore levels. We applied non-targeted GC-MS-based metabolomics to analyze biochemical shifts induced by trematode infection in a host organism. We have identified changes in energy, amino acid, sugar, and lipid metabolism. In particular, we observed intensified amino acid catabolism and nitrogenous catabolites (glutamine, urea) production. These changes primarily correlated with infection and interspecies differences of the hosts rather than shore level. The changes detected in the host metabolism indicate that other aspects of life may have been affected, both within the host organism and at a supra-organismal level. Therefore, we explored changes in microbiota composition, deviations in the host molluscs behavior, and acetylcholinesterase activity (ACE, an enzyme involved in neuromuscular transmission) in relation to infection. Infected snails displayed changes in their microbiome composition. Decreased ACE activity in snails was associated with reduced mobility, but whether it is associated with trematode infection remains unclear. The authors suggest a connection between the identified biochemical changes and the deformation of the shell of molluscs, changes in their behavior, and the associated microbiome. The role of parasitic systems formed by microphallid trematodes and Littorina snails in the nitrogen cycle at the ecosystem level is also assumed.
Collapse
Affiliation(s)
- Egor A Repkin
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia.
- Research Park Centre for Molecular and Cell Technologies, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia.
| | - Elizaveta R Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Marina A Varfolomeeva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Dmitrii S Kurjachii
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Dmitrii E Polev
- Department of Epidemiology, St. Petersburg Pasteur Institute, 197101 Mira Street 14, St. Petersburg, Russia
| | - Alexei L Shavarda
- Research Park Centre for Molecular and Cell Technologies, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
- Department of Analytical Phytochemistry, Komarov Botanical Institute, 197376 Professora Popova Street 2, St. Petersburg, Russia
| | - Georgiy P Maslakov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Roman I Mullakhmetov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Ekaterina V Zubova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Timur B Bariev
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Andrei I Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| | - Arina L Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 Universitetskaya Emb. 7/9, St. Petersburg, Russia
| |
Collapse
|
2
|
Maltseva AL, Lobov AA, Pavlova PA, Panova M, Gafarova ER, Marques JP, Danilov LG, Granovitch AI. Orphan gene in Littorina: An unexpected role of symbionts in the host evolution. Gene 2022; 824:146389. [PMID: 35257790 DOI: 10.1016/j.gene.2022.146389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Mechanisms of reproductive isolation between closely related sympatric species are of high evolutionary significance as they may function as initial drivers of speciation and protect species integrity afterwards. Proteins involved in the establishment of reproductive barriers often evolve fast and may be key players in cessation of gene flow between the incipient species. The five Atlantic Littorina (Neritrema) species represent a notable example of recent radiation. The geographic ranges of these young species largely overlap and the mechanisms of reproductive isolation are poorly understood. In this study, we performed a detailed analysis of the reproductive protein LOSP, previously identified in Littorina. We showed that this protein is evolutionary young and taxonomically restricted to the genus Littorina. It has high sequence variation both within and between Littorina species, which is compatible with its presumable role in the reproductive isolation. The strongest differences in the LOSP structure were detected between Littorina subgenera with distinctive repetitive motifs present exclusively in the Neritrema species, but not in L. littorea. Moreover, the sequence of these repetitive structural elements demonstrates a high homology with genetic elements of bacteria, identified as components of Littorina associated microbiomes. We suggest that these elements were acquired from a symbiotic bacterial donor via horizontal genetic transfer (HGT), which is indirectly confirmed by the presence of multiple transposable elements in the LOSP flanking and intronic regions. Furthermore, we hypothesize that this HGT-driven evolutionary innovation promoted LOSP function in reproductive isolation, which might be one of the factors determining the intensive cladogenesis in the Littorina (Neritrema) lineage in contrast to the anagenesis in the L. littorea clade.
Collapse
Affiliation(s)
- A L Maltseva
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia.
| | - A A Lobov
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia; Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Sciences, St Petersburg, Russia
| | - P A Pavlova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - M Panova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia; Department of Marine Sciences - Tjärnö, University of Gothenburg, Sweden
| | - E R Gafarova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - J P Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências do Porto, 4169-007 Porto, Portugal; ISEM, Univ Montpellier, CNRS, EPHE, IRD, 34095 Montpellier, France
| | - L G Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - A I Granovitch
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| |
Collapse
|
3
|
Divergence together with microbes: A comparative study of the associated microbiomes in the closely related Littorina species. PLoS One 2021; 16:e0260792. [PMID: 34932575 PMCID: PMC8691637 DOI: 10.1371/journal.pone.0260792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Any multicellular organism during its life is involved in relatively stable interactions with microorganisms. The organism and its microbiome make up a holobiont, possessing a unique set of characteristics and evolving as a whole system. This study aimed to evaluate the degree of the conservativeness of microbiomes associated with intertidal gastropods. We studied the composition and the geographic and phylogenetic variability of the gut and body surface microbiomes of five closely related sympatric Littorina (Neritrema) spp. and a more distant species, L. littorea, from the sister subgenus Littorina (Littorina). Although snail-associated microbiomes included many lineages (207–603), they were dominated by a small number of OTUs of the genera Psychromonas, Vibrio, and Psychrilyobacter. The geographic variability was greater than the interspecific differences at the same collection site. While the microbiomes of the six Littorina spp. did not differ at the high taxonomic level, the OTU composition differed between groups of cryptic species and subgenera. A few species-specific OTUs were detected within the collection sites; notably, such OTUs never dominated microbiomes. We conclude that the composition of the high-rank taxa of the associated microbiome (“scaffolding enterotype”) is more evolutionarily conserved than the composition of the low-rank individual OTUs, which may be site- and / or species-specific.
Collapse
|
4
|
Maltseva AL, Varfolomeeva MA, Ayanka RV, Gafarova ER, Repkin EA, Pavlova PA, Shavarda AL, Mikhailova NA, Granovitch AI. Linking ecology, morphology, and metabolism: Niche differentiation in sympatric populations of closely related species of the genus Littorina ( Neritrema). Ecol Evol 2021; 11:11134-11154. [PMID: 34429908 PMCID: PMC8366845 DOI: 10.1002/ece3.7901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/08/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022] Open
Abstract
Divergence of ecological niches in phylogenetically closely related species indicates the importance of ecology in speciation, especially for sympatric species are considered. Such ecological diversification provides an advantage of alleviating interspecies competition and promotes more efficient exploitation of environmental resources, thus being a basis for ecological speciation. We analyzed a group of closely related species from the subgenus Neritrema (genus Littorina, Caenogastropoda) from the gravel-bouldery shores. In two distant sites at the Barents and Norwegian Sea, we examined the patterns of snail distribution during low tide (quantitative sampling stratified by intertidal level, presence of macrophytes, macrophyte species, and position on them), shell shape and its variability (geometric morphometrics), and metabolic characteristics (metabolomic profiling). The studied species diversified microbiotopes, which imply an important role of ecological specification in the recent evolution of this group. The only exception to this trend was the species pair L. arcana / L. saxatilis, which is specifically discussed. The ecological divergence was accompanied by differences in shell shape and metabolomic characteristics. Significant differences were found between L. obtusata versus L. fabalis and L. saxatilis / L. arcana versus L. compressa both in shell morphology and in metabolomes. L. saxatilis demonstrated a clear variability depending on intertidal level which corresponds to a shift in conditions within the occupied microhabitat. Interestingly, the differences between L. arcana (inhabiting the upper intertidal level) and L. compressa (inhabiting the lower one) were analogous to those between the upper and lower fractions of L. saxatilis. No significant level-dependent changes were found between the upper and lower fractions of L. obtusata, most probably due to habitat amelioration by fucoid macroalgae. All these results are discussed in the contexts of the role of ecology in speciation, ecological niche dynamics and conservatism, and evolutionary history of the Neritrema species.
Collapse
Affiliation(s)
- Arina L Maltseva
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Marina A Varfolomeeva
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Roman V Ayanka
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Elizaveta R Gafarova
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Egor A Repkin
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Polina A Pavlova
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Alexei L Shavarda
- Department of Analytical Phytochemistry Komarov Botanical Institute St. Petersburg Russia
- Research Park Centre for Molecular and Cell Technologies St. Petersburg State University St. Petersburg Russia
| | - Natalia A Mikhailova
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
- Centre of Cell Technologies Institute of Cytology Russian Academy of Sciences St. Petersburg Russia
| | - Andrei I Granovitch
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| |
Collapse
|
5
|
Galaktionov KV, Solovyeva AI, Miroliubov A. Elucidation of Himasthla leptosoma (Creplin, 1829) Dietz, 1909 (Digenea, Himasthlidae) life cycle with insights into species composition of the north Atlantic Himasthla associated with periwinkles Littorina spp. Parasitol Res 2021; 120:1649-1668. [PMID: 33712931 DOI: 10.1007/s00436-021-07117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
Trematodes of the genus Himasthla are usual parasites of coastal birds in nearshore ecosystems of northern European seas and the Atlantic coast of North America. Their first intermediate hosts are marine and brackish-water gastropods, while second intermediate hosts are various invertebrates. We analysed sequences of partial 28S rRNA and nad1 genes and the morphology of intramolluscan stages, particularly cercariae of Himasthla spp. parasitizing intertidal molluscs Littorina spp. in the White Sea, the Barents Sea and coasts of North Norway and Iceland. We showed that only three Himasthla spp. are associated with periwinkles in these regions. Intramolluscan stages of H. elongata were found in Littorina littorea, of H. littorinae, in both L. saxatilis and L. obtusata, and of Cercaria littorinae obtusatae, predominantly, in L. obtusata. Other Himasthla spp. previously reported from Littorina spp. in North Atlantic are either synonymous with one of these species or described erroneously. Based on a comparison of newly generated 28S rDNA sequences with GenBank data, rediae and cercariae of C. littorinae obtusatae were identified as belonging to H. leptosoma. Some previously unknown morphological features of young and mature rediae and cercariae of the three Himasthla spp. are described. We provide a key to the rediae and highlight characters important for identification of cercariae. Genetic diversity within the studied species was only partially determined by their specificity to the molluscan host. The nad1 network constructed for H. leptosoma lacked geographical structure, which is explained by a high gene flow owing to highly vagile definitive hosts, shorebirds.
Collapse
Affiliation(s)
- Kirill V Galaktionov
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, Russia.
| | - Anna I Solovyeva
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, Russia.,Laboratory of Non-Coding DNA, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Alexei Miroliubov
- Laboratory of Parasitic Worms and Protists, Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, Russia
| |
Collapse
|
6
|
Maltseva AL, Varfolomeeva MA, Lobov AA, Tikanova PO, Repkin EA, Babkina IY, Panova M, Mikhailova NA, Granovitch AI. Premating barriers in young sympatric snail species. Sci Rep 2021; 11:5720. [PMID: 33707514 PMCID: PMC7952697 DOI: 10.1038/s41598-021-84407-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
Sympatric coexistence of recently diverged species raises the question of barriers restricting the gene flow between them. Reproductive isolation may be implemented at several levels, and the weakening of some, e.g. premating, barriers may require the strengthening of the others, e.g. postcopulatory ones. We analysed mating patterns and shell size of mates in recently diverged closely related species of the subgenus Littorina Neritrema (Littorinidae, Caenogastropoda) in order to assess the role of premating reproductive barriers between them. We compared mating frequencies observed in the wild with those expected based on relative densities using partial canonical correspondence analysis. We introduced the fidelity index (FI) to estimate the relative accuracy of mating with conspecific females and precopulatory isolation index (IPC) to characterize the strength of premating barriers. The species under study, with the exception of L. arcana, clearly demonstrated preferential mating with conspecifics. According to FI and IPC, L. fabalis and L. compressa appeared reliably isolated from their closest relatives within Neritrema. Individuals of these two species tend to be smaller than those of the others, highlighting the importance of shell size changes in gastropod species divergence. L. arcana males were often found in pairs with L. saxatilis females, and no interspecific size differences were revealed in this sibling species pair. We discuss the lack of discriminative mate choice in the sympatric populations of L. arcana and L. saxatilis, and possible additional mechanisms restricting gene flow between them.
Collapse
Affiliation(s)
- Arina L Maltseva
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia.
| | - Marina A Varfolomeeva
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Arseniy A Lobov
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia.,Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Sciences, St Petersburg, Russia
| | - Polina O Tikanova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Egor A Repkin
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Irina Y Babkina
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Marina Panova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia.,Department of Marine Sciences - Tjärnö, University of Gothenburg, Gothenburg, Sweden
| | - Natalia A Mikhailova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia.,Centre of Cell Technologies, Institute of Cytology Russian Academy of Sciences, St Petersburg, Russia
| | - Andrei I Granovitch
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| |
Collapse
|
7
|
Repkin EA, Maltseva AL, Varfolomeeva MA, Aianka RV, Mikhailova NA, Granovitch AI. Genetic and morphological variation of metacercariae of Microphallus piriformes (Trematoda, Microphallidae): Effects of paraxenia and geographic location. Int J Parasitol Parasites Wildl 2020; 11:235-245. [PMID: 32195109 PMCID: PMC7078125 DOI: 10.1016/j.ijppaw.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
Abstract
Host organism offers an environment for a parasite, and this environment is heterogenous within the host, variable among individual as well as between the hosts, and changing during the host's lifetime. This heterogeneity may act as a prerequisite for parasite species divergence. Intraspecific variability related to a certain type of heterogeneity may indicate an initial stage of speciation, and thus poses an evolutionary importance. Here we analyzed genetic and morphologic variation of trematode metacercariae of Microphallus piriformes (Trematoda, Microphallidae). Genetic variability of trematodes was assessed from sequences of cytochrome c oxidase subunit 1 (COI) and internal transcribed spacer region (ITS-1). Morphological variation of metacercarial body shape was for the first time analyzed using geometric morphometrics. Parasites from the White Sea and the Barents Sea coasts demonstrated partial genetic divergence (according to COI sequence analysis) and had significantly different body shape. Neither genetic nor morphological variation of metacercariae was related to intermediate host species. We discuss possible causes of the observed genetic divergence of parasite populations in different geographic regions.
Collapse
Affiliation(s)
- Egor A. Repkin
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Universitetskaya 7/9A, 199034, Russia
| | - Arina L. Maltseva
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Universitetskaya 7/9A, 199034, Russia
| | - Marina A. Varfolomeeva
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Universitetskaya 7/9A, 199034, Russia
| | - Roman V. Aianka
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Universitetskaya 7/9A, 199034, Russia
| | - Natalia A. Mikhailova
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Universitetskaya 7/9A, 199034, Russia
- Centre of Cell Technologies, Institute of Cytology Russian Academy of Sciences, St Petersburg, Russia
| | - Andrei I. Granovitch
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Universitetskaya 7/9A, 199034, Russia
| |
Collapse
|
8
|
Maltseva AL, Varfolomeeva MA, Lobov AA, Tikanova P, Panova M, Mikhailova NA, Granovitch AI. Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ 2020; 8:e8546. [PMID: 32095363 PMCID: PMC7024583 DOI: 10.7717/peerj.8546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The introduction of DNA-based molecular markers made a revolution in biological systematics. However, in cases of very recent divergence events, the neutral divergence may be too slow, and the analysis of adaptive part of the genome is more informative to reconstruct the recent evolutionary history of young species. The advantage of proteomics is its ability to reflect the biochemical machinery of life. It may help both to identify rapidly evolving genes and to interpret their functions. METHODS Here we applied a comparative gel-based proteomic analysis to several species from the gastropod family Littorinidae. Proteomes were clustered to assess differences related to species, geographic location, sex and body part, using data on presence/absence of proteins in samples and data on protein occurrence frequency in samples of different species. Cluster support was assessed using multiscale bootstrap resampling and the stability of clustering-using cluster-wise index of cluster stability. Taxon-specific protein markers were derived using IndVal method. Proteomic trees were compared to consensus phylogenetic tree (based on neutral genetic markers) using estimates of the Robinson-Foulds distance, the Fowlkes-Mallows index and cophenetic correlation. RESULTS Overall, the DNA-based phylogenetic tree and the proteomic similarity tree had consistent topologies. Further, we observed some interesting deviations of the proteomic littorinid tree from the neutral expectations. (1) There were signs of molecular parallelism in two Littoraria species that phylogenetically are quite distant, but live in similar habitats. (2) Proteome divergence was unexpectedly high between very closely related Littorina fabalis and L. obtusata, possibly reflecting their ecology-driven divergence. (3) Conservative house-keeping proteins were usually identified as markers for cryptic species groups ("saxatilis" and "obtusata" groups in the Littorina genus) and for genera (Littoraria and Echinolittorina species pairs), while metabolic enzymes and stress-related proteins (both potentially adaptively important) were often identified as markers supporting species branches. (4) In all five Littorina species British populations were separated from the European mainland populations, possibly reflecting their recent phylogeographic history. Altogether our study shows that proteomic data, when interpreted in the context of DNA-based phylogeny, can bring additional information on the evolutionary history of species.
Collapse
Affiliation(s)
- Arina L. Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina A. Varfolomeeva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Arseniy A. Lobov
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Polina Tikanova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Panova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Sweden
| | - Natalia A. Mikhailova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Centre of Cell Technologies, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrei I. Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
9
|
Spermatogenesis and lobular cyst type of testes organization in marine gastropod Littorina saxatilis (Olivi 1792). Cell Tissue Res 2019; 376:457-470. [PMID: 30778731 DOI: 10.1007/s00441-019-03004-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Although individual stages of spermatogenesis in Littorina saxatilis are well studied at the electron microscopic level, the gonad structure and the spatial localization of gametes at different stages of maturation remain unclear. Using differential-interference contrast (DIC) for observations of fresh tissue we show that the mature testis consists of numerous ovoid lobules forming larger lobes. The lobules of intact mature testes of L. saxatilis are filled with randomly arranged multicellular cysts containing gametes at different stages of maturation. Gametes within a cyst are highly synchronized in respect of the differentiation degree. At the same time, no spatial gradient in the arrangement of cysts according to the maturation degree of gametes in them was observed in any of the studied lobules. The male gonads contain cysts with early spermatids, mid, late spermatids, and spermatozoa. Using silver-staining, DAPI, and chromomycin A3 (CMA3) staining, we identify 20 main types of nucleus organization in differentiating sperm. Premature and mature male gonads contain cysts with a mosaic arrangement as well as rare solitary cyst cells, goniablast cysts, or separate spermatogonia in between them. Our data indicate that the testis structure in L. saxatilis cannot be attributed to the tubular type, as previously thought. It corresponds to the lobular cyst type but individual lobules contain cysts with gametes at the same stage of development. It is similar to the testis structure of several fishes, amphibians, and Drosophila melanogaster. This type of the gonad organization has never been described in gastropods before.
Collapse
|
10
|
Lobov AA, Maltseva AL, Starunov VV, Babkina IY, Ivanov VA, Mikhailova NA, Granovitch AI. LOSP: A putative marker of parasperm lineage in male reproductive system of the prosobranch mollusk Littorina obtusata. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:193-201. [PMID: 29750393 DOI: 10.1002/jez.b.22803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Reproductive isolation is the key attribute of biological species and establishment of the reproductive barriers is an essential event for speciation. Among the mechanisms of reproductive isolation, gamete incompatibility due to the variability of gamete interaction proteins may drive fast divergence even in sympatry. However, the number of available models to study this phenomenon is limited. In case of internally fertilized invertebrates, models to study gamete incompatibility and sperm competition mechanisms are restricted to a single taxon: insects. Here, we propose a group of closely related Littorina species as a new model for such studies. Particularly since periwinkles are already thoroughly studied in terms of morphology, physiology, ecology, phylogeny, and ecological speciation. Earlier, we have identified the first species-specific Littorina sperm protein (LOSP) with no known conservative domains or homologies. LOSP is relatively abundant component of sperm extracts and might be involved in gamete incompatibility. Here, we characterize its definitive localization and mRNA expression pattern in the male reproductive system by immunocytochemistry and RNA in situ hybridization. We demonstrate that LOSP distribution is limited to the parasperm cells. Losp gene expression occurs only at the early stages of parasperm development. The protein is stored within granules of mature parasperm and, most likely, is released after ejaculation inside female reproductive system. Thus, LOSP is the only described molluscan paraspermal protein to date, and there is a possibility for LOSP to be involved in gamete incompatibility since heterospermy is a common phenomenon among Littorina.
Collapse
Affiliation(s)
- Arseniy A Lobov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| | - Arina L Maltseva
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia.,Zoological Institute of RAS, St. Petersburg, Russia
| | - Irina Y Babkina
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| | - Vadim A Ivanov
- Laboratory of Tumor growth cytology, Institute of Cytology RAS, St. Petersburg, Russia
| | - Natalia A Mikhailova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia.,Centre of Cell Technologies, Institute of Cytology RAS, St. Petersburg, Russia
| | - Andrey I Granovitch
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, St. Petersburg, Russia
| |
Collapse
|