1
|
Galactofuranose antigens, a target for diagnosis of fungal infections in humans. Future Sci OA 2017; 3:FSO199. [PMID: 28883999 PMCID: PMC5583699 DOI: 10.4155/fsoa-2017-0030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/02/2022] Open
Abstract
The use of biomarkers for the detection of fungal infections is of interest to complement histopathological and culture methods. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. D-Galactofuranose (Galf) is the antigenic epitope in glycoconjugates of several pathogenic fungi. Since Galf is not biosynthesized by mammals, it is an attractive candidate for diagnosis of infection. A monoclonal antibody that recognizes Galf is commercialized for detection of aspergillosis. The linkage of Galf in the natural glycans and the chemical structures of the synthesized Galf-containing oligosaccharides are described in this paper. The oligosaccharides could be used for the synthesis of artificial carbohydrate-based antigens, not enough exploited for diagnosis. D-Galactofuranose (Galf) is the unit in polysaccharides and glycoconjugates of several pathogenic fungi that is recognized by the immune system. Since Galf is not synthesized by mammals, it is an attractive candidate for diagnosis of infection. Since the production of antibodies in immunocompromised patients is scarce, detection of a specific antigen could be effective for early diagnosis. An antibody that recognizes Galf is commercialized for the detection of aspergillosis. Chemically synthesized Galf-containing oligosaccharides, reviewed in this paper, could therefore be used for the synthesis of artificial carbohydrate-based antigens and in diagnosis.
Collapse
|
2
|
Chen Y, Mao WJ, Yan MX, Liu X, Wang SY, Xia Z, Xiao B, Cao SJ, Yang BQ, Li J. Purification, Chemical Characterization, and Bioactivity of an Extracellular Polysaccharide Produced by the Marine Sponge Endogenous Fungus Alternaria sp. SP-32. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:301-313. [PMID: 27153822 DOI: 10.1007/s10126-016-9696-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
Marine sponges are ancient and simple multicellular filter-feeding invertebrates attached to solid substrates in benthic habitats and host a variety of fungi both inside and on their surface because of its unique ingestion and digest system. Investigation on marine sponge-associated fungi mainly focused on the small molecular metabolites, yet little attention had been paid to the extracellular polysaccharides. In this study, a homogeneous extracellular polysaccharide AS2-1 was obtained from the fermented broth of the marine sponge endogenous fungus Alternaria sp. SP-32 using ethanol precipitation, anion-exchange, and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that AS2-1 was composed of mannose, glucose, and galactose with a molar ratio of 1.00:0.67:0.35, and its molecular weight was 27.4 kDa. AS2-1 consists of a mannan core and a galactoglucan chain. The mannan core is composed of (1→6)-α-Manp substituted at C-2 by (1→2)-α-Manp with different degrees of polymerization. The galactoglucan chain consists of (1→6)-α-Glcp residues with (1→6)-β-Galf residues attached to the last glucopyranose residue at C-6. (1→6)-β-Galf residues have additional branches at C-2 consisting of disaccharide units of (1→2)-β-Galf and (1→2)-α-Glcp residues. The glucopyranose residue of the galactoglucan chain is linked to the mannan core. AS2-1 possessed a high antioxidant activity as evaluated by scavenging of 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals in vitro. AS2-1 was also evaluated for cytotoxic activity on Hela, HL-60, and K562 cell lines by the MTT and SRB methods. The investigation demonstrated that AS2-1 was a novel extracellular polysaccharide with different characterization from extracellular polysaccharides produced by other marine microorganisms.
Collapse
Affiliation(s)
- Yin Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
- College of Food and Pharmacy, Zhejiang Ocean University, 18 Haiyuan Road, Zhoushan, 316000, People's Republic of China
| | - Wen-Jun Mao
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China.
| | - Meng-Xia Yan
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Xue Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Shu-Yao Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Zheng Xia
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Bo Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Su-Jian Cao
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Bao-Qin Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Jie Li
- Key Laboratory of Marine Drugs, Ministry of Education, Institute of Marine Drugs and Foods, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| |
Collapse
|
3
|
Salazar N, Ruas-Madiedo P, Prieto A, Calle LP, de Los Reyes-Gavilán CG. Characterization of exopolysaccharides produced by Bifidobacterium longum NB667 and its cholate-resistant derivative strain IPLA B667dCo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1028-1035. [PMID: 22229884 DOI: 10.1021/jf204034n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bifidobacteria are natural members of the human intestinal microbiota and some strains are being used as probiotics. Adaptation to bile can allow them to increase survival in gastrointestinal conditions, thus improving their viability. Bifidobacterium longum NB667 and the cholate-resistant strain B. longum IPLA B667dCo produced exopolysaccharides (EPS) that were partially characterized. Analysis by size exclusion chromatography-multiangle laser light scattering indicated that the EPS crude fractions of both strains contained two polymer peaks of different molar mass. On the basis of chromatographic techniques both peaks appeared to be heteropolysaccharides. The smaller peak was mainly composed of glucose, galactose and rhamnose whose molar ratios and linkage types showed slight variations between the EPS fractions of both strains. The bigger peak consisted of glucose and galactose; the monosaccharide composition was identical in the EPS fractions of the two microorganisms, but their infrared spectra presented some differences regarding compounds other than carbohydrates that seem to be associated to the polymer. Differences in the composition of EPS fractions did not affect the capability of crude EPS from B. longum to be fermented by the human intestinal microbiota in fecal batch cultures.
Collapse
Affiliation(s)
- Nuria Salazar
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Departamento de Microbiología y Bioquímica de Productos Lácteos, Asturias, Spain
| | | | | | | | | |
Collapse
|