1
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
2
|
Jamshidi MP, Cairns C, Chong S, St Michael F, Vinogradov EV, Cox AD, Sauvageau J. Synthesis and Immunogenicity of a Methyl Rhamnan Pentasaccharide Conjugate from Pseudomonas aeruginosa A-Band Polysaccharide. ACS Infect Dis 2022; 8:1347-1355. [PMID: 35674342 DOI: 10.1021/acsinfecdis.2c00184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa was added to the World Health Organization's priority pathogen list for research and development of new antibiotics in 2017. Alongside the development of new antibiotics to fight antimicrobial-resistant P. aeruginosa, vaccines would be an appealing addition to the toolbox health professionals have against this bacteria, which causes life-threatening respiratory infections. Recently, the structure of a novel immunogenic terminal carbohydrate moiety on the cell surface of P. aeruginosa was elucidated, consisting of a 3-O-methyl (1→4)-α-d-rhamnan pentasaccharide. As isolating this oligosaccharide from P. aeruginosa in sufficient amounts for producing a conjugate vaccine is challenging, herein we describe the synthesis of 3-O-methyl d-rhamnose oligosaccharide. We also report the conjugation of the synthetic pentasaccharide to human serum albumin and its resulting immunogenicity.
Collapse
Affiliation(s)
- Mohammad P Jamshidi
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Chantelle Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Simon Chong
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Frank St Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Evgeny V Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Janelle Sauvageau
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
3
|
Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines (Basel) 2018; 6:vaccines6010012. [PMID: 29495347 PMCID: PMC5874653 DOI: 10.3390/vaccines6010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis causes most cases of bacterial meningitis. Meningococcal meningitis is a public health burden to both developed and developing countries throughout the world. There are a number of vaccines (polysaccharide-based, glycoconjugate, protein-based and combined conjugate vaccines) that are approved to target five of the six disease-causing serogroups of the pathogen. Immunization strategies have been effective at helping to decrease the global incidence of meningococcal meningitis. Researchers continue to enhance these efforts through discovery of new antigen targets that may lead to a broadly protective vaccine and development of new methods of homogenous vaccine production. This review describes current meningococcal vaccines and discusses some recent research discoveries that may transform vaccine development against N. meningitidis in the future.
Collapse
|
4
|
Salman M, St Michael F, Ali A, Jabbar A, Cairns C, Hayes AC, Rahman M, Iqbal M, Haque A, Cox AD. First characterization of immunogenic conjugates of Vi negative Salmonella Typhi O-specific polysaccharides with rEPA protein for vaccine development. J Immunol Methods 2017; 450:27-33. [PMID: 28735760 DOI: 10.1016/j.jim.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Efficacious typhoid vaccines for young children will significantly reduce the disease burden in developing world. The Vi polysaccharide based conjugate vaccines (Vi-rEPA) against Salmonella Typhi Vi positive strains has shown high efficacy but may be ineffective against Vi negative S. Typhi. In this study, for the first time, we report the synthesis and evaluation of polysaccharide-protein conjugates of Vi negative S. Typhi as potential vaccine candidates. Four different conjugates were synthesized using recombinant exoprotein A of Pseudomonas aeruginosa (rEPA) and human serum albumin (HSA) as the carrier proteins, using either direct reductive amination or an intermediate linker molecule, adipic acid dihydrazide (ADH). Upon injection into mice, a significantly higher antibody titer was observed in mice administrated with conjugate-1 (OSP-HSA) (P=0.0001) and conjugate 2 (OSP-rEPA) (P≤0.0001) as compared to OSP alone. In contrast, the antibody titer elicited by conjugate 3 (OSPADH-HSA) and conjugate 4 (OSPADH-rEPA) were insignificant (P=0.1684 and P=0.3794, respectively). We conclude that reductive amination is the superior method to prepare the S. Typhi OSP glycoconjugate. Moreover, rEPA was a better carrier protein than HSA. Thus OSP-rEPA conjugate seems to be efficacious typhoid vaccines candidate, it may be evaluated further and recommended for the clinical trials.
Collapse
Affiliation(s)
- M Salman
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada; Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan; Department of Microbiology and Biotechnology, Abasyn University, Peshawar, Pakistan.
| | - F St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada
| | - A Ali
- Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan
| | - A Jabbar
- Department of Biotechnology, Mirpur University of Science & Technology (MUST), Mirpur, AJK, Pakistan
| | - C Cairns
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada
| | - A C Hayes
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada
| | - M Rahman
- Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan
| | - M Iqbal
- Health Biotechnology Division, National Institute for Biotechnology, Faisalabad, Pakistan
| | - A Haque
- Faculty of Life Sciences, University of Faisalabad, Faisalabad, Pakistan
| | - A D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Canada.
| |
Collapse
|
5
|
Kantner T, Watts AG. Characterization of Reactions between Water-Soluble Trialkylphosphines and Thiol Alkylating Reagents: Implications for Protein-Conjugation Reactions. Bioconjug Chem 2016; 27:2400-2406. [PMID: 27602944 DOI: 10.1021/acs.bioconjchem.6b00375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water-soluble trialkylphosphines such as tris(carboxyethyl)phosphine (TCEP) and trishydroxypropyl phosphine (THPP) are effective agents for reducing disulfide bonds in proteins and are increasingly becoming the reagents of choice for bioconjugation strategies that modify cysteine (thiol containing) amino acids. These reducing agents are often considered as being chemically compatible with Michael acceptors such as maleimides and, as such, are often not removed prior to performing protein conjugation reactions. Here, we demonstrate the rapid and irreversible reaction of both TCEP and THPP with derivatives of the commonly employed thiol alkylating groups, maleimide and vinyl sulfone. Mechanistic investigations revealed distinct differences between the reactions of TCEP and THPP with maleimide, leading to the production of either nonproductive ylenes or succidimidyl derivatives, respectively. Importantly, we also demonstrate the incorporation of nonproductive ylenes formed between maleimide and TCEP into the Pneumococcal capsular polysaccharide Pn6b following strategies employed toward the production of conjugate vaccines.
Collapse
Affiliation(s)
- Terrence Kantner
- Department of Pharmacy and Pharmacology, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| | - Andrew G Watts
- Department of Pharmacy and Pharmacology, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
6
|
Nix EB, Williams K, Cox AD, St Michael F, Romero-Steiner S, Schmidt DS, McCready WG, Ulanova M. Naturally acquired antibodies against Haemophilus influenzae type a in Aboriginal adults, Canada. Emerg Infect Dis 2015; 21:273-9. [PMID: 25626129 PMCID: PMC4313637 DOI: 10.3201/eid2102.140722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High prevalence of invasive Hia disease among North American Aboriginal populations is more likely related to exposure than to inadequate immunity. In the post-Haemophilus influenzae type b (Hib) vaccine era that began in the 1980's, H. influenzae type a (Hia) emerged as a prominent cause of invasive disease in North American Aboriginal populations. To test whether a lack of naturally acquired antibodies may underlie increased rates of invasive Hia disease, we compared serum bactericidal activity against Hia and Hib and IgG and IgM against capsular polysaccharide between Canadian Aboriginal and non-Aboriginal healthy and immunocompromised adults. Both healthy and immunocompromised Aboriginal adults exhibited significantly higher bactericidal antibody titers against Hia than did non-Aboriginal adults (p = 0.042 and 0.045 respectively), with no difference in functional antibody activity against Hib. IgM concentrations against Hia were higher than IgG in most study groups; the inverse was true for antibody concentrations against Hib. Our results indicate that Aboriginal adults possess substantial serum bactericidal activity against Hia that is mostly due to IgM antibodies. The presence of sustained IgM against Hia suggests recent Hia exposure.
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
8
|
Reinhardt A, Yang Y, Claus H, Pereira C, Cox A, Vogel U, Anish C, Seeberger P. Antigenic Potential of a Highly Conserved Neisseria meningitidis Lipopolysaccharide Inner Core Structure Defined by Chemical Synthesis. ACTA ACUST UNITED AC 2015; 22:38-49. [DOI: 10.1016/j.chembiol.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/11/2014] [Accepted: 11/16/2014] [Indexed: 02/08/2023]
|
9
|
Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: conjugates based on core oligosaccharides. Glycoconj J 2013; 31:25-39. [DOI: 10.1007/s10719-013-9500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
10
|
Costantino P, Rappuoli R, Berti F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 2011; 6:1045-66. [PMID: 22646863 DOI: 10.1517/17460441.2011.609554] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Glycoconjugate vaccines are among the safest and most efficacious vaccines developed during the last 30 years. They are a potent tool for prevention of life-threatening bacterial infectious diseases like meningitis and pneumonia. The concept of hapten-carrier conjugation is now being extended to other disease areas. AREAS COVERED This is an overview of the history and current status of glycoconjugate vaccines. The authors discuss the approaches for their preparation and quality control as well as those variables which might affect their product profile. The authors also look at the potential to develop fully synthetic conjugate vaccines based on the progress of organic chemistry. Additionally, new applications of conjugate vaccines technology in the field of non-infectious diseases are discussed. Through this review, the reader will have an insight regarding the issues and complexities involved in the preparation and characterization of conjugate vaccines, the variables that might affect their immunogenicity and the potential for future applications. EXPERT OPINION The immunogenicity of weak T-independent antigens can be increased in quantity and quality by conjugation to protein carriers, which provide T-cell help. Glycoconjugate vaccines are among the safest and most efficacious vaccines developed so far. Various conjugation procedures and carrier proteins can be used. Many variables impact on the immunogenicity of conjugate vaccines and a tight control through physicochemical tests is important to ensure manufacturing and clinical consistency. New and challenging targets for conjugate vaccines are represented by cancer and other non-infectious diseases.
Collapse
|
11
|
St. Michael F, Cairns C, Filion AL, Neelamegan D, Lacelle S, Cox AD. Investigating the candidacy of lipopolysaccharide-based glycoconjugates as vaccines to combat Mannheimia haemolytica. Glycoconj J 2011; 28:397-410. [DOI: 10.1007/s10719-011-9339-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
|
12
|
Cox AD, St. Michael F, Cairns CM, Lacelle S, Filion AL, Neelamegan D, Wenzel CQ, Horan H, Richards JC. Investigating the potential of conserved inner core oligosaccharide regions of Moraxella catarrhalis lipopolysaccharide as vaccine antigens: accessibility and functional activity of monoclonal antibodies and glycoconjugate derived sera. Glycoconj J 2011; 28:165-82. [DOI: 10.1007/s10719-011-9332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
|
13
|
Cox AD, St. Michael F, Neelamegan D, Lacelle S, Cairns CM, Giuliani MM, Biolchi A, Hoe JC, Moxon ER, Richards JC. Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: immunology of glycoconjugates with high carbohydrate loading. Glycoconj J 2010; 27:643-8. [DOI: 10.1007/s10719-010-9309-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
|