1
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024; 21:345-365. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Morais CLM, Lima KMG, Dickinson AW, Saba T, Bongers T, Singh MN, Martin FL, Bury D. Non-invasive diagnostic test for lung cancer using biospectroscopy and variable selection techniques in saliva samples. Analyst 2024. [PMID: 39105622 DOI: 10.1039/d4an00726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Lung cancer is one of the most commonly occurring malignant tumours worldwide. Although some reference methods such as X-ray, computed tomography or bronchoscope are widely used for clinical diagnosis of lung cancer, there is still a need to develop new methods for early detection of lung cancer. Especially needed are approaches that might be non-invasive and fast with high analytical precision and statistically reliable. Herein, we developed a swab "dip" test in saliva whereby swabs were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy harnessed to principal component analysis-quadratic discriminant analysis (QDA) and variable selection techniques employing successive projections algorithm (SPA) and genetic algorithm (GA) for feature selection/extraction combined with QDA. A total of 1944 saliva samples (56 designated as lung-cancer positive and 1888 designed as controls) were obtained in a lung cancer-screening programme being undertaken in North-West England. GA-QDA models achieved, for the test set, sensitivity and specificity values of 100.0% and 99.1%, respectively. Three wavenumbers (1422 cm-1, 1546 cm-1 and 1578 cm-1) were identified using the GA-QDA model to distinguish between lung cancer and controls, including ring C-C stretching, CN adenine, Amide II [δ(NH), ν(CN)] and νs(COO-) (polysaccharides, pectin). These findings highlight the potential of using biospectroscopy associated with multivariate classification algorithms to discriminate between benign saliva samples and those with underlying lung cancer.
Collapse
Affiliation(s)
- Camilo L M Morais
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
| | - Kássio M G Lima
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
| | - Andrew W Dickinson
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Tarek Saba
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Thomas Bongers
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Maneesh N Singh
- Biocel UK Ltd, Hull HU10 6TS, UK
- Chesterfield Royal Hospital, Chesterfield Road, Calow, Chesterfield S44 5BL, UK
| | - Francis L Martin
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
- Biocel UK Ltd, Hull HU10 6TS, UK
| | - Danielle Bury
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| |
Collapse
|
3
|
Verma S, Magazzù G, Eftekhari N, Lou T, Gilhespy A, Occhipinti A, Angione C. Cross-attention enables deep learning on limited omics-imaging-clinical data of 130 lung cancer patients. CELL REPORTS METHODS 2024; 4:100817. [PMID: 38981473 PMCID: PMC11294841 DOI: 10.1016/j.crmeth.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge within the learning process to extract prognostic gene biomarkers and molecular pathways. While both models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 patients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the performance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a significant methodological advancement when learning from small imaging-omics-clinical samples.
Collapse
Affiliation(s)
- Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | | | | | - Thai Lou
- Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Alex Gilhespy
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington, UK.
| |
Collapse
|
4
|
Liu S, Zhang X, Chen Y, Li Y, Liu X. Study on the interaction between agglutinin and chondroitin sulfate and dermatan sulfate using multiple methods. Int J Biol Macromol 2024; 272:132624. [PMID: 38838594 DOI: 10.1016/j.ijbiomac.2024.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
In this work, the interaction of chondroitin sulfate (CS) and dermatan sulfate (DS) with plant lectins was studied by affinity capillary electrophoresis (ACE), surface plasmon resonance (SPR) technology, molecular docking simulation, and circular dichroism spectroscopy. The ACE method was used for the first time to study the interaction of Ricinus Communis Agglutinin I (RCA I), Wisteria Floribunda Lectin (WFA), and Soybean Agglutinin (SBA) with CS and DS, and the results were in good agreement with those of the SPR method. The results of experiments indicate that RCA I has a strong binding affinity with CS, and the sulfated position does not affect the relationship, but the degree of sulfation can affect the combination of RCA I with CS to some extent. However, the binding affinity with DS is very weak. This study lays the foundation for developing more specialized analysis methods for CS and DS based on RCA I.
Collapse
Affiliation(s)
- Shuxian Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Zhang
- Shandong Lukang Pharmaceutical Co., LTD, Jining 272000, China
| | - Ying Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yitong Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
6
|
Baldavira CM, Prieto TG, Machado-Rugolo J, de Miranda JT, de Oliveira LKR, Velosa APP, Teodoro WR, Ab’Saber A, Takagaki T, Capelozzi VL. Modeling extracellular matrix through histo-molecular gradient in NSCLC for clinical decisions. Front Oncol 2022; 12:1042766. [PMID: 36452484 PMCID: PMC9703002 DOI: 10.3389/fonc.2022.1042766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer still represents a global health problem, being the main type of tumor responsible for cancer deaths. In this context, the tumor microenvironment, and the extracellular matrix (ECM) pose as extremely relevant. Thus, this study aimed to explore the prognostic value of epithelial-to-mesenchymal transition (EMT), Wnt signaling, and ECM proteins expression in patients with non-small-cell lung carcinoma (NSCLC) with clinical stages I-IIIA. For that, we used 120 tissue sections from patients and evaluated the immunohistochemical, immunofluorescence, and transmission electron microscopy (TEM) to each of these markers. We also used in silico analysis to validate our data. We found a strong expression of E-cadherin and β-catenin, which reflects the differential ECM invasion process. Therefore, we also noticed a strong expression of chondroitin sulfate (CS) and collagens III and V. This suggests that, after EMT, the basal membrane (BM) enhanced the motility of invasive cells. EMT proteins were directly associated with WNT5A, and collagens III and V, which suggests that the WNT pathway drives them. On the other hand, heparan sulfate (HS) was associated with WNT3A and SPARC, while WNT1 was associated with CS. Interestingly, the association between WNT1 and Col IV suggested negative feedback of WNT1 along the BM. In our cohort, WNT3A, WNT5A, heparan sulfate and SPARC played an important role in the Cox regression model, influencing the overall survival (OS) of patients, be it directly or indirectly, with the SPARC expression stratifying the OS into two groups: 97 months for high expression; and 65 for low expression. In conclusion, the present study identified a set of proteins that may play a significant role in predicting the prognosis of NSCLC patients with clinical stages I-IIIA.
Collapse
Affiliation(s)
| | | | - Juliana Machado-Rugolo
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Health Technology Assessment Center, Clinical Hospital, Medical School of São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jurandir Tomaz de Miranda
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Lizandre Keren Ramos de Oliveira
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre Ab’Saber
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Chang WM, Li LJ, Chiu IA, Lai TC, Chang YC, Tsai HF, Yang CJ, Huang MS, Su CY, Lai TL, Jan YH, Hsiao M. The aberrant cancer metabolic gene carbohydrate sulfotransferase 11 promotes non-small cell lung cancer cell metastasis via dysregulation of ceruloplasmin and intracellular iron balance. Transl Oncol 2022; 25:101508. [PMID: 35985204 PMCID: PMC9418604 DOI: 10.1016/j.tranon.2022.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosaminoglycan biosynthesis pathway and CHST11, a key chondroitin sulfate biosynthetic enzyme, were up-regulated in NSCLC metastasis. The enzymatic activity of CHST11 confers NSCLC metastasis in vitro and in vivo. CHST11 and its downstream effector, CP facilities NSCLC metastasis in vitro and in vivo. CHST11 promotes NSCLC metastasis via CP-iron metabolism. The CHST11-CP-iron axis may serve as a new therapeutic target against NSCLC metastasis.
Aberrant metabolism has been proposed as one of the emerging hallmarks of cancer. However, the interplay between metabolic disorders and cancer metastasis remains to be defined. To explore the sophisticated metabolic processes during metastatic progression, we analyzed differentially expressed metabolic genes during the epithelial-mesenchymal transition (EMT) of lung cancer cells and defined the EMT-associated metabolic gene signature in lung adenocarcinoma patients. We found that the glycosaminoglycan (GAG)-chondroitin sulfate (CS) biosynthesis pathway was upregulated in the mesenchymal state of lung cancer and associated with poor prognosis. Notably, carbohydrate sulfotransferase 11 (CHST11), a crucial CS biosynthetic enzyme, was confirmed as a poor prognosis marker in non-small cell lung cancer (NSCLC) by immunohistochemical analysis. Moreover, forced CHST11 expression promoted invasion and metastasis, which was abolished by depleting the final product of CS biosynthesis by chondroitinase ABC treatment or active-domain negative CHST11. In vivo metastasis mouse models showed that CHST11 increased lung colonies number and sulfated mucosubstance expression. Furthermore, microarray analysis revealed ceruloplasmin (CP), which facilitated iron metabolism, was the downstream effector of CHST11. CP was upregulated by CHST11 through interferon-γ signaling pathway stimulation and related to unfavorable prognosis. Both forced CP expression and long-term iron treatment increased invasion and lung colony formation. Furthermore, we found 3-AP, an iron chelator, hampered the CHST11-induced metastasis. Our findings implicate that the novel CHST11-CP-iron axis enhances EMT and may serve as a new therapeutic target to treat NSCLC patients.
Collapse
Affiliation(s)
- Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Jie Li
- PhD. Program in School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - I-An Chiu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; PhD. Program of Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
9
|
Vega-Mendoza D, Cañas-Linares A, Flores-Alcantar A, Espinosa-Neira R, Melchy-Perez E, Vera-Estrella R, Auvynet C, Rosenstein Y. CD43 (sialophorin) is involved in the induction of extracellular matrix remodeling and angiogenesis by lung cancer cells. J Cell Physiol 2021; 236:6643-6656. [PMID: 33533043 DOI: 10.1002/jcp.30308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Aberrant expression of CD43 in malignant tumors of nonhematopoietic origin such as those from lung, cervix, colon, and breast has been shown to correlate with poor prognosis, providing tumor cells with enhanced motility, anchorage-independent growth, and in vivo tumor size, while protecting the cells of NK lysis and apoptosis. To further characterize the role of CD43 in cell transformation, we tested whether interfering its expression modified the capacity of the A549 non-small cell lung cancer cells to secrete molecules contributing to malignancy. The proteomic analysis of the secretome of serum-starved A549 cells revealed that cells expressing normal levels of CD43 released significantly high levels of molecules involved in extracellular matrix organization, angiogenesis, platelet degranulation, collagen degradation, and inflammation, as compared to CD43 RNAi cells. This data reveals a novel and unexpected role for CD43 in lung cancer development, mainly in remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Vega-Mendoza
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alicia Cañas-Linares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Angel Flores-Alcantar
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Roberto Espinosa-Neira
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,División de Investigación Básica, Laboratorio de Epigenética del Cáncer, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Erika Melchy-Perez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Constance Auvynet
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
10
|
Wang S, Bager CL, Karsdal MA, Chondros D, Taverna D, Willumsen N. Blood-based extracellular matrix biomarkers as predictors of survival in patients with metastatic pancreatic ductal adenocarcinoma receiving pegvorhyaluronidase alfa. J Transl Med 2021; 19:39. [PMID: 33478521 PMCID: PMC7819178 DOI: 10.1186/s12967-021-02701-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Extensive extracellular matrix (ECM) remodeling is a hallmark of metastatic pancreatic ductal adenocarcinoma (mPDA). We investigated fragments of collagen types III (C3M, PRO-C3), VI (PRO-C6), and VIII (C8-C), and versican (VCANM) in plasma as biomarkers for predicting progression-free survival (PFS) and overall survival (OS) in patients with mPDA treated with pegvorhyaluronidase alfa, a biologic that degrades the ECM component hyaluronan (HA), in a randomized phase 2 study (HALO109-202). Methods HALO109-202 comprised a discovery cohort (Stage 1, n = 94) and a validation cohort (Stage 2, n = 95). Plasma ECM biomarkers were analyzed by ELISAs. Univariate Cox regression analysis and Kaplan–Meier plots evaluated predictive associations between biomarkers, PFS and OS in patients treated with pegvorhyaluronidase alfa plus nab-paclitaxel/gemcitabine (PAG) versus nab-paclitaxel/gemcitabine (AG) alone. Results PFS was improved with PAG vs. AG in Stage 1 patients with high C3M/PRO-C3 ratio (median cut-off): median PFS (mPFS) 8.0 vs. 5.3 months, P = 0.031; HR = 0.40; 95% CI 0.17–0.92). High C3M/PRO-C3 ratio was validated in Stage 2 patients by predicting a PFS benefit of PAG vs. AG (mPFS: 8.8 vs. 3.4 months, P = 0.046; HR = 0.46; 95% CI 0.21–0.98). OS was also improved in patients with high C3M/PRO-C3 ratio treated with PAG vs. AG (mOS 13.8 vs 8.5 months, P = 0.009; HR = 0.35; 95% CI 0.16–0.77). Interestingly, high C3M/PRO-C3 ratio predicted for a PFS benefit to PAG vs. AG both in patients with HA-low tumors (HR = 0.36; 95% CI 0.17–0.79) and HA-high tumors (HR = 0.20; 95% CI 0.06–0.69). Conclusions The C3M/PRO-C3 ratio measuring type III collagen turnover in plasma has potential as a blood-based predictive biomarker in patients with mPDA and provides additional value to a HA biopsy when applied for patient selection. Trial registration: NCT01839487. Registered 25 April 2016
Collapse
Affiliation(s)
- Song Wang
- Halozyme Therapeutics, Inc., San Diego, CA, USA
| | - Cecilie L Bager
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
11
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
12
|
Carbajo D, Pérez Y, Bujons J, Alfonso I. Live‐Cell‐Templated Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2020; 59:17202-17206. [DOI: 10.1002/anie.202004745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Carbajo
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
13
|
Carbajo D, Pérez Y, Bujons J, Alfonso I. Live‐Cell‐Templated Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel Carbajo
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
14
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020; 10:397. [PMID: 32351878 PMCID: PMC7174611 DOI: 10.3389/fonc.2020.00397] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean Claude Monboisse
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| |
Collapse
|
15
|
Kuo PH, Teng YH, Cin AL, Han W, Huang PW, Wang LHC, Chou YT, Yang JL, Tseng YL, Kao M, Chang MDT. Heparan sulfate targeting strategy for enhancing liposomal drug accumulation and facilitating deep distribution in tumors. Drug Deliv 2020; 27:542-555. [PMID: 32241176 PMCID: PMC7170378 DOI: 10.1080/10717544.2020.1745326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs), such as liposomes, effectively evade the severe toxicity of unexpected accumulation and passively shuttle drugs into tumor tissues by enhanced permeability and retention. In the case of non-small cell lung cancer and pancreatic ductal adenocarcinoma, cancer-associated fibroblasts promote the aggregation of a gel-like extracellular matrix that forms a physical barrier in the desmoplastic stroma of the tumor. These stroma are composed of protein networks and glycosaminoglycans (GAGs) that greatly compromise tumor-penetrating performance, leading to insufficient extravasation and tissue penetration of NPs. Moreover, the presence of heparan sulfate (HS) and related proteoglycans on the cell surface and tumor extracellular matrix may serve as molecular targets for NP-mediated drug delivery. Here, a GAG-binding peptide (GBP) with high affinity for HS and high cell-penetrating activity was used to develop an HS-targeting delivery system. Specifically, liposomal doxorubicin (L-DOX) was modified by post-insertion with the GBP. We show that the in vitro uptake of L-DOX in A549 lung adenocarcinoma cells increased by GBP modification. Cellular uptake of GBP-modified L-DOX (L-DOX-GBP) was diminished in the presence of extracellular HS but not in the presence of other GAGs, indicating that the interaction with HS is critical for the cell surface binding of L-DOX-GBP. The cytotoxicity of doxorubicin positively correlated with the molecular composition of GBP. Moreover, GBP modification improved the in vivo distribution and anticancer efficiency of L-DOX, with enhanced desmoplastic targeting and extensive distribution. Taken together, GBP modification may greatly improve the tissue distribution and delivery efficiency of NPs against HS-abundant desmoplastic stroma-associated neoplasm.
Collapse
Affiliation(s)
- Ping-Hsueh Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsien Teng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ann-Lun Cin
- Operations Center for Industry Collaboration, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen Han
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Ling Yang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Minhsiung Kao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Identification of miR-210 and combination biomarkers as useful agents in early screening non-small cell lung cancer. Gene 2020; 729:144225. [DOI: 10.1016/j.gene.2019.144225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
|
17
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Khan AR, Yang X, Du X, Yang H, Liu Y, Khan AQ, Zhai G. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydr Polym 2020; 233:115837. [PMID: 32059890 DOI: 10.1016/j.carbpol.2020.115837] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
The standard chemotherapy is facing the challenges of lack of cancer selectivity and development of drug resistance. Currently, with the application of nanotechnology, the rationally designed nanocarriers of chondroitin sulfate (CS) have been fabricated and their unique features of low toxicity, biocompatibility, and active and passive targeting made them drug delivery vehicles of the choice for cancer therapy. The hydrophilic and anionic CS could be incorporated as a building block into- or decorated on the surface of nanoformulations. Micellar nanoparticles (NPs) self-assembled from amphiphilic CS-drug conjugates and CS-polymer conjugates, polyelectrolyte complexes (PECs) and nanogels of CS have been widely implicated in cancer directed therapy. The surface modulation of organic, inorganic, lipid and metallic NPs with CS promotes the receptor-mediated internalization of NPs to the tumor cells. The potential contribution of CS and CS-proteoglycans (CSPGs) in the pathogenesis of various cancer types, and CS nanocarriers in immunotherapy, radiotherapy, sonodynamic therapy (SDT) and photodynamic therapy (PDT) of cancer are summarized in this review paper.
Collapse
Affiliation(s)
- Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Haotong Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yuanxiu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Abdul Qayyum Khan
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
19
|
Wei Z, Zhongqiu T, Lu S, Zhang F, Xie W, Wang Y. Gene coexpression analysis offers important modules and pathway of human lung adenocarcinomas. J Cell Physiol 2019; 235:454-464. [PMID: 31264215 DOI: 10.1002/jcp.28985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinomas injured greatly on the people worldwide. Although clinic experiments and gene profiling analyses had been well performed, to our knowledge, systemic coexpression analysis of human genes for this cancer is still limited to date. Here, using the published data GSE75037, we built the coexpression modules of genes by Weighted Gene Co-Expression Network Analysis (WGCNA), and investigated function and protein-protein interaction network of coexpression genes by Database for Annotation, visualization, and Integrated Discovery (DAVID) and String database, respectively. First, 11 coexpression modules were conducted for 5,000 genes in the 83 samples recently. Number of genes for each module ranged from 90 to 1,260, with the mean of 454. Second, interaction relationships of hub-genes between pairwise modules showed great differences, suggesting relatively high scale independence of the modules. Third, functional enrichment of the coexpression modules showed great differences. We found that genes in modules 8 significantly enriched in the biological process and/or pathways of cell adhesion, extracellular matrix (ECM)-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway, and so forth. It was inferred as the key module underlying lung adenocarcinomas. Furthermore, PPI analysis revealed that the genes COL1A1, COL1A2, COL3A1, CTGF, and BGN owned the largest number of adjacency genes, unveiling that they may functioned importantly during the occurrence of lung adenocarcinomas. To summary, genes involved in cell adhesion, ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway play crucial roles in human lung adenocarcinomas.
Collapse
Affiliation(s)
- Zhongheng Wei
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Tan Zhongqiu
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shuxiong Lu
- Department of Pathology, Huai'an Maternal and Child Health Care Center of Jiangsu Province Affiliated Hospital of Yangzhou University, Huai'an, China
| | - Fang Zhang
- School of Medicine, Fudan University, Shanghai, China
| | - Wei Xie
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Respiratory Medicine Department, The First People's Hospital of Tianmen, Tianmen, Hubei, China
| |
Collapse
|
20
|
Subbarayan K, Seliger B. Tumor-dependent Effects of Proteoglycans and Various Glycosaminoglycan Synthesizing Enzymes and Sulfotransferases on Patients’ Outcome. Curr Cancer Drug Targets 2019; 19:210-221. [DOI: 10.2174/1568009618666180706165845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Background: The small leucine-rich proteoglycans (SLRPs) biglycan (BGN) and decorin (DCN) linked with sulfated glycosaminoglycan (GAG) chains exhibit oncogenic or tumor suppressive potentials depending on the cellular context and association with GAGs. </P><P> Objective: We hypothesized that structural alterations and expression levels of BGN, DCN and their associated chondroitin sulfate (CS) polymerizing enzymes, dermatan sulfate (DS) epimerases and various sulfatases might be correlated with the tumor (sub)type and patients’ survival. </P><P> Methods: We acquired breast cancer (BC) and glioma patients’ datasets from cBioPortal and R2 Genomics. Structural alterations and the expression pattern of CS polymerizing enzymes, DS epimerases and carbohydrate sulfotransferases (CHST) were compared to that of BGN and DCN and correlated to their clinical relevance. </P><P> Results: In BC, no mutations, but amplifications (0.2 – 2.1 %) and deletions (0.05 – 0.4 %) were found in BGN, DCN and CS/DS enzymes. In contrast, missense and/or truncated mutations (0.1 – 0.5 %), but a reduced amplification rate (0 – 1.5 %) were found in glioma. When compared to BC, the structural abnormalities caused altered mRNA expression levels of BGN, DCN, GAG synthesizing enzymes and CHST. Mutations in SLPRs, CHSY1, CHST4 and CHSY3 were correlated with a poor prognosis in glioma, while lack of mutations and copy number variations in the SLRPs, CHSY3, CHST15 and DSE displayed an increased survival in BC. </P><P> Conclusion: A distinct association of BGN and DCN with CHST, CS polymerizing enzymes and DS epimerases was found in BC and glioma. Thus, a unique pattern of structural alterations and expression, which has clinical relevance, was found for PGs and GAG synthesizing enzymes and CHST in BC and glioma, which might help to identify high-risk patients and to develop personalized therapeutics.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| |
Collapse
|
21
|
Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 2019; 286:1815-1837. [PMID: 30637950 PMCID: PMC6850286 DOI: 10.1111/febs.14748] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
The remarkable structural heterogeneity of chondroitin sulfate (CS) and dermatan sulfate (DS) generates biological information that can be unique to each of these glycosaminoglycans (GAGs), and changes in their composition are translated into alterations in the binding profiles of these molecules. CS/DS can bind to various cytokines and growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillar glycoproteins of the extracellular matrix, thereby influencing both cell behavior and the biomechanical and biochemical properties of the matrix. In this review, we summarize the current knowledge concerning CS/DS metabolism in the human cancer stroma. The remodeling of the GAG profile in the tumor niche is manifested as a substantial increase in the CS content and a gradual decrease in the proportion between DS and CS. Furthermore, the composition of CS and DS is also affected, which results in a substantial increase in the 6‐O‐sulfated and/or unsulfated disaccharide content, which is concomitant with a decrease in the 4‐O‐sulfation level. Here, we discuss the possible impact of alterations in the CS/DS sulfation pattern on the binding capacity and specificity of these GAGs. Moreover, we propose potential consequences of the stromal accumulation of chondroitin‐6‐sulfate for the progression and metastasis of cancer.
Collapse
Affiliation(s)
- Adam Pudełko
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Maria Koźma
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
22
|
Zhang L, Hao C, Zhai R, Wang D, Zhang J, Bao L, Li Y, Yao W. Downregulation of exosomal let-7a-5p in dust exposed- workers contributes to lung cancer development. Respir Res 2018; 19:235. [PMID: 30497474 PMCID: PMC6267915 DOI: 10.1186/s12931-018-0949-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Either chronic or acute exposure to dust particles may lead to pneumoconiosis and lung cancer, and lung cancer mortality among patients diagnosed with pneumoconiosis is increasing. Utilizing genome-wide sequencing technology, this study aimed to identify methods to decrease the number of patients with pneumoconiosis who die from lung cancer. METHODS One hundred fifty-four subjects were recruited, including 54 pneumoconiosis patients and 100 healthy controls. Exosomes were isolated from the venous blood of every subject. Distinctive miRNAs were identified using high throughput sequencing technology, and bioinformatics analysis predicted target genes involved in lung cancer as well as their corresponding biological functions. Moreover, cross-cancer alterations of genes related to lung cancer were investigated, and survival analysis was performed using 2437 samples with an average follow-up period of 49 months. RESULTS Let-7a-5p was revealed to be downregulated by 21.67% in pneumoconiosis. Out of the 683 let-7a-5p target genes identified from bioinformatics analysis, four genes related to five signaling pathways were confirmed to be involved in lung cancer development. Alterations in these four target genes were then explored in 4105 lung cancer patients, and BCL2L1 and IGF1R were demonstrated to be aberrantly expressed. Survival analysis further revealed that high expression of BCL2L1 corresponded to reduced survival of lung cancer patients (HR (95%CI) = 1.75(1.33~2.30)), while patient survival time was unaffected by expression of IGF1R (HR (95%CI) = 1.15 (0.98~1.36)). CONCLUSIONS In patients with lung adenocarcinoma, simultaneous downregulation of exosomal let-7a-5p and elevated expression of BCL2L1 are useful as predictive biomarkers for poor survival.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Occupational Hygiene, School of Public Health and Management, Healthy Shandong Collaborative Innovation Center for Major Social Risk Prediction and Governance, Weifang Medical University, 7166 Baotong West Street, Weifang, 261024 China
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Changfu Hao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Ruonan Zhai
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Di Wang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Jianhui Zhang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Lei Bao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Yiping Li
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| | - Wu Yao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001 China
| |
Collapse
|
23
|
Clinical significance of the TNF-α receptors, TNFRSF2 and TNFRSF9, on cell migration molecules Fascin-1 and Versican in acute leukemia. Cytokine 2018; 111:523-529. [DOI: 10.1016/j.cyto.2018.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
|