1
|
Perfileva AI, Zakharova OV, Graskova IA, Krutovsky KV. Effect of Selenium, Copper and Manganese Nanocomposites in Arabinogalactan Matrix on Potato Colonization by Phytopathogens Clavibacter sepedonicus and Pectobacterium carotovorum. PLANTS (BASEL, SWITZERLAND) 2024; 13:3496. [PMID: 39771196 PMCID: PMC11677604 DOI: 10.3390/plants13243496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The effect of chemically synthesized nanocomposites (NCs) of selenium (Se/AG NC), copper oxide (Cu/AG NC) and manganese hydroxide (Mn/AG NC), based on the natural polymer arabinogalactan (AG), on the processes of growth, development and colonization of potato plants in vitro was studied upon infection with the causative agent of potato blackleg-the Gram-negative bacterium Pectobacterium carotovorum-and the causative agent of ring rot-the Gram-positive bacterium Clavibacter sepedonicus (Cms). It was shown that the infection of potatoes with P. carotovorum reduced the root formation of plants and the concentration of pigments in leaf tissues. The treatment of plants with Cu/AG NC before infection with P. carotovorum stimulated leaf formation and increased the concentration of pigments in them. A similar effect was observed when potatoes were exposed to Mn/AG NC, and an increase in growth and root formation was also observed. The infection of plants with Cms inhibited plant growth. Treatment with each of the NCs mitigated this negative effect of the phytopathogen. At the same time, Se/AG and Mn/AG NCs promoted leaf formation. The Se/AG NC increased the biomass of Cms-infected plants. The treatment of plants with NCs before infection showed a decrease in the intensity of the colonization of plants by bacteria. The Se/AG NC had the maximum effect, which is probably due to its high antioxidant capacity. Thus, the NCs are able to mitigate the negative effects of bacterial phytopathogens on vegetation and the intensity of colonization by these bacteria during the infection of cultivated plants.
Collapse
Affiliation(s)
- Alla I. Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (I.A.G.)
| | - Olga V. Zakharova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Irina A. Graskova
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.I.P.); (I.A.G.)
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Scientific and Methodological Center, G.F. Morozov Voronezh State University of Forestry and Technolgies, 8 Timiryazeva Str., 394036 Voronezh, Russia
| |
Collapse
|
2
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
3
|
Zheng C, Man YB, Wong MH, Cheng Z. Optimizing food waste bioconversion with sodium selenite-enhanced Lucilia sericata maggots: a sustainable approach for chicken feed production and heavy metal mitigation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:508. [PMID: 39520635 DOI: 10.1007/s10653-024-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Recycling food waste by feeding it to insects can result in the continuous production of high-quality animal feed protein and organic fertilizer. However, the bioconversion efficiency and safety of using insects as feed protein for animal breeding are important factors limiting the development of this technology. Therefore, we aimed to optimize the efficiency of bioconversion of food waste using Lucilia sericata maggot (LSM). Sodium selenite (SS) was used to improve the quality and safety of each trophic-level organism. The results showed that an SS concentration of 15 mg kg-1 w.w. in the food waste culture substrate (SS15), the yield and quality of the obtained LSMs were optimal. The total selenium (Se) content of LSMs was 82.4 ± 1.16 mg kg-1 d.w., and non-inorganic Se accounted for 96.4% ± 2.01% of the total Se content. Additionally, the conversion efficiency of food waste was 18.7% higher than that in the control group (p < 0.05). When SS15 was used to raise maggots as a protein substitute for fish meal (commercial feed), the weight of the chickens and the crude protein content were 1.09-1.26 times and 1.09-1.13 times, respectively (p < 0.05), in comparison with the corresponding findings obtained with the use of ordinary maggots and commercial feed. In this group, glutathione peroxidase, superoxide dismutase, catalase, and immunoglobulin A and G activities were significantly higher than those obtained with the other feeds (p < 0.05). During this cyclic utilization process, the total Se content in chickens (0.31 ± 0.05 mg kg-1 w.w. in the breast, 0.19 ± 0.01 mg kg-1 w.w. in the leg, and 0.57 ± 0.01 mg kg-1 w.w. in the liver) significantly increased (p < 0.05). Meanwhile, the Cu and Zn contents in the LSMs and chickens increased, whereas cadmium, lead, chromium, and nickel absorption was inhibited (p < 0.05). Health risk assessment based on the levels of Se and heavy metals showed that Se-enriched chickens produced using this method can be safely consumed.
Collapse
Affiliation(s)
- Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yu Bon Man
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Somagattu P, Chinnannan K, Yammanuru H, Reddy UK, Nimmakayala P. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175033. [PMID: 39059668 DOI: 10.1016/j.scitotenv.2024.175033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) plays crucial roles in human, animal, and plant physiology, but its varied plant functions remain complex and not fully understood. While Se deficiency affects over a billion people worldwide, excessive Se levels can be toxic, presenting substantial risks to ecosystem health and public safety. The delicate balance between Se's beneficial and harmful effects necessitates a deeper understanding of its speciation dynamics and how different organisms within ecosystems respond to Se. Since humans primarily consume Se through Se-rich foods, exploring Se's behavior, uptake, and transport within agroecosystems is critical to creating effective management strategies. Traditional physicochemical methods for Se remediation are often expensive and potentially harmful to the environment, pushing the need for more sustainable solutions. In recent years, phytotechnologies have gained traction as a promising approach to Se management by harnessing plants' natural abilities to absorb, accumulate, metabolize, and volatilize Se. These strategies range from boosting Se uptake and tolerance in plants to releasing Se as less toxic volatile compounds or utilizing it as a biofortified supplement, opening up diverse possibilities for managing Se, offering sustainable pathways to improve crop nutritional quality, and protecting human health in different environmental contexts. However, closing the gaps in our understanding of Se dynamics within agricultural systems calls for a united front of interdisciplinary collaboration from biology to environmental science, agriculture, and public health, which has a crucial role to play. Phytotechnologies offer a sustainable bridge between Se deficiency and toxicity, but further research is needed to optimize these methods and explore their potential in various agricultural and environmental settings. By shedding light on Se's multifaceted roles and refining management strategies, this review contributes to developing cost-effective and eco-friendly approaches for Se management in agroecosystems. It aims to lead the way toward a healthier and more sustainable future by balancing the need to address Se deficiency and mitigate the risks of Se toxicity.
Collapse
Affiliation(s)
- Prapooja Somagattu
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Karthik Chinnannan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Hyndavi Yammanuru
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| |
Collapse
|
5
|
Li Q, Zhou S. Effect of Paenibacillus favisporus CHP14 inoculation on selenium accumulation and tolerance of Pakchoi ( Brassica chinensis L.) under exogenous selenite treatments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-16. [PMID: 39394951 DOI: 10.1080/15226514.2024.2414212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The effects of Paenibacillus favisporus CHP14 inoculation on selenium (Se) accumulation and Se tolerance of Pakchoi were studied by a pot experiment conducted in greenhouse. The results revealed that the growth traits such as plant height, root length, and biomass were significantly elevated during CHP14 treatment at 0 ∼ 8.0 mg·kg-1 Se(IV) levels. CHP14-inoculated plants accumulated more Se in root and shoot, which were 24.1%∼57.3% and 7.5%∼50.9% higher than those of non-inoculated plants. The contents of leaf nitrogen (N), phosphorus (P), magnesium (Mg), and iron (Fe), as well as the ratio of indoleacetic acid and abscisic acid contents (IAA/ABA) were increased by CHP14 inoculation, and positively associated with photosynthetic pigment contents (p < 0.05). At ≥ 4.0 mg·kg-1 Se(IV) levels, superoxide dismutase, peroxidase, and glutathione peroxidase activities of Pakchoi roots were increased with CHP14 inoculation, by 9.9%∼17.1%, 28.4%∼40.7%, and 7.4%∼15.3%, respectively. Moreover, CHP14 inoculation enhanced ascorbate-glutathione (AsA-GSH) metabolism in roots by upregulating the related enzymes activities and antioxidant contents under excess Se(IV) stress. These findings suggest that CHP14 is beneficial to improve plant growth and enhance Se(IV) resistance of Pakchoi, and can be exploited as potential inoculants for phytoremediation process in Se contaminated soil.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, China
| | - Shoubiao Zhou
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Kumar A, Jain G, Dutta P, Singh P, Alam N, Narayan S, Shirke PA, Chakrabarty D. Nanopriming with phytofabricated selenium nanoparticles alleviates arsenite-induced oxidative stress in Spinacia oleracea L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35183-9. [PMID: 39388087 DOI: 10.1007/s11356-024-35183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Arsenic (As) contamination of agricultural soil has become a major concern due to its adverse effects on plant growth and human health. Selenium nanoparticles (SeNPs), a novel selenium (Se) source, are characterised by their exceptional biocompatibility, degradability, and bioactivities. In the present study, SeNPs were biogenically synthesised and further characterised using UV-visible spectroscopy, XRD, FTIR, and TEM analysis. Different concentrations of the synthesised SeNPs were used to treat Spinacia oleracea L. (spinach) seeds to determine their impact on growth profile, gas exchange, photosynthetic pigments, oxidative stress, and antioxidant enzyme status upon arsenite (AsIII) treatment. The findings revealed that SeNP supplementation at a concentration of 100 µM (SeNPs100) led to a significant reduction in As accumulation by twofold in roots and 1.5-fold in leaves when compared to plants exposed to AsIII100 (µM) alone. Interestingly, the photosynthetic efficiency was also remarkably enhanced upon SeNPs100 treatment, associated with increased activities of the defence enzymes (ascorbate peroxidase, catalase, and glutathione peroxidase) in the AsIII + SeNP-exposed spinach plants as compared to AsIII treatment alone. Overall, the present study highlights the potential of biogenic SeNP supplementation in promoting plant growth and mitigating As toxicity in spinach under AsIII stress. This study could have significant implications for the use of SeNPs as a nanofertiliser in regions grappling with As-contaminated soils for sustainable agriculture and human health.
Collapse
Affiliation(s)
- Amit Kumar
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Garima Jain
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Naushad Alam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Shiv Narayan
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pramod Arvind Shirke
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Mahmoud AEM, Battaglia ML, Rady MM, Mohamed IAA, Alharby HF, Belal HEE, Desoky ESM, Galal TM, Ali EF. Alleviation of cadmium toxicity in soybean (Glycine max L.): Up-regulating antioxidant capacity and enzyme gene expressions and down-regulating cadmium uptake by organic or inorganic selenium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109068. [PMID: 39216160 DOI: 10.1016/j.plaphy.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Although much interest has been focused on the role of selenium (Se) in plant nutrition over the last 20 years, the influences of organic selenium (selenomethionine; Se-Met) and inorganic selenium (potassium selenite; Se-K) on the growth and physiological characters of cadmium (Cd)-stressed Glycine max L.) seedlings have not yet been studied. In this study, the impacts of Se-Met or Se-K on the growth, water physiological parameters (gaseous exchange and leaf water content), photosynthetic and antioxidant capacities, and hormonal balance of G. max seedlings grown under 1.0 mM Cd stress were studied. The results showed that 30 μM Se-K up-regulates water physiological parameters, photosynthetic indices, antioxidant systems, enzymatic gene expression, total antioxidant activity (TAA), and hormonal balance. In addition, it down-regulates levels of reactive oxygen species (ROS; superoxide free radicals and hydrogen peroxide), oxidative damage (malondialdehyde content as an indicator of lipid peroxidation and electrolyte leakage), Cd translocation factor, and Cd content of Cd-stressed G. max seedlings. These positive findings were in favor of seedling growth and development under Cd stress. However, 50 μM Se-Met was more efficient than 30 μM Se-K in promoting the above-mentioned parameters of Cd-stressed G. max seedlings. From the current results, we conclude Se-Met could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 1.0 mM. However, further work is warranted to better understand the precise mechanisms of Se-Met action under Cd stress conditions.
Collapse
Affiliation(s)
- Amr E M Mahmoud
- Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Martin L Battaglia
- Center for Sustainability Science, The Nature Conservancy, Arlington, VA, 22203, USA
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Ibrahim A A Mohamed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hussein E E Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tarek M Galal
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
8
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
9
|
Li W, Wang Y, Li J, Guo X, Song Q, Xu J. Selenite improves growth by modulating phytohormone pathways and reprogramming primary and secondary metabolism in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108930. [PMID: 39013356 DOI: 10.1016/j.plaphy.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.
Collapse
Affiliation(s)
- Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yanli Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoyu Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
10
|
Yin K, Bao Q, Li J, Wang M, Wang F, Sun B, Gong Y, Lian F. Molecular mechanisms of growth promotion and selenium enrichment in tomato plants by novel selenium-doped carbon quantum dots. CHEMOSPHERE 2024; 364:143175. [PMID: 39181469 DOI: 10.1016/j.chemosphere.2024.143175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Selenium (Se)-doped nanoparticles as novel Se fertilizers have a promising potential in the agricultural application. Here, the effects of two novel Se-doped carbon quantum dots (Se-CQDs1 and Se-CQDs2, prepared using co-cracking and adsorption-reduction methods, respectively) on the growth and Se enrichment of tomato plants were studied, where the promoting molecular mechanisms were explored in terms of the related genes expression and soil microbial composition. The results indicated that the soil application of 2.5 mg kg-1 Se-CQDs1 more significantly increased the root growth, plant biomass, and fruit yield than that of Se-CQDs2 and Na2SeO3 treatments (control). Specifically, Se-CQDs1 treatment was more effective to up-regulate the expressions of aquaporin gene (i.e., PIP) and growth hormone synthesis gene (i.e., NIT) than Se-CQDs1 and Na2SeO3 treatments. The expressions of Se methyltransferase gene (smt) and methionine methyltransferase gene (mmt) induced by Se-CQDs1 were 1.45 and 1.18 times higher than that by Se-CQDs2 as well as 1.82 and 2.17 times higher than that by Na2SeO3. Also, Se-CQDs1 more greatly increased the diversity and relative abundance of soil bacterial communities, especially the Actinobacteria phylum, which was beneficial to increase plant growth-promoting substances. These outstanding promoting effects of Se-CQDs1 were mainly ascribed to its higher hydrophilicity and content of the stable doped-Se. The overall results demonstrated that Se-CQDs would be a promising candidate for nano-fertilizer to increase crop growth and development (e.g., tomato plants), where the synthesis modes of Se-CQDs play a critical role in regulating the utilization efficiency of Se.
Collapse
Affiliation(s)
- Kaiyue Yin
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiongli Bao
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiaqi Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meiyan Wang
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fei Wang
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Binbin Sun
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yan Gong
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fei Lian
- Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
11
|
Cui B, Luo H, Yao X, Xing P, Deng S, Zhang Q, Yi W, Gu Q, Peng L, Yu X, Zuo C, Wang J, Wang Y, Tang X. Nanosized-Selenium-Application-Mediated Cadmium Toxicity in Aromatic Rice at Different Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:2253. [PMID: 39204689 PMCID: PMC11359265 DOI: 10.3390/plants13162253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) pollution restricts the rice growth and poses a threat to human health. Nanosized selenium (NanoSe) is a new nano material. However, the effects of NanoSe application on aromatic rice performances under Cd pollution have not been reported. In this study, a pot experiment was conducted with two aromatic rice varieties and a soil Cd concentration of 30 mg/kg. Five NanoSe treatments were applied at distinct growth stages: (T1) at the initial panicle stage, (T2) at the heading stage, (T3) at the grain-filling stage, (T1+2) at both the panicle initial and heading stages, and (T1+3) at both the panicle initial and grain-filling stages. A control group (CK) was maintained without any application of Se. The results showed that, compared with CK, the T1+2 and T1+3 treatments significantly reduced the grain Cd content. All NanoSe treatments increased the grain Se content. The grain number per panicle, 1000-grain weight, and grain yield significantly increased due to NanoSe application under Cd pollution. The highest yield was recorded in T3 and T1+3 treatments. Compared with CK, all NanoSe treatments increased the grain 2-acetyl-1-pyrroline (2-AP) content and impacted the content of pyrroline-5-carboxylic acid and 1-pyrroline which are the precursors in 2-AP biosynthesis. In conclusion, the foliar application of NanoSe significantly reduced the Cd content, increased the Se content, and improved the grain yield and 2-AP content of aromatic rice. The best amendment was applying NanoSe at both the panicle initial and grain-filling stages.
Collapse
Affiliation(s)
- Baoling Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangbin Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Sicheng Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qianqian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Ligong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xianghai Yu
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Changjian Zuo
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Jingjing Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Yangbo Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
12
|
Saeedi R, Seyedi A, Esmaeilizadeh M, Seyedi N, Morteza Zahedi S, Malekzadeh MR. Improving the performance of the photosynthetic apparatus of Citrus sinensis with the use of chitosan-selenium nanocomposite (CS + Se NPs) under salinity stress. BMC PLANT BIOLOGY 2024; 24:745. [PMID: 39098917 PMCID: PMC11299350 DOI: 10.1186/s12870-024-05462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C. sinensis under salt stress in greenhouse conditions. The grafted seedlings of C. sinensis cv. Valencia after adapting to the greenhouse condition, were imposed with 0, 50, and 100 mM NaCl. After two weeks, the plants were foliar sprayed with distilled water (control), CS (0.1% w/v), Se NPs (20 mg L- 1), and CS + Se NPs (10 and 20 mg L- 1). Three months after treatment, the levels of photosynthetic pigments, leaf gas exchange, and chlorophyll fluorescence in the treated plants were evaluated. RESULTS Under salinity stress, total chlorophyll, carotenoid, and SPAD values decreased by 31%, 48%, and 28% respectively, and Fv/Fm also decreased compared to the control, while the ratio of absorption flux (ABS), dissipated energy flux (DI0) and maximal trapping rate of PSII (TR0) to RC (a measure of PSII apparent antenna size) were increased. Under moderate (50 mM NaCl) and intense (100 mM NaCl) salinity stress, the application of CS + Se NPs significantly increased the levels of photosynthetic pigments and the Fv/Fm value compared to plants treated with distilled water. CONCLUSIONS It may be inferred that foliar treatment with CS + Se NPs can sustain the photosynthetic ability of C. sinensis under salinity stress and minimize its deleterious effects on photosynthesis.
Collapse
Affiliation(s)
- Reza Saeedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Azam Seyedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Majid Esmaeilizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| | - Neda Seyedi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mohammad Reza Malekzadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| |
Collapse
|
13
|
Haider FU, Zulfiqar U, Ain NU, Mehmood T, Ali U, Ramos Aguila LC, Li Y, Siddique KHM, Farooq M. Managing antimony pollution: Insights into Soil-Plant system dynamics and remediation Strategies. CHEMOSPHERE 2024; 362:142694. [PMID: 38925521 DOI: 10.1016/j.chemosphere.2024.142694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Researchers are increasingly concerned about antimony (Sb) in ecosystems and the environment. Sb primarily enters the environment through anthropogenic (urbanization, industries, coal mining, cars, and biosolid wastes) and geological (natural and chemical weathering of parent material, leaching, and wet deposition) processes. Sb is a hazardous metal that can potentially harm human health. However, no comprehensive information is available on its sources, how it behaves in soil, and its bioaccumulation. Thus, this study reviews more than 160 peer-reviewed studies examining Sb's origins, geochemical distribution and speciation in soil, biogeochemical mechanisms regulating Sb mobilization, bioavailability, and plant phytotoxicity. In addition, Sb exposure effects plant physio-morphological and biochemical attributes were investigated. The toxicity of Sb has a pronounced impact on various aspects of plant life, including a reduction in seed germination and impeding plant growth and development, resulting from restricted essential nutrient uptake, oxidative damages, disruption of photosynthetic system, and amino acid and protein synthesis. Various widely employed methods for Sb remediation, such as organic manure and compost, coal fly ash, biochar, phytoremediation, microbial-based bioremediation, micronutrients, clay minerals, and nanoremediation, are reviewed with a critical assessment of their effectiveness, cost-efficiency, and suitability for use in agricultural soils. This review shows how plants deal with Sb stress, providing insights into lowering Sb levels in the environment and lessening risks to ecosystems and human health along the food chain. Examining different methods like bioaccumulation, bio-sorption, electrostatic attraction, and complexation actively works to reduce toxicity in contaminated agricultural soil caused by Sb. In the end, the exploration of recent advancements in genetics and molecular biology techniques are highlighted, which offers valuable insights into combating Sb toxicity. In conclusion, the findings of this comprehensive review should help develop innovative and useful strategies for minimizing Sb absorption and contamination and thus successfully managing Sb-polluted soil and plants to reduce environmental and public health risks.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tariq Mehmood
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Sensors and Modeling, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Umed Ali
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi 82000, Balochistan, Pakistan
| | - Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
14
|
Giebułtowicz J, Ślusarczyk J, Wyderska S, Wroczyński P. The Impact of Organic Selenium (IV) on Hypericum perforatum L. under Cadmium Stress and Non-Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2099. [PMID: 39124217 PMCID: PMC11314003 DOI: 10.3390/plants13152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The issue of soil contamination by heavy metals is widely acknowledged. Some plants, including medicinal species like St. John's wort (Hypericum perforatum L.), exhibit accumulation traits, allowing them to accumulate elevated levels of metals, e.g., cadmium (Cd), within their cells. Selenium (Se) may increase the tolerance of plants to abiotic stress caused by the presence of heavy metal in the environment. Depending on its form (oxidation state, organic/inorganic), Se influences plant growth, secondary metabolite content, and biotic stress, as well as incorporates into shoots, providing economic and health benefits for consumers. So far, there are no data on the influence of organic Se(IV) on plants. Our study aimed to determine the effect of organic Se(IV) on the growth, active compound levels (anthranoids, polyphenols), and ultrastructure of St. John's wort without and under cadmium stress. The phytochemical analysis and microscopic examination was performed on shoots from different days of St. John's wort in vitro culture on a few variants of Murashige and Skoog medium with Cd (25 and 400 µM) and/or organic Se (IV). Exposure to Se(IV) did not affect hypericins but increased the polyphenol content in the shoots and the biomass. Se(IV) caused an increase in starch grain number in chloroplasts, whereas Cd exposure resulted in the degradation of the chloroplast structure, increased cell vacuolation, as well as swollen mitochondrial cristae. The addition of Se(IV) to these combinations reduced the degree of degradation and growth inhibition and a high content of Se(IV) in plants was observed. Se(IV) had no impact on Cd content at environmental Cd concentrations, but showed an effect at extremely high Cd concentrations. Thus, organic Se(IV) has a beneficial effect on St. John's wort growth, polyphenol content, and incorporation in shoots and prevents Cd toxicity. Media enriched with organic Se(IV) have both economic advantages and health benefits due to a higher plant growth rate and increased concentrations of polyphenols with strong antioxidant properties, relatively enriched with Se. However, organic Se(IV) should be used with caution in polluted areas. In perspective, speciation analysis and molecular study are crucial to understand the fate and effect of Se (IV) on plants.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (S.W.); (P.W.)
| | - Joanna Ślusarczyk
- Department of Environmental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Sylwia Wyderska
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (S.W.); (P.W.)
| | - Piotr Wroczyński
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (S.W.); (P.W.)
| |
Collapse
|
15
|
Jia Y, Chen L, Kang L, Fu X, Zheng S, Wu Y, Wu T, Cai R, Wan X, Wang P, Yin X, Pan C. Nano-Selenium and Glutathione Enhance Cucumber Resistance to Botrytis cinerea by Promoting Jasmonic Acid-Mediated Cucurbitacin Biosynthesis. ACS NANO 2024. [PMID: 39047071 DOI: 10.1021/acsnano.4c05827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nano-selenium (Nano-Se), as a biological stimulant, promotes plant growth and development, as well as defense against biotic and abiotic stresses. Glutathione (GSH) is a crucial antioxidant and is also involved in the plant defense response to various stresses. In this study, the efficacy of combined treatment of Nano-Se and GSH (SeG) on the resistance of cucumber plants to Botrytis cinerea was investigated in terms of the plant phenotype, gene expression, and levels of accumulated metabolites using transcriptomic and metabolomic analyses. The exogenous application of SeG significantly enhanced plant growth and increased photosynthetic pigment contents and capacity. Notably, B. cinerea infection was reduced markedly by 41.9% after SeG treatment. At the molecular level, the SeG treatment activated the alpha-linolenic acid metabolic pathway and upregulated the expression of genes responsible for jasmonic acid (JA) synthesis, including LOX (210%), LOX4 (430%), AOS1 (100%), and AOC2 (120%), therefore promoting JA accumulation in cucumber. Intriguingly, the level of cucurbitacin, an important phytoalexin in cucurbitaceous plants, was found to be increased in SeG-treated cucumber plants, as was the expression of cucurbitacin biosynthesis-related genes OSC (107.5%), P450 (440.8%,31.6%), and ACT (414.0%). These genes were also upregulated by JA treatment, suggesting that JA may be an upstream regulator of cucurbitacin biosynthesis. Taken together, this study demonstrated that pretreatment of cucumber plants with SeG could activate the JA signaling pathway and promote cucurbitacin biosynthesis to enhance the resistance of the plants to B. cinerea infection. The findings also indicate that SeG is a promising biostimulant for protecting cucumber plants from B. cinerea infection without growth loss.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lanqi Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiaorui Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shuyang Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yangliu Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Runze Cai
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xiaoying Wan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xuebin Yin
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Sunic K, Spanic V. Genetic Biofortification of Winter Wheat with Selenium (Se). PLANTS (BASEL, SWITZERLAND) 2024; 13:1816. [PMID: 38999656 PMCID: PMC11244473 DOI: 10.3390/plants13131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Wheat is one of the three most important cereals in the world, along with rice and maize. It serves as the primary food and source of energy for about 30-40% of the world's population. However, the low levels of micronutrients in wheat grains can lead to deficiencies of those micronutrients in people whose dietary habits are mostly based on cereals such as wheat. Apart from iron (Fe) and zinc (Zn), a lack of selenium (Se) is also one of the biggest problems in the world. The essentiality of Se has been confirmed for all animals and humans, and the lack of this micronutrient can cause serious health issues. Wheat dominates the world's cereal production, so it is one of the best plants for biofortification. Due to the fact that agronomic biofortification is not an economical or environmentally acceptable approach, genetic improvement of cereals such as wheat for the enhanced content of micronutrients in the grain represents the most efficient biofortification approach.
Collapse
Affiliation(s)
| | - Valentina Spanic
- Department for Cereal Breeding and Genetics, Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia;
| |
Collapse
|
17
|
Alotaibi MO, Alotibi MM, Majrashi DM, Mahmoud E, Ghoneim AM, Eissa MA, Tammam SA. Effect of selenium form and dose on camelthorn (Alhagi maurorum Medik) grown on a metal-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39704-39713. [PMID: 38829497 DOI: 10.1007/s11356-024-33771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
Selenium (Se) enhances the resistance of plants exposed to metal stress and can be used to lessen the impacts of toxic elements and to enhance the effectiveness of the plants used to clean up polluted sites. There is no information available about the optimum dose and form of Se to stimulate the camelthorn (Alhagi maurorum Medik) plant, which is one of the plants used in the phytostabilization of toxic elements. The impacts of selenate (Se-VI) and selenite (Se-IV) on the phytoremediation of toxic metals from loamy soils by camelthorn were investigated in a pot experiment. Se-VI and Se-IV were added to the soil at doses of 0, 5, and 10 mg Se kg-1 soil, and each treatment was repeated five times. Se-VI and Se-IV, significantly increased plant growth and nutrient uptake. The addition of Se, either from Se-VI or Se-IV, significantly increased the superoxide dismutase (SOD) and peroxidase (POD) enzymes, and the non-enzymatic antioxidant compounds, i.e., proline and phenols, compared to the control. The addition of Se strengthened the defense against metal stress, and Se-VI outperformed Se-IV in boosting camelthorn's resistance to hazardous metal contamination. Selenium increased the accumulation of metal in the root of camelthorn and reduced root-shoot transfer. The best technique to boost camelthorn plants' capacity to clean up metal-contaminated soils is to supplement them with selenium in the form of selenate at a concentration of 10 mg Se kg-1 soil.
Collapse
Affiliation(s)
- Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mashael M Alotibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra, 15571, Saudi Arabia
| | - Dalal M Majrashi
- Department of Plant Taxonomy and Flora, Faculty of Science-Albaha University, Al-Baha, Saudi Arabia
| | - Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta, 31111, Egypt
| | - Adel M Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza, 12112, Egypt
| | - Mamdouh A Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Suzan A Tammam
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
18
|
Oladeji OM, Magoro K, Mugivhisa LL, Olowoyo JO. Selenium and other heavy metal levels in different rice brands commonly consumed in Pretoria, South Africa. Heliyon 2024; 10:e29757. [PMID: 38707293 PMCID: PMC11066335 DOI: 10.1016/j.heliyon.2024.e29757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
For centuries, rice has been a dietary staple food partially due to its accessibility, affordability, and nutritional content. However, it has been documented that plants can bioaccumulate trace elements from soil and store them in their tissues therefore necessitating monitoring of its nutritional quality. The current study investigated the Selenium and heavy metal contents of various brands of rice obtained from different retail stores in Pretoria, South Africa. The analysis was carried out using different rice samples and different methods/stages of cooking rice including the analysis of rinsed rice water (RW), raw rice (RR), cooked rice (CR), and cooked rice water (CW), for trace elements content using the Inductive Couple Plasma Mass Spectrometry. The results revealed that the Se content ranged from 0.013 ± 0.01 mg/kg - 0.089 ± 0.06 mg/kg in RR, 0.013 ± 0.01 mg/kg - 0.046 ± 0.01 mg/kg in CR, 0.01 ± 0.01mg/kg- 0.028 ± 0.00 mg/kg in RW and 0.01 ± 0.01 mg/kg - 0.048 ± 0.01 mg/kg in CW. The calculated estimated dietary intake (EDI) of Se was recorded as follows; raw rice (7.06 × 10-5 mg/day), cooked rice (5.01 × 10-5 mg/day), water from cooked rice (4.54 × 10-5 mg/day) and rinsed water of raw rice (3.97 × 10-5 mg/day). The concentrations of all other heavy metals measured were within the WHO-recommended limits. The HQ for all the trace metals in all the samples did not exceed one, implying that there is no health risk from trace metals analysed in this study from the consumption of the rice brands used in this study. The results of this study demonstrated that reliance on rice alone for the supply of Se may be inadequate owing to the values obtained in our study. Constant monitoring of the nutritional contents of food products may be required to improve the overall nutritional well-being of the consumers.
Collapse
Affiliation(s)
- Oluwaseun Mary Oladeji
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
| | - Kgomotso Magoro
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
| | - Liziwe Lizbeth Mugivhisa
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
| | - Joshua Oluwole Olowoyo
- Department of Biology and Environmental Science, Sefako Makgatho Health Sciences University, Pretoria, South Africa, P.O. Box 139, 0204
- Department of Health Science and The Water School, Florida Gulf Coast University, Fort Myers, USA
| |
Collapse
|
19
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Ahmad MS, Luna-Arias JP. Exposure of Caralluma tuberculata to biogenic selenium nanoparticles as in vitro rooting agent: Stimulates morpho-physiological and antioxidant defense system. PLoS One 2024; 19:e0297764. [PMID: 38598493 PMCID: PMC11006134 DOI: 10.1371/journal.pone.0297764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 μg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 μg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 μg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 μg/ml), while cultures exposed to 200 μg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 μg/ml). Interestingly, exposure to 400 μg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 μg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.
Collapse
Affiliation(s)
- Amir Ali
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Sher Mohammad
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - M. Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Juan Pedro Luna-Arias
- Department of Cell Biology and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
20
|
Gao S, Tuda M. Silica and Selenium Nanoparticles Attract or Repel Scale Insects by Altering Physicochemical Leaf Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:952. [PMID: 38611481 PMCID: PMC11013412 DOI: 10.3390/plants13070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Although nanoparticles have gained attention as efficient alternatives to conventional agricultural chemicals, there is limited knowledge regarding their effects on herbivorous insect behavior and plant physicochemistry. Here, we investigated the effects of foliar applications of nano-silica (SiO2NPs) and nano-selenium (SeNPs), and bulk-size silica (SiO2) on the choice behavior of the arrowhead scale insect on mandarin orange plants. One leaf of a bifoliate pair was treated with one of the three chemicals, while the other was treated with water (control). The respective SiO2, SeO2, calcium (Ca), and carbon (C) content levels in the leaf epidermis and mesophyll were quantified using SEM-EDX (or SEM-EDS); leaf toughness and the arrowhead scale density and body size were measured. First-instar nymphs preferred silica-treated leaves and avoided SeNP-treated leaves. SiO2 content did not differ between control and SiO2NP-treated leaves, but was higher in bulk-size SiO2-treated leaves. The SiO2 level in the control leaves was higher in the SiO2NP treatment compared with that in the control leaves in the bulk-size SiO2 treatment. Silica-treated leaves increased in toughness, but SeNP-treated leaves did not; leaf toughness increased with mesophyllic SiO2 content. The insect density per leaf increased with leaf toughness, SiO2 content and, in the SiO2NP treatment, with epidermal C content. There was no correlation between SeO2 content and insect density. This study highlights the potential uses of SeNPs as an insect deterrent and of silica for enhancing leaf toughness and attracting scale insects.
Collapse
Affiliation(s)
- Siyi Gao
- Laboratory of Insect Natural Enemies, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 8190395, Japan
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 8190395, Japan
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan
| |
Collapse
|
21
|
García-Tenesaca M, Llugany M, Boada R, Sánchez-Martín MJ, Valiente M. Phytochemical Profile, Bioactive Properties, and Se Speciation of Se-Biofortified Red Radish ( Raphanus sativus), Green Pea ( Pisum sativum), and Alfalfa ( Medicago sativa) Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4947-4957. [PMID: 38393752 PMCID: PMC10921463 DOI: 10.1021/acs.jafc.3c08441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The impact of selenium (Se) enrichment on bioactive compounds and sugars and Se speciation was assessed on different microgreens (green pea, red radish, and alfalfa). Sodium selenite and sodium selenate at a total concentration of 20 μM (1:1) lead to a noticeable Se biofortification (40-90 mg Se kg-1 DW). In green pea and alfalfa, Se did not negatively impact phenolics and antioxidant capacity, while in red radish, a significant decrease was found. Regarding photosynthetic parameters, Se notably increased the level of chlorophylls and carotenoids in green pea, decreased chlorophyll levels in alfalfa, and had no effect on red radish. Se treatment significantly increased sugar levels in green pea and alfalfa but not in red radish. Red radish had the highest Se amino acid content (59%), followed by alfalfa (34%) and green pea (28%). These findings suggest that Se-biofortified microgreens have the potential as functional foods to improve Se intake in humans.
Collapse
Affiliation(s)
- Marilyn
M. García-Tenesaca
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Llugany
- Plant
Physiology Group (BABVE), Faculty of Biosciences, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Boada
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María-Jesús Sánchez-Martín
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuel Valiente
- GTS
Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Qin C, Lian H, Zhang B, He Z, Alsahli AA, Ahanger MA. Synergistic influence of selenium and silicon supplementation prevents the oxidative effects of arsenic stress in wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133304. [PMID: 38159516 DOI: 10.1016/j.jhazmat.2023.133304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Influence of supplementation of selenium (Se, 1 and 5 µM) and silicon (Si, 0.1 and 0.5 mM) was investigated in wheat under arsenic (30 µM As) stress. Plants grown under As stress exhibited a significant decline in growth parameters however, Se and Si supplementation mitigated the decline significantly. Treatment of Se and Si alleviated the reduction in the intermediate components of chlorophyll biosynthesis pathway and the content of photosynthetic pigments. Arsenic stressed plants exhibited increased reactive oxygen species accumulation and the NADPH oxidase activity which were lowered significantly due to Se and Si treatments. Moreover, Se and Si supplementation reduced lipid peroxidation and activity of lipoxygenase and protease under As stress. Supplementation of Se and Si significantly improved the antioxidant activities and the content of cysteine, tocopherol, reduced glutathione and ascorbic acid. Treatment of Se and Si alleviated the reduction in nitrate reductase activity. Exogenously applied Se and Si mitigated the reduction in mineral elements and reduced As accumulation. Hence, supplementation of Se and Si is beneficial in preventing the alterations in growth and metabolism of wheat under As stress.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China
| | - Huida Lian
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China
| | - Bo Zhang
- Shanxi Normal University, Taiyuan, China
| | - Zhan He
- College of Life Science, Northwest A&F University, Yangling, Xianyang, Shaanxi, China
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
23
|
Liu Y, Liu R, Li F, Yu S, Nie Y, Li JQ, Pan C, Zhu W, Zhou Z, Diao J. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105753. [PMID: 38225097 DOI: 10.1016/j.pestbp.2023.105753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Recently, studies have shown that pesticides may have adverse effects on the flavor quality of the fruits, but there is still a lack of appropriate methods to repair the damage. This study investigated the effects and mechanism of applying the emerging material, nano‑selenium, and two fungicides (Boscalid and Pydiflumetofen) alone or together on the flavor quality and antioxidant capacity of strawberries. The results showed that the two fungicides had a negative impact on strawberry color, flavor, antioxidant capacity and different enzymatic systems. The color damage was mainly attributed to the impact on anthocyanin content. Nano‑selenium alleviated the quality losses by increasing sugar-acid ratio, volatiles, anthocyanin levels, enzyme activities and DPPH scavenging ability and reducing ROS levels. Results also showed that these damage and repair processes were related to the regulation of flavor and ripening related transcription factors (including FaRIF, FaSnRK1, FaMYB10, FaMYB1, FaSnRK2.6 and FaABI1), the upregulation of genes on sugar-acid, volatile, and anthocyanin synthesis pathways, as well as the increase of sucrose and ABA signaling molecules. In addition, the application of nano-Se supplemented the selenium content in fruits, and was harmless to human health. This information is crucial for revealing the mechanisms of flavor damage caused by pesticides to strawberry and the repaired of nano‑selenium, and broadens the researching and applying of nano‑selenium in repairing the damage caused by pesticides.
Collapse
Affiliation(s)
- Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Feifei Li
- The Administrative Office of Beijing Shisanling Forestry Farm, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jia-Qi Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China.
| |
Collapse
|
24
|
Basit F, Abbas S, Zhu M, Tanwir K, El-Keblawy A, Sheteiwy MS, Raza A, Hu J, Hu W, Guan Y. Ascorbic acid and selenium nanoparticles synergistically interplay in chromium stress mitigation in rice seedlings by regulating oxidative stress indicators and antioxidant defense mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120044-120062. [PMID: 37936030 DOI: 10.1007/s11356-023-30625-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mengjin Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Niu H, Zhan K, Cheng X, Deng Y, Hou C, Zhao M, Peng C, Chen G, Hou R, Li D, Wan X, Cai H. Selenium foliar application contributes to decrease ratio of water-soluble fluoride and improve physio-biochemical components in tea leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115568. [PMID: 37832482 DOI: 10.1016/j.ecoenv.2023.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The tea plant accumulates elevated levels of fluoride (F) from environmental sources. Drinking tea containing high F levels poses a potential threat to human health. Selenium (Se) was applied by foliar spray to investigate its effects on F accumulation and physiology in tea plant. Foliar application of different forms of Se, i.e., Na2SeO3, Kappa-selenocarrageenan, Selenomethionine and Nanoselenium, reduced F content in tea leaves by 10.17 %-44.28 %, 16.12 %-35.41 %, 22.19 %-45.99 % and 22.24 %-43.82 %, respectively. Foliar spraying Se could increase F accumulation in pectin through increasing pectin content and pectin demethylesterification to bind more F in the cell wall, which decreased the proportion of water-soluble fluoride in tea leaves. Application of Se significantly decreased the contents of chromium (39.6 %-72.0 %), cadmium (48.3 %-84.4 %), lead (2.2 %-44.4 %) and copper (14.1 %-44.6 %) in tea leaves. Foliar spraying various forms of Se dramatically increased the Se content and was efficiently transformed into organic Se accounting for more than 80 % in tea leaves. All Se compounds increased peroxidase activity by 3.3 %-35.5 % and catalase activity by 2.6 %-99.4 %, reduced malondialdehyde content by 5.6 %-37.1 %, and increased the contents of chlorophyll by 0.65 %-31.8 %, carotenoids by 0.24 %-27.1 %, total catechins by 1.6 %-21.0 %, EGCG by 4.4 %-17.6 % and caffeine by 9.1 %-28.6 %. These results indicated that Se application could be served as a potential efficient and safe strategy diminishing the concentration of F in tea leaves.
Collapse
Affiliation(s)
- Huiliang Niu
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kui Zhan
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xin Cheng
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yangjuan Deng
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chaoyuan Hou
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Mingming Zhao
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chuanyi Peng
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guijie Chen
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ruyan Hou
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Daxiang Li
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xiaochun Wan
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Huimei Cai
- School of Tea & Food Science and Technology, Anhui Agricultural University, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
26
|
Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023; 12:3773. [PMID: 37893666 PMCID: PMC10606687 DOI: 10.3390/foods12203773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods. On this basis, this paper explored the future development trend of the research field relating to selenized natural products, and it is hoped to provide some suggestions for directional selenization modification and the application of natural active ingredients.
Collapse
Affiliation(s)
- Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yang Sun
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Bowen Liu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Jiajia Ming
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| | - Lulu Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yuanyuan Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
27
|
Dong Q, Li D, Wu Y, Zhou C, Lin Y, Miao P, Li J, Pan C. Exogenous nanoselenium alleviates imidacloprid-induced oxidative stress toxicity by improving phenylpropanoid metabolism and antioxidant defense system in Perilla frutescens (L.) Britt. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154095. [PMID: 37741053 DOI: 10.1016/j.jplph.2023.154095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Few studies have been conducted to investigate the impact of pesticides on the secondary metabolism of traditional Chinese medicine and strategies to mitigate the toxicity of pesticide-induced oxidative stress. The current study focuses on evaluating the potential impacts of nano selenium (NSe) and imidacloprid (IMI) on the quality, physiological biochemistry, and secondary metabolites in Perilla frutescens (L.) Britt. (P. frutescens). The study utilized metabolome analysis to explore the toxicity mechanism of IMI. The study noted that IMI-induced stress could emerge with detrimental effects by targeting the destruction of the phenylpropanoid biosynthesis pathway. IMI-induced phenylpropanoid metabolism disorder resulted in an 8%, 17%, 25%, 10%, 65%, and 29% reduction in phenylalanine, coniferyl aldehyde, ferulic acid, cafestol, p-coumaraldehyde, and p-coumaric acid levels, respectively. Under the treatment of exogenous NSe, the levels of these metabolites were increased by 16%, 32%, 22%, 22%, 92%, and 29%, respectively. The application of exogenous NSe increased the levels of these metabolites and improved the biochemical disorder and quality of P. frutescens leaves by optimizing the phenylpropanoid metabolic pathway and enhancing the antioxidant system. Overall, the results suggest that foliar application of NSe could alleviate the oxidative stress toxicity induced by IMI and improve the quality of P. frutescens.
Collapse
Affiliation(s)
- Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control (China Agricultural University), China.
| |
Collapse
|
28
|
Francini A, Quattrini E, Giuffrida F, Ferrante A. Biofortification of baby leafy vegetables using nutrient solution containing selenium. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5472-5480. [PMID: 37046389 DOI: 10.1002/jsfa.12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Biofortification of vegetables is an important innovation technique in the horticultural sector. Vegetables can be a vector of different minor elements that have beneficial effects on human health. Selenium (Se) is an important element for human nutrition and plays a significant role in defence mechanisms. The aim of this work was to investigate the effect of Se in the nutrient solutions on the crop biofortification ability, yield, and quality parameters of four baby leafy vegetables destined to the minimally processed industry. Experiments were performed on lamb's lettuce, lettuce, wild rocket, and spinach. These crops were cultivated in the floating systems with nutrient solution enriched with 0, 2.6, 3.9, and 5.2 μmol L-1 Se provided as sodium selenate. RESULTS At harvest, Se concentrations, yield, nitrate concentration, sugars, and some mineral elements were measured. Data collected and analyses showed that yield, nitrate, sucrose, and reducing sugars were not affected by Se treatments, even if varied among species. Se concentrations linearly increased in leaves of different species by increasing the Se concentration in the nutrient solution. Rocket was the species with the highest accumulation ability and reached a concentration of 11 μg g-1 fresh weight Se in plants grown with 5.2 μmol L-1 Se. CONCLUSION A floating system with Se-enriched nutrient solution is an optimal controlled growing biofortification system for leafy vegetables. The accumulation ability decreased in different species in the order wild rocket, spinach, lettuce, and lamb's lettuce, highlighting a crop-dependent behaviour and their attitude to biofortification. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Emanuele Quattrini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Giuffrida
- Department of Agriculture, Food and Environment, Catania University, Catania, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Dima ȘO, Constantinescu-Aruxandei D, Tritean N, Ghiurea M, Capră L, Nicolae CA, Faraon V, Neamțu C, Oancea F. Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker's Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization. PLANTS (BASEL, SWITZERLAND) 2023; 12:3016. [PMID: 37631226 PMCID: PMC10458166 DOI: 10.3390/plants12163016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.
Collapse
Affiliation(s)
- Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biology, University of Bucharest, Splaiul Independenței nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Marius Ghiurea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Luiza Capră
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Cristian-Andi Nicolae
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Victor Faraon
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Constantin Neamțu
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
| | - Florin Oancea
- Polymers and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (M.G.); (L.C.); (C.-A.N.); (V.F.); (C.N.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști nr. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
30
|
Sindireva A, Golubkina N, Bezuglova H, Fedotov M, Alpatov A, Erdenotsogt E, Sękara A, Murariu OC, Caruso G. Effects of High Doses of Selenate, Selenite and Nano-Selenium on Biometrical Characteristics, Yield and Biofortification Levels of Vicia faba L. Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2847. [PMID: 37571001 PMCID: PMC10420794 DOI: 10.3390/plants12152847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Faba bean (Vicia faba L.) has spread worldwide as an excellent source of proteins. To evaluate the efficiency of Se biofortification, four cultivars of V. faba (Belorussian, Russian Black, Hangdown Grünkernig, and Dreifach Weiβe) were foliar treated with 1.27 mM solutions of nano-Se, sodium selenate, and sodium selenite. Yield, protein, and Se contents were greatly affected by genetic factors and chemical form of Se. Selenium biofortification levels were negatively correlated with Se concentration in control plants and increased according to the following sequence: nano-Se < sodium selenite < sodium selenate. Contrary to selenate and selenite, nano-Se showed a growth-stimulating effect, improving yield, seed weight, and pod number. Pod thickness decreased significantly as a result of nano-Se supply and increased by 1.5-2.3 times under selenate and selenite supply. The highest Se concentrations were recorded in the seeds of Se-fortified cv. Belorussian and the lowest one in those of Se-treated Hangdown Grünkernig. Protein accumulation was varietal dependent and decreased upon 1.27 mM selenate and selenite treatment in the cvs. Hangdown Grünkernig and Dreifach Weiβe. The results indicate the high prospects of nano-Se supply for the production of faba bean seeds with high levels of Se.
Collapse
Affiliation(s)
- Anna Sindireva
- Department of Geoecology and Nature Management, Tumen State University, Volodarsky Str. 6, 625003 Tumen, Russia
| | - Nadezhda Golubkina
- Federal Scientific Vegetable Center, Selectsionnaya, 14, VNIISSOK, Odintsovo District, 143072 Moscow, Russia
| | - Helene Bezuglova
- Department of Agronomy, Selection and Seeds Production, Omsk State Agrarian University, Institutskaya Square, 1, 644008 Omsk, Russia;
| | - Mikhail Fedotov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr., 49, 119334 Moscow, Russia; (M.F.); (A.A.)
| | - Andrey Alpatov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr., 49, 119334 Moscow, Russia; (M.F.); (A.A.)
| | - Erdene Erdenotsogt
- Mongolian National Center of Public Health, Peace Ave, 46, Ulaanbaatar 211049, Mongolia;
| | - Agnieszka Sękara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Otilia Cristina Murariu
- Department of Food Technology, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 M. Sadoveanu Alley, 700440 Iasi, Romania;
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy;
| |
Collapse
|
31
|
Semida WM, Abd El-Mageed TA, Gyushi MAH, Abd El-Mageed SA, Rady MM, Abdelkhalik A, Merah O, Sabagh AE, El-Metwally IM, Sadak MS, Abdelhamid MT. Exogenous Selenium Improves Physio-Biochemical and Performance of Drought-Stressed Phaseolus vulgaris Seeded in Saline Soil. SOIL SYSTEMS 2023; 7:67. [DOI: 10.3390/soilsystems7030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Water and salt stresses are among the most important global problems that limit the growth and production of several crops. The current study aims at the possibility of mitigating the effect of deficit irrigation of common bean plants growing in saline lands by foliar spraying with selenium via the assessment of growth, productivity, physiological, and biochemical measurements. In our study, two field-based trials were conducted in 2017 and 2018 to examine the influence of three selenium (Se) concentrations (0 (Se0), 25 (Se25), and 50 mg L−1 (Se50)) on common bean plants grown under full irrigation (I100 = 100% of the crop evapotranspiration; ETc) and deficit irrigation (I80 = 80% of ETc, and I60 = 60% of ETc). Bean plants exposed to water stress led to a notable reduction in growth, yield, water productivity (WP), water status, SPAD value, and chlorophyll a fluorescence features (Fv/Fm and PI). However, foliar spraying of selenium at 25 or 50 mg L−1 on stressed bean plants attenuated the harmful effects of water stress. The findings suggest that foliage application of 25 or 50 mg L−1 selenium to common bean plants grown under I80 resulted in a higher membrane stability index, relative water content, SPAD chlorophyll index, and better efficiency of photosystem II (Fv/Fm, and PI). Water deficit at 20% increased the WP by 17%; however, supplementation of 25 or 50 mg L−1 selenium mediated further increases in WP up to 26%. Exogenous application of selenium (25 mg L−1 or 50 mg L−1) to water-stressed bean plants elevated the plant defense system component, given that it increased the free proline, ascorbic acid, and glutathione levels, as well as antioxidant enzymes (SOD, APX, GPX, and CAT). It was concluded that the application of higher levels (25 or/and 50 mg L−1) of Se improves plant water status as well as the growth and yield of common beans cultivated in saline soil.
Collapse
Affiliation(s)
- Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Taia A. Abd El-Mageed
- Soil and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mohammed A. H. Gyushi
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | | | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | | | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier-Toulouse III, IUT A, 32000 Auch, France
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey
| | - Ibrahim M. El-Metwally
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
| | - Mervat Sh. Sadak
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, 33 El Behouth Street, Dokki, Cairo 12622, Egypt
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2474, USA
| |
Collapse
|