1
|
Tripathi S, Rani K, Raj VS, Ambasta RK. Drug repurposing: A multi targetted approach to treat cardiac disease from existing classical drugs to modern drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:151-192. [PMID: 38942536 DOI: 10.1016/bs.pmbts.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) are characterized by abnormalities in the heart, blood vessels, and blood flow. CVDs comprise a diverse set of health issues. There are several types of CVDs like stroke, endothelial dysfunction, thrombosis, atherosclerosis, plaque instability and heart failure. Identification of a new drug for heart disease takes longer duration and its safety efficacy test takes even longer duration of research and approval. This chapter explores drug repurposing, nano-therapy, and plant-based treatments for managing CVDs from existing drugs which saves time and safety issues with testing new drugs. Existing drugs like statins, ACE inhibitor, warfarin, beta blockers, aspirin and metformin have been found to be useful in treating cardiac disease. For better drug delivery, nano therapy is opening new avenues for cardiac research by targeting interleukin (IL), TNF and other proteins by proteome interactome analysis. Nanoparticles enable precise delivery to atherosclerotic plaques, inflammation areas, and damaged cardiac tissues. Advancements in nano therapeutic agents, such as drug-eluting stents and drug-loaded nanoparticles are transforming CVDs management. Plant-based treatments, containing phytochemicals from Botanical sources, have potential cardiovascular benefits. These phytochemicals can mitigate risk factors associated with CVDs. The integration of these strategies opens new avenues for personalized, effective, and minimally invasive cardiovascular care. Altogether, traditional drugs, phytochemicals along with nanoparticles can revolutionize the future cardiac health care by identifying their signaling pathway, mechanism and interactome analysis.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Kusum Rani
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| | - Rashmi K Ambasta
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| |
Collapse
|
2
|
Khalaji A, Mehrtabar S, Jabraeilipour A, Doustar N, Rahmani Youshanlouei H, Tahavvori A, Fattahi P, Alavi SMA, Taha SR, Fazlollahpour-Naghibi A, Shariat Zadeh M. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther Adv Cardiovasc Dis 2024; 18:17539447241253134. [PMID: 38819836 PMCID: PMC11143841 DOI: 10.1177/17539447241253134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Cardiac fibrosis is a pivotal cardiovascular disease (CVD) process and represents a notable health concern worldwide. While the complex mechanisms underlying CVD have been widely investigated, recent research has highlighted microRNA-21's (miR-21) role in cardiac fibrosis pathogenesis. In this narrative review, we explore the molecular interactions, focusing on the role of miR-21 in contributing to cardiac fibrosis. Various signaling pathways, such as the RAAS, TGF-β, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, besides dysregulation in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs cause cardiac fibrosis. Besides, miR-21 in growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition play crucial roles. miR-21 capacity regulatory function presents promising insights for cardiac fibrosis. Moreover, this review discusses numerous approaches to control miR-21 expression, including antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation, all novel methods of cardiac fibrosis inhibition. In summary, this narrative review aims to assess the molecular mechanisms of cardiac fibrosis and its essential miR-21 function.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nadia Doustar
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Amir Tahavvori
- Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Payam Fattahi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Andarz Fazlollahpour-Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
3
|
Shi Y, Liu C, Xiong S, Yang L, Yang C, Qiao W, Liu Y, Liu S, Liu J, Dong G. Ling-Gui-Qi-Hua formula alleviates left ventricular myocardial fibrosis in rats with heart failure with preserved ejection fraction by blocking the transforming growth factor-β1 /Smads signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116849. [PMID: 37385575 DOI: 10.1016/j.jep.2023.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ling-Qui-Qi-Hua (LGQH) decoction, composed of Poria cocos (Schw.) Wolf, Cinnamomum cassia (L.) J. Presl, Paeonia veitchii Lynch, and Atractylodes macrocephala Koidz., is a compound formula derived from Ling-Gui-Zhu-Gan decoction recorded in the Treatise on Febrile and Miscellaneous. It has shown cardioprotective effects on patients or rats with heart failure with preserved ejection fraction (HFpEF). Nevertheless, the active ingredients of LGQH and its anti-fibrotic mechanism remain unknown. AIM OF THE STUDY To determine the active ingredients in LGQH decoction and verify that LGQH decoction may inhibit left ventricular (LV) myocardial fibrosis in HFpEF rats by blocking the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway from the perspective of animal experiments. MATERIALS AND METHODS First, liquid chromatography-mass spectrometry (LC-MS) technology was used to identify active components in the LGQH decoction. Secondly, a rat model of the metabolic syndrome-associated HFpEF phenotype was established and subsequently received LGQH intervention. The mRNA and protein expression of targets in the TGF-β1/Smads pathway were detected by quantitative real-time polymerase chain reaction and western blot analysis. Finally, molecular docking was conducted to examine the interactions between the active ingredients in the LGQH decoction and key proteins of the TGF-β1/Smads pathways. RESULTS According to LC-MS analysis, the LGQH decoction contained 13 active ingredients. In animal experiments, LGQH attenuated LV hypertrophy, enlargement, and diastolic function in HEpEF rats. Mechanically, LGQH not only down-regulated TGF-β1, Smad2, Smad3, Smad4, α-SMA, Coll I, and Coll III mRNA expressions and TGF-β1, Smad2, Smad3, P-Smad2/Smad3, Smad4, α-SMA, and Coll I protein expressions, but also up-regulated Smad7 mRNA and protein expressions, which ultimately led to myocardial fibrosis. Furthermore, molecular docking confirmed that 13 active ingredients in the LGQH decoction have excellent binding activities to the critical targets of the TGF-β1/Smads pathway. CONCLUSION LGQH is a modified herbal formulation with multiple active ingredients. It might alleviate LV remodeling and diastolic dysfunction and inhibit LV myocardial fibrosis by blocking TGF-β1/Smads pathways in HFpEF rats.
Collapse
Affiliation(s)
- Yujiao Shi
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Chunqiu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Shuang Xiong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Ling Yang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Chenguang Yang
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Wenbo Qiao
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Yongcheng Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Siyu Liu
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China
| | - Jiangang Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China.
| | - Guoju Dong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100091, China.
| |
Collapse
|
4
|
Zhang MY, Ma LJ, Jiang L, Gao L, Wang X, Huang YB, Qi XM, Wu YG, Liu XQ. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116422. [PMID: 36972781 DOI: 10.1016/j.jep.2023.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Juan Ma
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue-Bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-Ming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Li X, Sun C, Zhang J, Hu L, Yu Z, Zhang X, Wang Z, Chen J, Wu M, Liu L. Protective effects of paeoniflorin on cardiovascular diseases: A pharmacological and mechanistic overview. Front Pharmacol 2023; 14:1122969. [PMID: 37324475 PMCID: PMC10267833 DOI: 10.3389/fphar.2023.1122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background and ethnopharmacological relevance: The morbidity and mortality of cardiovascular diseases (CVDs) are among the highest of all diseases, necessitating the search for effective drugs and the improvement of prognosis for CVD patients. Paeoniflorin (5beta-[(Benzoyloxy)methyl] tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd] pentalen-1alpha (2H)-yl-beta-D-glucopyranoside, C23H28O11) is mostly derived from the plants of the family Paeoniaceae (a single genus family) and is known to possess multiple pharmacological properties in the treatment of CVDs, making it a promising agent for the protection of the cardiovascular system. Aim of the study: This review evaluates the pharmacological effects and potential mechanisms of paeoniflorin in the treatment of CVDs, with the aim of advancing its further development and application. Methods: Various relevant literatures were searched in PubMed, ScienceDirect, Google Scholar and Web of Science. All eligible studies were analyzed and summarized in this review. Results: Paeoniflorin is a natural drug with great potential for development, which can protect the cardiovascular system by regulating glucose and lipid metabolism, exerting anti-inflammatory, anti-oxidative stress, and anti-arteriosclerotic activities, improving cardiac function, and inhibiting cardiac remodeling. However, paeoniflorin was found to have low bioavailability, and its toxicology and safety must be further studied and analyzed, and clinical studies related to it must be carried out. Conclusion: Before paeoniflorin can be used as an effective therapeutic drug for CVDs, further in-depth experimental research, clinical trials, and structural modifications or development of new preparations are required.
Collapse
Affiliation(s)
- Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lanqing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeping Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Bachheti RK, Worku LA, Gonfa YH, Zebeaman M, Deepti, Pandey DP, Bachheti A. Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5741198. [PMID: 35832515 PMCID: PMC9273387 DOI: 10.1155/2022/5741198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading killers, accounting for 30% deaths. According to the WHO report, CVDs kill 17.9 million people per year, and there will be 22.2 million deaths from CVD in 2030. The death rates rise as people get older. Regarding gender, the death rate of women by CVD (51%) is higher than that of men (42%). To decrease and prevent CVD, most people rely on traditional medicine originating from the plant (phytochemicals) in addition to or in preference to commercially available drugs to recover from their illness. The CVD therapy efficacy of 92 plants, including 15 terrestrial plants, is examined. Some medicinal plants well known to treat CVD are, Daucus carota, Nerium oleander, Amaranthus Viridis, Ginkgo biloba, Terminalia arjuna, Picrorhiza kurroa, Salvia miltiorrhiza, Tinospora cordifolia, Mucuna pruriens, Hydrocotyle asiatica, Bombax ceiba, and Andrographis paniculate. The active phytochemicals found in these plants are flavonoids, polyphenols, plant sterol, plant sulphur compounds, and terpenoids. A general flavonoid mechanism of action is to prevent low-density lipoprotein oxidation, which promotes vasodilatation. Plant sterols prevent CVD by decreasing cholesterol absorption in the blood. Plant sulphur compound also prevent CVD by activation of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and inhibition of cholesterol synthesis. Quinone decreases the risk of CVD by increasing ATP production in mitochondria while terpenoids by decreasing atherosclerotic lesion in the aortic valve. Although several physiologically active compounds with recognized biological effects have been found in various plants because of the increased prevalence of CVD, appropriate CVD prevention and treatment measures are required. More research is needed to understand the mechanism and specific plants' phytochemicals responsible for treating CVD.
Collapse
Affiliation(s)
- Rakesh Kumar Bachheti
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Limenew Abate Worku
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Yilma Hunde Gonfa
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Faculty of Natural and Computational Science, Ambo University, Ambo, Ethiopia
| | - Meseret Zebeaman
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Deepti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| | - D. P. Pandey
- Department of Chemistry, Government P. G. College, Uttarkashi, India
| | - Archana Bachheti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| |
Collapse
|
7
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
8
|
Mechanism of Zhen Wu Decoction in the Treatment of Heart Failure Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4877920. [PMID: 35341142 PMCID: PMC8941561 DOI: 10.1155/2022/4877920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Heart failure (HF) is a serious manifestation or advanced stage of various cardiovascular diseases, and its mortality and rehospitalization rate are still on the rise in China. Based on the network pharmacology method, 59 components of Zhen Wu decoction (ZWD) and 83 target genes related to HF were obtained. Through the PPI network, four potential therapeutic targets were identified: AKT1, IL6, JUN, and MAPK8. The beneficial components of ZWD might intervene HF through the AGE-RAGE signalling pathway in the diabetes component, fluid shear stress and atherosclerosis, the TNF signalling pathway, TB, and Kaposi sarcoma related herpesvirus infection, according to a KEGG enrichment study. The protein interaction network of candidate targets was constructed by the STRING database, and the protein interaction network was clustered by MEODE software. GO and KEGG enrichment analyses were performed on the core modules obtained by clustering. Finally, AutoDock Vina software was used for molecular docking verification of key targets and active ingredients. The result was that 75 active ingredients and 109 genes were screened as potential active ingredients and potential targets of Shengjie Tongyu decoction for CHF treatment. The main active components were quercetin, luteolin, kaempferol, dehydrated icariin, isorhamnetin, formononetin, and other flavonoids. Il-6, MAPK1, MAPK8, AKT1, VEGFA, and JUN were selected as the core targets. Molecular docking showed that the key components were well connected with the target. GO enrichment analysis showed that Shengjie Tongyu decoction could play a role through multiple biological pathways including angiogenesis, regulation of endothelial cell proliferation, binding of cytokine receptors, negative regulation of apoptotic signalling pathways, regulation of nitric oxide synthase activity, and reactive oxygen metabolism. Key pathways mainly focus on the toll-like receptor signalling pathway, nod-like receptor signalling pathway, MAPK signalling pathway, mTOR signalling pathway, JAK-STAT signalling pathway, VEGF signalling pathway, and other pathways. Through molecular docking technology, it was found that a variety of effective components in ZWD, such as kaempferol. Molecular docking technology has preliminatively verified the network pharmacology and laid a foundation for the follow-up pharmacological research.
Collapse
|
9
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
10
|
Shao CL, Cui GH, Guo HD. Effects and Mechanisms of Taohong Siwu Decoction on the Prevention and Treatment of Myocardial Injury. Front Pharmacol 2022; 13:816347. [PMID: 35153789 PMCID: PMC8826566 DOI: 10.3389/fphar.2022.816347] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Taohong Siwu decoction (THSWD) is one of the classic prescriptions for promoting blood circulation and removing blood stasis. With the continuous in-depth excavation in basic and clinical research, it has been found that THSWD has made greater progress in the prevention and treatment of cardiovascular diseases. Mechanisms of the current studies have shown that it could prevent and treat the myocardial injury by inhibiting inflammatory reaction, antioxidant stress, inhibiting platelet aggregation, prolonging clotting time, anti-fibrosis, reducing blood lipids, anti-atherosclerosis, improving hemorheology and vascular pathological changes, regulating related signal pathways and other mechanisms to prevent and treat the myocardial injury, so as to protect cardiomyocytes and improve cardiac function. Many clinical studies have shown that THSWD is effective in the prevention and treatment of cardiovascular diseases related to myocardial injuries, such as coronary heart disease angina pectoris (CHD-AP), and myocardial infarction. In clinical practice, it is often used by adding and subtracting prescriptions, the combination of compound prescriptions and combinations of chemicals and so on. However, there are some limitations and uncertainties in both basic and clinical research of prescriptions. According to the current research, although the molecular biological mechanism of various active ingredients needs to be further clarified, and the composition and dose of the drug have not been standardized and quantified, this study still has exploration for scientific research and clinical practice. Therefore, this review mainly discusses the basic mechanisms and clinical applications of THSWD in the prevention and treatment of the myocardial injury caused by CHD-AP and myocardial infarction. The authors hope to provide valuable ideas and references for researchers and clinicians.
Collapse
Affiliation(s)
- Chang-Le Shao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Chen Y, He T, Zhang Z, Zhang J. Activation of SIRT1 by Resveratrol Alleviates Pressure Overload-Induced Cardiac Hypertrophy via Suppression of TGF-β1 Signaling. Pharmacology 2021; 106:667-681. [PMID: 34518478 DOI: 10.1159/000518464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Silent information regulator 1 (SIRT1) has been extensively investigated in the cardiovascular system and has been shown to play a pivotal role in mediating cell death/survival, energy production, and oxidative stress. However, the functional role of SIRT1 in pressure overload-induced cardiac hypertrophy and dysfunction remains unclear. Resveratrol (Rsv), a widely used activator of SIRT1, has been reported to protect against cardiovascular disease. We here examine whether activation of SIRT1 by Rsv attenuate pressure overload-induced cardiac hypertrophy and to identify the underlying molecular mechanisms. METHODS In vivo, rat model of pressure overload-induced myocardial hypertrophy was established by abdominal aorta constriction (AAC) procedure. In vitro, Angiotensin II (Ang II) was applied to induce hypertrophy in cultured neonatal rat cardiomyocytes (NCMs). Hemodynamics and histological analyses of the heart were evaluated. The expression of SIRT1, transforming growth factor-β1 (TGF-β1)/phosphorylated (p)-small mother against decapentaplegic (Smad)3 and hypertrophic markers were determined by immunofluorescence, real-time PCR, and Western blotting techniques. RESULTS In the current study, Rsv treatment improved left ventricular function and reduced left ventricular hypertrophy and cardiac fibrosis significantly in the pressure overload rats. The expression of SIRT1 was significantly reduced, while the expression of TGF-β1/p-Smad3 was significantly enhanced in AAC afflicted rat heart. Strikingly, treatment with Rsv restored the expressions of SIRT1 and TGF-β1/p-Smad3 under AAC influence. However, SIRT1 inhibitor Sirtinol (Snl) markedly prevented the effects of Rsv, which suggest that SIRT1 signaling pathway was involved in the cardiac protective effect of Rsv. In vitro studies performed in Ang II-induced hypertrophy in NCMs confirmed the cardiac protective effect of Rsv. Furthermore, the study presented that SIRT1 negatively correlated with the cardiac hypertrophy, cardiac fibrosis, and the TGF-β1/p-Smad3 expression. CONCLUSIONS Taken together, these results indicated that activation of SIRT1 by Rsv attenuates cardiac hypertrophy, cardiac fibrosis, and improves cardiac function possibly via regulation of the TGF-β1/p-Smad3 signaling pathway. Our study may provide a potential therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China.,Department of Neurosurgery, Shenzhen University Clinical Medical Academy, Shenzhen, China.,Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Zhongjun Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Anesthesiology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Junzhi Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Anesthesiology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Silva EAP, Santos DM, de Carvalho FO, Menezes IAC, Barreto AS, Souza DS, Quintans-Júnior LJ, Santos MRV. Monoterpenes and their derivatives as agents for cardiovascular disease management: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153451. [PMID: 33483251 DOI: 10.1016/j.phymed.2020.153451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monoterpenes are one of the most studied plant's secondary metabolites, they are found abundantly in essential oils of aromatic plants. They also have a great range of pharmacological properties, such as antihypertensive, bradycardic, antiarrhythmic and hypotensive. In the face of the burden caused by cardiovascular disease (CVDs) worldwide, studies using monoterpenes to assess their cardiovascular effects have increased over the years. PURPOSE This systematic review aimed to summarize the use of monoterpenes in animal models of any CVDs. METHODS PubMed, SCOPUS, LILACS and Web of Science databases were used to search for articles that used monoterpenes, in any type of administration, to treat or prevent CVDs in animal models. The PRISMA guidelines were followed. Two independent researchers extracted main characteristics of studies, methods and outcomes. Data obtained were analyzed qualitatively and quantitatively. RESULTS At the ending of the search process, 33 articles were selected for the systematic review. Of these, 17 articles were included in the meta-analysis. A total of 16 different monoterpenes were found for the treatment of hypertension, myocardial infarction, pulmonary hypertension, cardiac hypertrophy and arrhythmia. The main actions include hypotension, bradycardia, vasodilatation, antiarrhythmic, and antioxidant and antiapoptotic properties. From our data, it can be suggested that monoterpenes may be a significant source for new drug development. However, there is still a need to apply these knowledge into clinical research and a long path to pursue before putting them in the market. CONCLUSION The variability of cardiovascular effects demonstrated by the monoterpenes highlighted them as a promising candidates for treatment or prevention of CVDs. Nevertheless, studies that investigate their biological sites of action needs to be further encouraged.
Collapse
Affiliation(s)
- Eric Aian P Silva
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil
| | - Danillo M Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Fernanda Oliveira de Carvalho
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Igor A Cortes Menezes
- Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Curitiba-PR, 80060-900, Brazil
| | - André S Barreto
- Department of Health Education, Universidade Federal de Sergipe, Av. Governador Marcelo Deda, 13, Centro, Lagarto-SE, CEP 49400-000, Brazil
| | - Diego S Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Márcio R V Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil.
| |
Collapse
|
13
|
Jiao F, Varghese K, Wang S, Liu Y, Yu H, Booz GW, Roman RJ, Liu R, Fan F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J Cardiovasc Pharmacol 2021; 77:728-734. [PMID: 34001724 PMCID: PMC8169546 DOI: 10.1097/fjc.0000000000001021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Kevin Varghese
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
14
|
Paeoniflorin Attenuates Myocardial Fibrosis in Isoprenaline-induced Chronic Heart Failure Rats via Inhibiting P38 MAPK Pathway. Curr Med Sci 2020; 40:307-312. [PMID: 32337690 DOI: 10.1007/s11596-020-2178-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/25/2020] [Indexed: 12/28/2022]
Abstract
Paeoniforin (Pae) is a monoterpenoid glycoside compound and has many biological activities, such as immunosuppression, anti-inflammation and anti-cell proliferation. However, the effects and mechanisms of Pae on chronic heart failure (CHF) remain unclear. This study was conducted to assess the effects and mechanisms of Pae on myocardial fbrosis in isoprenaline (Iso)-induced CHF rats. Pae (20 mg/kg) was intragastrically administrated to CHF rats for 6 weeks. Cardiac structure and function were assessed. The protein and mRNA levels of transforming growth factor β1 (TGF-β1) and p38 were detected. Compared to Iso group, Pae could alleviate myocardial fibrosis and improve cardiac function in CHF rats. The levels of collagen volume fraction (13.75%±3.77% vs. 30.97%±4.22%, P<0.001) and perivascular collagen volume area (14.32%±2.50% vs. 28.31%±3.16%, P<0.001) were signifcantly reduced in Pae group as compared with those in Iso group. The expression of TGF-β1 protein (0.30±0.07 vs. 0.66±0.07, P<0.05) and mRNA (3.51±0.44 vs. 7.58±0.58, P<0.05) decreased signifcantly in Pae group as compared with that in Iso group. The expression of p38 protein (0.36±0.12 vs. 0.81±0.38, P<0.05) and mRNA (3.84±0.05 vs. 4.40±0.17, P<0.05) also decreased markedly in Pae group as compared with that in Iso group. Pae could attenuate myocardial fbrosis and improve cardiac function in CHF rats by down-regulating the p38 MAPK signaling pathway.
Collapse
|
15
|
Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther 2019; 207:107452. [PMID: 31836457 DOI: 10.1016/j.pharmthera.2019.107452] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
As a Traditional Chinese Medicine, Paeonia lactiflora Pallas has been used to treat pain, inflammation and immune disorders for more than 1000 years in China. Total glycoside of paeony (TGP) is extracted from the dried root of Paeonia lactiflora Pallas. Paeoniflorin (Pae) is the major active component of TGP. Our research group has done a lot of work in the pharmacological mechanisms of Pae and found that Pae possessed extensive anti-inflammatory and immune regulatory effects. Pae could inhibit inflammation in the animal models of autoimmune diseases, such as experimental arthritis, psoriatic mice and experimental autoimmune encephalomyelitis, and so on. Pae modulates the functions and activation of immune cells, decreases inflammatory medium production, and restores abnormal signal pathway. Pae could balance the subsets of immune cells through inhibiting abnormal activated cell subsets and restoring regulatory cell subsets. Pae could regulate signaling pathways (GPCR pathway, MAPKs /NF-κB patway, PI3K /Akt /mTOR pathway, JAK2 /STAT3 pathway, TGFβ /Smads, and etc.). TGP is composed of Pae, hydroxyl-paeoniflorin, paeonin, albiflorin and benzoylpaeoniflorin etc. Pae accounts for more than 40% of TGP. Like Pae, TGP has anti-inflammatory and immune regulatory effects. TGP has been widely used to treat autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, allergic contact dermatitis, and etc. in China. Furthermore, TGP has some superior features with immune regulation, gentle effect, many indications and few adverse drug reactions. These findings suggest that TGP may be a promising anti-inflammatory and immune drug with soft regulation and has more superiority in the treatment of AIDs. Currently, TGP is used for the treatment of RA, SLE and other AIDs in more than 1000 hospitals in China, which obtained great social and economic benefits.
Collapse
|
16
|
Phytochemicals as potential IKK-β inhibitor for the treatment of cardiovascular diseases in plant preservation: terpenoids, alkaloids, and quinones. Inflammopharmacology 2019; 28:83-93. [DOI: 10.1007/s10787-019-00640-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
|
17
|
Liu M, Ai J, Feng J, Zheng J, Tang K, Shuai Z, Yang J. Effect of paeoniflorin on cardiac remodeling in chronic heart failure rats through the transforming growth factor β1/Smad signaling pathway. Cardiovasc Diagn Ther 2019; 9:272-280. [PMID: 31275817 DOI: 10.21037/cdt.2019.06.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Cardiac remodeling is an important mechanism for the occurrence and development of chronic heart failure (CHF). Paeoniflorin (Pae) is the main active ingredient of Chinese herbaceous peony and has novel anti-inflammatory effect. This study was conducted to assess the effects and mechanisms of Pae on cardiac remodeling in CHF rats. Methods A cardiac remodeling rat model was induced by isoprenaline (Iso). Pae (20 µg/kg/d) was administrated to CHF rats for six weeks. Cardiac ultrasound was used to assess the structure and function of CHF rats. Collagen volume fraction (CVF) and perivascular collagen volume area of myocardial tissues were calculated. With real-time polymerase chain reaction and Western blot, the protein and mRNA levels of transforming growth factor β1 (TGF-β1) and Smad3 were detected. Results Compared to Iso group, Pae can alleviate cardiac remodeling and improve cardiac function in CHF rats. The levels of CVF and perivascular collagen volume area reduced in Pae group (P<0.05). The expression of TGF-β1 and Smad3 protein decreased in Pae and Cap group (P<0.05). Further, the expression of TGF-β1 and Smad3 mRNA also decreased markedly in the Pae group (P<0.05). Conclusions Pae could attenuate cardiac remodeling and improve cardiac function in CHF rats. The potential mechanism for the cardioprotective effect of Pae may be highly associated with the down-regulating of TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Mao Liu
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.,Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637007, China
| | - Jiao Ai
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637007, China
| | - Jie Feng
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.,Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637007, China
| | - Jiankang Zheng
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.,Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637007, China
| | - Kai Tang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637007, China
| | - Zhuang Shuai
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637007, China
| | - Jingxi Yang
- Department of Cardiology, Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.,Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637007, China
| |
Collapse
|
18
|
Lu Y, Liu W, Zhang M, Deng Y, Jiang M, Bai G. The Screening Research of NF- κB Inhibitors from Moutan Cortex Based on Bioactivity-Integrated UPLC-Q/TOF-MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6150357. [PMID: 30941197 PMCID: PMC6420966 DOI: 10.1155/2019/6150357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is a common and important pathological process, and nuclear factor-κB (NF-κB) is a key mediator of it. Moutan Cortex (MC), the dried root cortex of Paeonia suffruticosa Andr., is widely used as a remedy for the treatment of inflammatory diseases in Asian region. However, there are few studies on the systematic identification of NF-κB inhibitors of MC. In this study, the effect of inhibiting NF-κB activation of MC was assessed at the cellular level using a tumor necrosis factor-α (TNF-α) induced inflammatory model. Subsequently, ultra-performance liquid chromatography-quadrupole/time of flight-mass spectrometry (UPLC-Q/TOF-MS) combined with biological activity assay was established to screen and identify potential anti-inflammatory ingredients in MC. The results revealed that MC significantly inhibited the activation of NF-κB. Seven potential NF-κB inhibitors were screened from MC, including oxypaeoniflorin, paeoniflorin, galloylpaeoniflorin, benzoyloxypaeoniflorin, mudanpioside C, gallic acid, and paeonol. Among them, the NF-κB inhibitor activity of galloylpaeoniflorin, benzoyloxypaeoniflorin, and mudanpioside C is first reported here. In conclusion, the anti-inflammatory activity of MC was associated with the seven components mentioned above. And the bioactivity-integrated UPLC-Q/TOF which contains both chemical and bioactive details is suitable for screening active ingredients from natural medicines.
Collapse
Affiliation(s)
- Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yanfang Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| |
Collapse
|
19
|
Zou Y, Kong M. Tetrahydroxy stilbene glucoside alleviates palmitic acid-induced inflammation and apoptosis in cardiomyocytes by regulating miR-129-3p/Smad3 signaling. Cell Mol Biol Lett 2019; 24:5. [PMID: 30820195 PMCID: PMC6379973 DOI: 10.1186/s11658-018-0125-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Objective Tetrahydroxy stilbene glucoside (TSG) has been reported to exert a cytoprotective effect against various toxicants. However, the function and mechanism of TSG in palmitic acid (PA)-induced inflammation and apoptosis in cardiomyocytes are still unknown. The present study was designed to investigate the post-transcriptional mechanism in TSG-treated cardiomyocytes’ inflammation and apoptosis induced by PA. Methods The mRNA and protein levels were assayed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Cell proliferation was analyzed by CCK-8 assay. Annexin V-fluorescein isothiocyanate/polyimide (annexin V-FITC/PI) staining was used to evaluate apoptosis using flow cytometry. Results TSG restricted the detrimental effects, including the activated inflammatory response and apoptosis, of PA in cardiomyocytes, as well as the up-regulation of miR-129-3p and down-regulation of p-Smad3 expression. In addition, bioinformatics and experimental analysis suggested that Smad3 was a direct target of miR-129-3p, which could inhibit or enhance the expression of p-Smad by transfection with miR-129-3p mimics or inhibitors, respectively. Furthermore, our results demonstrated that overexpression of Smad3 reversed the inhibition of inflammation and apoptosis by overexpression of miR-129-3p in PA-stimulated cardiomyocytes. Conclusion TSG targeted to miR-129-3p/Smad3 signaling inhibited PA-induced inflammation and apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Yong Zou
- 1Department of Cardiovascular Medicine, Wuhan No. 6 Hospital, Hospital Affiliated to Jianghan University, No. 168, Xianggan Road, Wuhan, 430016 People's Republic of China
| | - Min Kong
- 2Department of Pharmacy, Wuhan No. 6 Hospital, Hospital Affiliated to Jianghan University, No. 168, Xianggan Road, Wuhan, 430016 People's Republic of China
| |
Collapse
|
20
|
Liu X, Chen K, Zhuang Y, Huang Y, Sui Y, Zhang Y, Lv L, Zhang G. Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats. Biomed Pharmacother 2019; 111:695-704. [PMID: 30611994 DOI: 10.1016/j.biopha.2018.12.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022] Open
Abstract
Paeoniflorin (PF) is a main bioactive component of the root of Paeonia lactiflora Pal, and previous investigations suggest that it may impact cardiac remodeling in spontaneous hypertensive rats (SHR) via the MAPK signaling pathway. Thus, the purpose of this investigation was to examine the impacts of paeoniflorin cardiac function in SHR rats. Cardiac function and blood pressure were observed using echocardiography and non-invasive tail pressure gauge. Heart histopathology was assessed by histological staining and transmission electron microscopy. Genomic sequencing was performed and signaling pathway enrichment analyzed the function of differentially expressed genes(DEGs). Biochemical kits were used to analyze the serum level of proinflammatory cytokines including TNF-α, IL-6 and MCP-1. qRT-PCR proved the mRNA expression of Ngfr, Grin2b, and Ntf4. MAPK pathways were determined via western blot. Paeoniflorin decreased blood pressure and increased hemodynamic indexes. 131 DEGs were identified (SHR vs. PF), and mainly enriched on the MAPK signaling pathway. Paeoniflorin reduced IL-6, MCP-1, Ngfr, Grin2b, and Ntf4, and also decreased p-JNK, p-Erk1/2, and p-p38 proteins compared with the SHR group. Paeoniflorin attenuated cardiac hypertrophy, cardiac fibrosis, and inflammation, and subsequently improved LV function. In conclusion, the cardioprotective role of paeoniflorin was associated with the inhibition of MAPK signaling pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Kai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China
| | - Yuxin Zhuang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Yu Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Yukun Sui
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Yubin Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China.
| | - Guohua Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
21
|
Xiao HB, Liang L, Luo ZF, Sun ZL. Paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice. Eur J Pharmacol 2018; 836:122-128. [PMID: 30096295 DOI: 10.1016/j.ejphar.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
Abstract
N-acetylgalactosaminyltransferase 2-Angiopoietin-like protein 3-lipoprotein lipase (GALNT2-ANGPTL3-LPL) pathway may be a useful pharmacologic objective for dyslipidemia. The present study was conducted to test the effect of paeoniflorin, a monoterpene Glycoside, on dyslipidemia in mice. Fifty mice were randomly divided into five groups (n = 10): three groups of apolipoprotein E-null (ApoE-/-) mice treated with paeoniflorin (10 or 20 or 30 mg/kg/day), untreated ApoE-/- mice group, and C57BL/6J control group. Six weeks after treatment, expression of hepatic ANGPTL3, hepatic GALNT2 and adipose tissue LPL, lipid levels in the liver and blood were quantified. Treatment with paeoniflorin (10 or 20 or 30 mg/kg) obviously down-regulated expression of ANGPTL3 and up-regulated expressions of GALNT2 and LPL concomitantly with elevated plasma high-density lipoprotein cholesterol level, reduced plasma concentrations of low-density lipoprotein cholesterol, total cholesterol, triglyceride, malonaldehyde, and 8-isoprostane. The present results suggest that paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice.
Collapse
Affiliation(s)
- Hong-Bo Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Liang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhi-Feng Luo
- Department of Basic Medicine, Xiangnan University, Chenzhou 423000, China
| | - Zhi-Liang Sun
- Hunan Engineering Research Center of Veterinary Drug, Changsha 410128, China
| |
Collapse
|
22
|
Li N, Zhou H, Tang Q. miR-133: A Suppressor of Cardiac Remodeling? Front Pharmacol 2018; 9:903. [PMID: 30174600 PMCID: PMC6107689 DOI: 10.3389/fphar.2018.00903] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
Cardiac remodeling, which is characterized by mechanical and electrical remodeling, is a significant pathophysiological process involved in almost all forms of heart diseases. MicroRNAs (miRNAs) are a group of non-coding RNAs of 20–25 nucleotides in length that primarily regulate gene expression by promoting mRNA degradation or post-transcriptional repression in a sequence-specific manner. Three miR-133 genes have been identified in the human genome, miR-133a-1, miR-133a-2, and miR-133b, which are located on chromosomes 18, 20, and 6, respectively. These miRNAs are mainly expressed in muscle tissues and appear to repress the expression of non-muscle genes. Based on accumulating evidence, miR-133 participates in the proliferation, differentiation, survival, hypertrophic growth, and electrical conduction of cardiac cells, which are essential for cardiac fibrosis, cardiac hypertrophy, and arrhythmia. Nevertheless, the roles of miR-133 in cardiac remodeling are ambiguous, and the mechanisms are also sophisticated, involving many target genes and signaling pathways, such as RhoA, MAPK, TGFβ/Smad, and PI3K/Akt. Therefore, in this review, we summarize the critical roles of miR-133 and its potential mechanisms in cardiac remodeling.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
23
|
Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Res Cardiol 2018; 113:37. [PMID: 30094473 DOI: 10.1007/s00395-018-0698-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) are the primary causes of death worldwide. Among the numerous signaling molecules involved in CVDs, transcriptional factors directly influence gene expression and play a critical role in regulating cell function and the development of diseases. Activating transcription factor (ATF) 3 is an adaptive-response gene in the ATF/cAMP responsive element-binding (CREB) protein family of transcription factors that acts as either a repressor or an activator of transcription via the formation of homodimers or heterodimers with other ATF/CREB members. A appropriate ATF3 expression is important for the normal physiology of cells, and dysfunction of ATF3 is associated with various pathophysiological responses such as inflammation, apoptosis, oxidative stress and endoplasmic reticulum stress, and diseases, including CVDs. This review focuses on the role of ATF3 in cardiac hypertrophy, heart failure, atherosclerosis, ischemic heart diseases, hypertension and diabetes mellitus to provide a novel therapeutic target for CVDs.
Collapse
|
24
|
Liu P, Xu Y, Yan H, Chen J, Shang EX, Qian DW, Jiang S, Duan JA. Characterization of molecular signature of the roots of Paeonia lactiflora during growth. Chin J Nat Med 2018; 15:785-793. [PMID: 29103464 DOI: 10.1016/s1875-5364(17)30110-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/21/2022]
Abstract
The roots of Paeoniae lactiflora Pall. are widely consumed as crude drugs in Asian countries due to their remarkable beneficial health effects. The present research was undertaken to illuminate the dynamic changes in metabolites and enzymes and facilitate selection of the harvesting time when the herb can provide optimum health benefits. P. lactiflora roots were analyzed at 12 stages of growth for monoterpenoid glycosides, phenols, nucleosides, nucleobases, amino acids, and polysaccharides by high-performance liquid chromatography with photodiode array detector, ultra-high pressure liquid chromatography coupled with tandem mass spectrometry, and UV spectrophotometry. The enzyme activities of plant β-glucosidases and esterases were determined by UV methods. The total content of monoterpenoid glycosides and phenols peaked in December. For nucleosides and nucleobases, the highest content appeared in April. The maximum phasic accumulation of the total amino acids took place in March, and the content of total polysaccharides reached a peak value in September. December, April, and March were selected as the appropriate harvesting times for producing natural medicinal or health food products. Plant β-glucosidases and esterases showed the highest activity in December and May, respectively. When the activity of β-glucosidase increased, esterase activity decreased, while the contents of oxypaeoniflora and paeoniflorin increased. When esterase activity increased, the contents of benzoylpaeoniflorin, paeoniflorin, and gallic acid decreased. In conclusion, the results from the present study would be useful in determination of the suitable time for harvesting P. lactiflora roots for medicinal purposes.
Collapse
Affiliation(s)
- Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Chen
- Institute of Bioengineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
25
|
Britto RMD, Silva-Neto JAD, Mesquita TRR, Vasconcelos CMLD, de Almeida GKM, Jesus ICGD, Santos PHD, Souza DS, Miguel-Dos-Santos R, de Sá LA, Dos Santos FSM, Pereira-Filho RN, Albuquerque-Júnior RLC, Quintans-Júnior LJ, Guatimosim S, Lauton-Santos S. Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food Chem Toxicol 2017; 111:557-566. [PMID: 29208507 DOI: 10.1016/j.fct.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Myrtenol is a monoterpene with multiple pharmacological activities. However, although monoterpenes have been proposed to play beneficial roles in a variety of cardiac disorders, pharmacological actions of myrtenol in the heart are not yet reported. Hence, the aim of this study was to evaluate whether myrtenol promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury, and the mechanisms involved in these effects. Male Wistar rats were orally treated for seven consecutive days with myrtenol (50 mg/kg) or N-acetyl cysteine (1.200 mg/kg, NAC). Afterward, hearts were subjected to myocardial IR injury. Here, we show that the severe impairment of contractile performance induced by IR was significantly prevented by myrtenol or NAC. Moreover, myrtenol abolished aberrant electrocardiographic waveform (ST-segment elevation), as well as reduced life-threatening arrhythmias and infarct size induced by IR injury. Importantly, myrtenol fully prevented the massive increase of cardiac reactive oxygen species generation and oxidative stress damage. Accordingly, myrtenol restored the impairment of endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and reductase) activities and balance of pro- and anti-apoptotic pathways (Bax and Bcl-2), associated with decreased apoptotic cells. Taken together, our data show that myrtenol promotes cardioprotection against IR injury through attenuation of oxidative stress and inhibition of pro-apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diego Santos Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Lucas Andrade de Sá
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
26
|
Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet‑derived growth factor‑BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol Med Rep 2017; 17:1676-1682. [PMID: 29257209 PMCID: PMC5780110 DOI: 10.3892/mmr.2017.8093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
The proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of vascular remodeling. In the present study, the effect of paeoniflorin (PAE) on the platelet derived growth factor-BB (PDGF-BB)-induced proliferation of primary cultured rat VSMCs and its molecular mechanism was investigated. The toxicity was determined by the try pan blue exclusion test. Cell proliferation was determined using a CCK-8 assay, DNA synthesis was assessed by measuring the incorporation of BrdU. Cell cycle progression was determined using PI staining and fluorescence-activated cell sorting. The level of intracellular reactive oxygen species (ROS) generation was assessed using dichlorodihydro fluorescein diacetate. mRNA expression was determined by reverse transcription quantitative polymerase chain reaction. Changes of p38, JNK, ERK1/2 signaling pathways were determined by western blot analysis. Cell migration was detected by scratch assay. PAE was demonstrated to significantly inhibit VSMC proliferation induced by PDGF-BB in a dose-and time-dependent manner without cell cytotoxicity. Thus, PAE blocked progression through the G0/G1 to Sphase of the cell cycle. Furthermore, inhibition of the cell cycle was associated with the inhibition of them RNA expression of cyclin D1, cyclin E, cyclin dependent kinase (CDK) 4 and CDK2 as well as with increased cyclin dependent kinase inhibitor 1A mRNA expression in PDGF-BB-stimulated VSMCs. Further studies showed that the beneficial effect of PAE on blocking VSMCs proliferation was related to the suppression of the ROS-mediated extra cellular signal-regulated kinase (ERK)1/2 and p38 signaling pathways, although PAE had no significant effect on the c-Jun N-terminal kinase signalling pathway. These results demonstrated that PAE suppressed PDGF-BB-induced VSMC proliferation through the ROS-mediated ERK1/2 and p38 signaling pathways, suggesting that it may be a feasible therapy for vascular remodelling diseases.
Collapse
|
27
|
Song S, Xiao X, Guo D, Mo L, Bu C, Ye W, Den Q, Liu S, Yang X. Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1α/VEGF pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:115-126. [PMID: 28899493 DOI: 10.1016/j.phymed.2017.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Paeoniflorin, a monoterpene glycoside, exerts protective vascular effects, showing good antioxidant properties. However, whether Paeoniflorin has protective effect against the oxidative damage induced by advanced oxidation protein products (AOPPs) in Human umbilical vein endothelial cells (HUVECs) is unknown, as is the underlying mechanism. PURPOSE The present study was designed to investigate the effect of Paeoniflorin on oxidative damage of HUVECs and elucidate its underlying molecular mechanisms. METHODS The fluorescence intensity of 2', 7'-dichlorofluorescein-diacetate (DCFH-DA) staining was detected for intracellular reactive oxygen species (ROS) production. The increases mitochondrial membrane potential (MMP) was measured via flow cytometry and confocal microscopy using MitoTracker® Deep Red/ MitoTracker® Green staining. The intracellular adenosine triphosphate (ATP) was measured by ATP Determination Kit according to the manufacturer's protocol. Nox2, Nox4, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and nuclear factor-κB (NF-κB) p65 expressions were detected by western blot. RESULTS Our results showed that Paeoniflorin increases MMP and ATP levels of HUVECs induced by AOPPs, and attenuates NF-κB p65 expression on HUVECs might mainly result from its antioxidant capability by suppressing ROS production. Moreover, we also found that Paeoniflorin can suppress HIF-1α and VEGF protein expression through a decrease of ROS production via down-regulation of Nox2/Nox4 expression in HUVECs. AOPP-induced RAGE mRNA up-regulation was blocked by Paeoniflorin treatment in HUVECs. CONCLUSION Our results provided the first experimental that Paeoniflorin protects against AOPP-induced oxidative damage in HUVECs, mainly through a mechanism involving a decrease in ROS production by the inhibition of Nox2/Nox4 and RAGE expression; restored ATP depletion and mitochondria dysfunction via ROS suppression; and down-regulated HIF-1α/VEGF, possibly via the ROS-NF-κB axis.
Collapse
Affiliation(s)
- Shaolian Song
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China; Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoyan Xiao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China
| | - Can Bu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China
| | - Wenbin Ye
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quanwen Den
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China
| | - Shiting Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China
| | - Xixiao Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China; Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Wu X, You Y, Qu G, Ma R, Zhang M. Simultaneous determination of ginsenoside Rb1, ginsenoside Rg1, paeoniflorin, albiflorin and oxypaeoniflorin in rat plasma by liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study of wen-Yang-Huo-Xue soft capsule. Biomed Chromatogr 2017; 31. [PMID: 28557007 DOI: 10.1002/bmc.4019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xiujun Wu
- Key Laboratory of Clinical Pharmacokinetic of TCM; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine; Shenyang China
| | - Yang You
- Key Laboratory of Radiation Protection and Nuclear Emergency of CDC; National Institute for Radiological Protection, China CDC; Beijing China
| | - Gonglin Qu
- Department of Cardiology; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine; Shenyang China
| | - Ran Ma
- Key Laboratory of Clinical Pharmacokinetic of TCM; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine; Shenyang China
| | - Mingxue Zhang
- Department of Cardiology; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine; Shenyang China
| |
Collapse
|
29
|
Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH, Kao YH. Cobalt chloride induces RhoA/ROCK activation and remodeling effect in H9c2 cardiomyoblasts: Involvement of PI3K/Akt and MAPK pathways. Cell Signal 2017; 36:25-33. [PMID: 28435089 DOI: 10.1016/j.cellsig.2017.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Chronic heart failure is a serious complication of myocardial infarction, one of the major causes of death worldwide that often leads to adverse cardiac hypertrophy and poor prognosis. Hypoxia-induced cardiac tissue remodeling is considered an important underlying etiology. This study aimed to delineate the signaling profiles of RhoA/ROCK, PI3K/Akt, and MAPK and their involvement in regulation of remodeling events in cultured H9c2 cardiomyoblast cells. In addition to its growth-suppressive effect, the hypoxia-mimetic chemical, cobalt chloride (CoCl2) significantly induced RhoA kinase activation as revealed by increased MBS phosphorylation and ROCK1/2 expression in H9c2 cells. CoCl2 treatment up-regulated type I collagen and MMP-9, but did not affect MMP-2, implicating its role in tissue remodeling. Kinetic signal profiling study showed that CoCl2 also elicited Smad2 hyperphosphorylation and its nuclear translocation in the absence of TGF-β1. In addition, CoCl2 activated Akt-, ERK1/2-, JNK-, and p38 MAPK-mediated signaling pathways. Kinase inhibition experiments demonstrated that hydroxyfasudil, a RhoA kinase inhibitor, significantly blocked the CoCl2- and lysophosphatidic acid-evoked Smad2 phosphorylation and overexpression of type I collagen and MMP-9, and that PI3K and ERK interplayed with RhoA and its downstream Smad2 signaling cascade. In conclusion, this study demonstrated that RhoA/ROCK, PI3K/Akt, and MAPK pathways are mechanistically involved in the CoCl2-stimulated tissue remodeling in H9c2 cardiomyoblast cells. Targeting signaling mediators might be used to mitigate hypoxia-related Smad2 phosphorylation and cardiac remodeling events in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Yueh-Hong Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Huei Chou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Ma Y, Zou H, Zhu XX, Pang J, Xu Q, Jin QY, Ding YH, Zhou B, Huang DS. Transforming growth factor β: A potential biomarker and therapeutic target of ventricular remodeling. Oncotarget 2017; 8:53780-53790. [PMID: 28881850 PMCID: PMC5581149 DOI: 10.18632/oncotarget.17255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine that is synthesized by many types of cells and regulates the cell cycle. Increasing evidence has led to TGF-β receiving increased and deserved attention in recent years because it may play a potentially novel and critical role in the development and progression of myocardial fibrosis and the subsequent progress of ventricular remodeling (VR). Numerous studies have highlighted a crucial role of TGF-β in VR and suggest potential therapeutic targets of the TGF-β signaling pathways for VR. Changes in TGF-β activity may elicit anti-VR activity and may serve as a novel therapeutic target for VR therapy. This review we discusses the smad-dependent signaling pathway, such as TGF-β/Smads, TGF-β/Sirtuins, TGF-β/BMP, TGF-β/miRNAs, TGF-β/MAPK, and Smad-independent signaling pathway of TGF-β, such as TGF-β/PI3K/Akt, TGF-β/Rho/ROCK,TGF-β/Wnt/β-catenin in the cardiac fibrosis and subsequent progression of VR. Furthermore, agonists and antagonists of TGF-β as potential therapeutic targets in VR are also described.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xing-Xing Zhu
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jie Pang
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiang Xu
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qin-Yang Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bing Zhou
- Department of Cardiac Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dong-Sheng Huang
- Department of Hepatobiliary Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
31
|
Hong C, Schüffler A, Kauhl U, Cao J, Wu CF, Opatz T, Thines E, Efferth T. Identification of NF-κB as Determinant of Posttraumatic Stress Disorder and Its Inhibition by the Chinese Herbal Remedy Free and Easy Wanderer. Front Pharmacol 2017; 8:181. [PMID: 28428751 PMCID: PMC5382210 DOI: 10.3389/fphar.2017.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental disorder developing after exposure to traumatic events. Although psychotherapy reveals some therapeutic effectiveness, clinically sustainable cure is still uncertain. Some Chinese herbal formulae are reported to work well clinically against mental diseases in Asian countries, but the safety and their mode of action are still unclear. In this study, we investigated the mechanisms of Chinese remedy free and easy wanderer (FAEW) on PTSD. We used a reverse pharmacology approach combining clinical data to search for mechanisms of PTSD with subsequent in vitro verification and bioinformatics techniques as follows: (1) by analyzing microarray-based transcriptome-wide mRNA expression profiling of PTSD patients; (2) by investigating the effect of FAEW and the antidepressant control drug fluoxetine on the transcription factor NF-κB using reporter cell assays and western blotting; (3) by performing molecular docking and literature data mining based on phytochemical constituents of FAEW. The results suggest an involvement of inflammatory processes mediated through NF-κB in the progression of PTSD. FAEW was non-cytotoxic in vitro and inhibited NF-κB activity and p65 protein expression. FAEW's anti-inflammatory compounds, i.e., paeoniflorin, isoliquiritin, isoliquiritin apioside and ononin were evaluated for binding to IκK and p65-RelA in a molecular docking approach. Paeoniflorin, albiflorin, baicalin, isoliquiritin and liquiritin have been reported to relieve depression in vivo or in clinical trials, which might be the active ingredients for FAEW against PTSD.
Collapse
Affiliation(s)
- Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Ulrich Kauhl
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| |
Collapse
|
32
|
Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem 2016; 417:87-96. [PMID: 27160937 DOI: 10.1007/s11010-016-2716-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
Diabetic cardiomyopathy, characterized by the presence of diastolic and/or systolic myocardial dysfunction, is one of the major causes of heart failure. Nobiletin, which is extracted from the fruit peel of citrus, is reported to possess anti-inflammatory, anti-oxidative, and hypolipidemic properties. The purpose of this study was to investigate whether nobiletin exerts the therapeutic effect on streptozotocin-induced diabetic cardiomyopathy (DCM) in mice. 80 experimental male C57BL mice were randomly assigned into four groups: sham + vehicle (VEH/SH), sham + nobiletin (NOB/SH), DCM + vehicle (VEH/DM), and DCM + nobiletin (NOB/DM). Nobiletin treatment ameliorated cardiac dysfunction in the DCM group, as shown by the result of echocardiography and hemodynamic measurements. Nobiletin treatment also blunted the mRNA expression of NADPH oxidase isoforms p67(phox), p22(phox), and p91(phox), and abated oxidative stress. Although administration of diabetic mice with nobiletin did not significantly effect the level of blood glucose, it decreased the TGF-β1, CTGF, fibronectin, and collagen Iα expressions and blunted cardiac fibrosis. In addition, nobiletin inhibited the activation of c-Jun NH2-terminal kinase (JNK), P38, and NF-κB in the cardiac tissue of diabetic mice. Collectively, our study indicates that treatment with nobiletin mitigates cardiac dysfunction and interstitial fibrosis, and these beneficial of nobiletin may belong to the suppression of JNK, P38, and NF-κB signaling pathways.
Collapse
|
33
|
Glutamine protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions through inhibition of the transforming growth factor-β1-Smad3 pathway. Arch Biochem Biophys 2016; 596:43-50. [DOI: 10.1016/j.abb.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
|
34
|
Effect of Xinfeng capsule on nuclear factor Kappa B/tumor necrosis factor alpha and transforming growth factor beta 1/Smads pathways in rats with cardiac injuries induced by adjuvant arthritis. J TRADIT CHIN MED 2016; 36:92-100. [PMID: 26946625 DOI: 10.1016/s0254-6272(16)30014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate effects of Xinfeng capsule (XFC) on cardiac function in rats with adjuvant arthritis (AA) and explore the mechanism of these effects. METHODS Forty-eight rats were randomly divided into normal control (NC), model control (MC), methotrexate (MTX) and XFC groups of equal size. In all groups except for the NC group, 0.1 mL Freund's complete adjuvant (FCA) was intracutaneously injected in the right rear vola pedis to induce inflammation. Drugs were applied beginning 19 days after induction of inflammation. Normal saline was administered to the NC and MC groups and 1 mg/ 100 g MTX (weekly) and 0.12 g/100 g XFC (daily) to the MTX and XFC groups, respectively. Rats were sacrificed after 30 day of treatment. Toe swelling degree (TSD), arthritis index (Al), cardiac function and expression of nuclear factor kappa B (NF-κB)/tumor necrosis factor alpha (TNF-α) and transforming growth factor beta 1 (TGF-β1)/Smads pathway proteins were measured. RESULTS In the MC group, TSD and Al were greatly increased, while parameters of cardiac function were decreased and morphological analysis showed myocardial cell damage. Expression of TNF-α, NF-KB, Smad2, P-Smad2, Smad4 and TGF-β1 proteins were elevated in cardiac tissue, while Smad7 expression was decreased. TSD and Al values closely correlated to parameters of cardiac function and to levels of proteins in the NF-κB/TNF-α and TGF-β1/Smads pathways. Certain correlations were identified among TGF-β1 and NF-KB, Smad2, P-Smad2 and Smad4. With XFC intervention, both TSD and Al were decreased and parameters of cardiac function and ultrastructure of myocardial cells improved. Expressions of NF-κB, Smad2, and Smad4 proteins were greatly decreased and Smad7 expression was elevated, as compared with levels in the MC and MTX groups. CONCLUSION XFC regulates expression of proteins in the NF-KB/TNF-α and TGF-β1/Smads pathways, decreases immune complex deposition in cardiac tissue and improves cardiac function in AA rats via upregulation of Smad7.
Collapse
|
35
|
Zeidler S, Meckbach C, Tacke R, Raad FS, Roa A, Uchida S, Zimmermann WH, Wingender E, Gültas M. Computational Detection of Stage-Specific Transcription Factor Clusters during Heart Development. Front Genet 2016; 7:33. [PMID: 27047536 PMCID: PMC4804722 DOI: 10.3389/fgene.2016.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 12/28/2022] Open
Abstract
Transcription factors (TFs) regulate gene expression in living organisms. In higher organisms, TFs often interact in non-random combinations with each other to control gene transcription. Understanding the interactions is key to decipher mechanisms underlying tissue development. The aim of this study was to analyze co-occurring transcription factor binding sites (TFBSs) in a time series dataset from a new cell-culture model of human heart muscle development in order to identify common as well as specific co-occurring TFBS pairs in the promoter regions of regulated genes which can be essential to enhance cardiac tissue developmental processes. To this end, we separated available RNAseq dataset into five temporally defined groups: (i) mesoderm induction stage; (ii) early cardiac specification stage; (iii) late cardiac specification stage; (iv) early cardiac maturation stage; (v) late cardiac maturation stage, where each of these stages is characterized by unique differentially expressed genes (DEGs). To identify TFBS pairs for each stage, we applied the MatrixCatch algorithm, which is a successful method to deduce experimentally described TFBS pairs in the promoters of the DEGs. Although DEGs in each stage are distinct, our results show that the TFBS pair networks predicted by MatrixCatch for all stages are quite similar. Thus, we extend the results of MatrixCatch utilizing a Markov clustering algorithm (MCL) to perform network analysis. Using our extended approach, we are able to separate the TFBS pair networks in several clusters to highlight stage-specific co-occurences between TFBSs. Our approach has revealed clusters that are either common (NFAT or HMGIY clusters) or specific (SMAD or AP-1 clusters) for the individual stages. Several of these clusters are likely to play an important role during the cardiomyogenesis. Further, we have shown that the related TFs of TFBSs in the clusters indicate potential synergistic or antagonistic interactions to switch between different stages. Additionally, our results suggest that cardiomyogenesis follows the hourglass model which was already proven for Arabidopsis and some vertebrates. This investigation helps us to get a better understanding of how each stage of cardiomyogenesis is affected by different combination of TFs. Such knowledge may help to understand basic principles of stem cell differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Sebastian Zeidler
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University GöttingenGöttingen, Germany; Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Cornelia Meckbach
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University Göttingen Göttingen, Germany
| | - Rebecca Tacke
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University Göttingen Göttingen, Germany
| | - Farah S Raad
- Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Angelica Roa
- Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Goethe University FrankfurtFrankfurt, Germany; DZHK (German Centre for Cardiovascular Research)Frankfurt, Germany
| | - Wolfram-Hubertus Zimmermann
- Heart Research Center Göttingen, University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Edgar Wingender
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University GöttingenGöttingen, Germany; DZHK (German Centre for Cardiovascular Research)Göttingen, Germany
| | - Mehmet Gültas
- University Medical Center Göttingen, Institute of Bioinformatics, Georg-August-University Göttingen Göttingen, Germany
| |
Collapse
|
36
|
Chen S, Xiong J, Zhan Y, Liu W, Wang X. Wogonin inhibits LPS-induced inflammatory responses in rat dorsal root ganglion neurons via inhibiting TLR4-MyD88-TAK1-mediated NF-κB and MAPK signaling pathway. Cell Mol Neurobiol 2015; 35:523-31. [PMID: 25504431 DOI: 10.1007/s10571-014-0148-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
Recent studies showed that the activation of toll-like receptor 4 (TLR4) on dorsal root ganglion (DRG) neurons might underlie neuropathic and inflammatory pain states. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties on the inflammatory reaction and TLR4 dependent pathways in lipopolysaccharide (LPS)-treated DRG neurons. Our results showed that wogonin not only inhibited the expression and interaction of TLR4, MyD88, and TAK1, but also reduced the activation of nuclear factor kappa B and mitogen-activated protein kinases pathway in LPS-treated DRG neurons. Moreover, wogonin significantly suppressed the release of pro-inflammatory mediators in LPS-induced DRG neurons, including cyclooxygenase-2, inducible nitric oxide synthases, interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha. Our results suggested that pre-treatment with wogonin could attenuate the TLR4-mediated inflammatory response in LPS-induced DRG neurons, thus might be beneficial for the treatment of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Shibiao Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China,
| | | | | | | | | |
Collapse
|
37
|
Zhou H, Yuan Y, Liu Y, Ni J, Deng W, Bian ZY, Dai J, Tang QZ. Icariin protects H9c2 cardiomyocytes from lipopolysaccharide‑induced injury via inhibition of the reactive oxygen species‑dependent c‑Jun N‑terminal kinases/nuclear factor-κB pathway. Mol Med Rep 2015; 11:4327-32. [PMID: 25647547 DOI: 10.3892/mmr.2015.3289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 12/09/2014] [Indexed: 11/06/2022] Open
Abstract
The inflammatory response is involved in the pathogenesis of the most common forms of heart disease. Icariin has a number of pharmacological actions, including anti‑inflammatory, anti‑oxidative and anti‑apoptotic effects. However, the role of icariin in cardiac inflammation has remained elusive. In the present study, H9c2 rat cardiomyocytes were stimulated by lipopolysaccharide (LPS) and treated with icariin. The results showed that icariin significantly reduced the increase in the mRNA expression of tumor necrosis factor α, interleukin (IL)‑1β and IL‑6 that occurred in response to LPS. Furthermore, icariin regulated the expression of B-cell lymphoma 2 and B-cell lymphoma 2-associated X, and rescued H9c2 cells from apoptosis. Incubation with 2',7'‑dichlorofluorescein diacetate demonstrated that icariin inhibited the production of intracellular reactive oxygen species (ROS). In addition, the phosphorylation of c‑Jun N‑terminal kinases (JNK), the degradation of inhibitor of κB and the nuclear translocation of nuclear factor‑κB (NF‑κB) p65 in LPS‑treated H9c2 cells were blocked by icariin treatment. These results suggested that icariin prevented cardiomyocytes from inflammatory response and apoptosis, and that this effect may be mediated by inhibition of the ROS‑dependent JNK/NF‑κB pathway.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
38
|
Time-Course of the Effects of QSYQ in Promoting Heart Function in Ameroid Constrictor-Induced Myocardial Ischemia Pigs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:571076. [PMID: 24817898 PMCID: PMC4003740 DOI: 10.1155/2014/571076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/09/2014] [Accepted: 03/09/2014] [Indexed: 11/17/2022]
Abstract
We aim to investigate the therapeutic effects of QSYQ on a pig myocardial ischemia (MI) model and to determine its mechanism of action. The MI model was induced by Ameroid constriction of the left anterior descending coronary (LAD) in Ba-Ma miniature pigs. Four groups were created: model group, digoxin group, QSYQ group, and sham-operated group. Heart function, Ang II, CGMP, TXB2, BNP, and cTnT were evaluated before (3 weeks after operation: 0 weeks) and at 2, 4, and 8 weeks after drug administration. After 8 weeks of administration, the pigs were sacrificed for cardiac injury measurements. Pigs with MI showed obvious histological changes, including BNP, cTnT, Ang II, CGRP, TXB2, and ET, deregulated heart function, and increased levels of apoptotic cells in myocardial tissue. Treatment with QSYQ improved cardiac remodeling by counteracting those events. The administration of QSYQ was accompanied by a restoration of heart function and of the levels of Ang II, CGRP, TXB2, ET BNP, and cTnT. In addition, QSYQ attenuated administration, reduced the apoptosis, and decreased the level of TNF- α and active caspase-3. In conclusion, administration of QSYQ could attenuate Ameroid constrictor induced myocardial ischemia, and TNF- α and active caspase-3 seemed to be the critical potential target of QSYQ.
Collapse
|
39
|
Zhou H, Yuan Y, Liu Y, Deng W, Zong J, Bian ZY, Dai J, Tang QZ. Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways. Exp Ther Med 2014; 7:1116-1122. [PMID: 24940396 PMCID: PMC3991546 DOI: 10.3892/etm.2014.1598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/20/2014] [Indexed: 01/30/2023] Open
Abstract
Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II-induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B-type natriuretic peptide, in a concentration-dependent manner. The cell surface area of Ang II-treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II-induced cell apoptosis and protein expression levels of Bax and cleaved-caspase 3, while the expression of Bcl-2 was increased by icariin. In addition, 2′,7′-dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in Ang II-treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II-induced hypertrophy and apoptosis by inhibiting the ROS-dependent JNK and p38 pathways.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Liu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Zong
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Dai
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
40
|
Protective effect of lycopene on cardiac function and myocardial fibrosis after acute myocardial infarction in rats via the modulation of p38 and MMP-9. J Mol Histol 2013; 45:113-20. [PMID: 24213878 DOI: 10.1007/s10735-013-9535-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/19/2013] [Indexed: 01/19/2023]
Abstract
Extracellular matrix (ECM) plays an important role in maintaining the left ventricular geometry and ventricular function, and the inhibition of ECM remodeling has therapeutic benefits that could alleviate the progression of ventricular remodeling. Recent studies have indicated that lycopene has cardioprotective effects. In this study, a rat myocardial infarction (MI) model was established by left anterior descending coronary artery ligation. After the operation, the rats received lycopene or saline. After 28 days, the rats underwent echocardiography detection and were sacrificed. Myocardial fibrosis was observed by Masson staining. Type I collagen, MMP-9, and MAPK protein expression were detected in the ischemic zone surrounding the MI by western blot. Treatment with lycopene increased the EF from 45.2 ± 3.12 % to 51.1 ± 4.63, and it decreased the LVEDd from 6.52 ± 0.37 mm to 6.18 ± 0.41 mm and the LVESd from 4.29 ± 0.63 to 3.94 ± 0.37 at 28 days post-myocardial infarction. Lycopene attenuated the MI-induced increase in MMP-9 and type I collagen expression, and inhibited p38 activation. Moreover, lycopene decreased the collagen volume fraction in the peri-infarcted zone. The data indicated that lycopene improved the cardiac function and ventricular remodeling by inhibiting p38 activation and MMP-9 expression.
Collapse
|
41
|
Zheng Q, Chen P, Xu Z, Li F, Yi XP. Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J Mol Histol 2013; 44:565-73. [PMID: 23591738 DOI: 10.1007/s10735-013-9507-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/09/2013] [Indexed: 12/31/2022]
Abstract
Beta-catenin is not only an adhering junction protein, but also the central player of the canonical Wnt signalling pathway. In order to investigate the roles of β-catenin in the mechanism of myocardial hypertrophy, we determined the expression and distribution of β-catenin in the cardiomyocytes of spontaneously hypertensive heart failure (SHHF) rats and age-matched Wistar-Kyoto (WKY) rats. We identified the reducing of β-catenin expression in the membrane protein fraction but increasing in the nuclear protein in the 6 and 12 month-old SHHF rats as compared with the age-matched WKY rats by Western blotting. Immunolabeling of β-catenin colocalized with cadherin at the intercalated disc sites and showed nuclear accumulation in myocytes of SHHF rats. We also revealed that the association between glycogen synthase kinase-3β and β-catenin had weakened in the 6 month-old SHHF rats as compared with the age-matched WKY rats by immunoprecipitation. These findings suggested that nuclear translocation of β-catenin might play important roles in regulating signal transduction in the decompensated hypertrophy stage.
Collapse
Affiliation(s)
- Qiaoli Zheng
- Department of Pathology, Sun Yat-sen University the Fifth Affiliated Hospital, 52 Meihua E. Road, Zhuhai, 519000, Guangdong, People's Republic of China
| | | | | | | | | |
Collapse
|