1
|
Zhou H, Liu P, Guo X, Fang W, Wu C, Zhang M, Ji Z. Fibroblast-derived miR-425-5p alleviates cardiac remodelling in heart failure via inhibiting the TGF-β1/Smad signalling. J Cell Mol Med 2024; 28:e70199. [PMID: 39527465 PMCID: PMC11552651 DOI: 10.1111/jcmm.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The pathological activation of cardiac fibroblasts (CFs) plays a crucial role in the development of pressure overload-induced cardiac remodelling and subsequent heart failure (HF). Growing evidence demonstrates that multiple microRNAs (miRNAs) are abnormally expressed in the pathophysiologic process of cardiovascular diseases, with miR-425 recently reported to be potentially involved in HF. In this study, we aimed to investigate the effects of fibroblast-derived miR-425-5p in pressure overload-induced HF and explore the underlying mechanisms. C57BL/6 mice were injected with a recombinant adeno-associated virus specifically designed to overexpress miR-425-5p in CFs, followed by transverse aortic constriction (TAC) surgery. Neonatal mouse CFs (NMCFs) were transfected with miR-425-5p mimics and subsequently stimulated with angiotensin II (Ang II). We found that miR-425-5p levels were significantly downregulated in HF mice and Ang II-treated NMCFs. Notably, fibroblast-specific overexpression of miR-425-5p markedly inhibited the proliferation and differentiation of CFs, thereby alleviating myocardial fibrosis, cardiac hypertrophy and systolic dysfunction. Mechanistically, the cardioprotective actions of miR-425-5p may be achieved by targeting the TGF-β1/Smad signalling. Interestingly, miR-425-5p mimics-treated CFs could also indirectly affect cardiomyocyte hypertrophy in this course. Together, our findings suggest that fibroblast-derived miR-425-5p mitigates TAC-induced HF, highlighting miR-425-5p as a potential diagnostic and therapeutic target for treating HF patients.
Collapse
Affiliation(s)
- Haijia Zhou
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Pengyun Liu
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Xuelin Guo
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Fang
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Chan Wu
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Mingming Zhang
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zhaole Ji
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
2
|
Takano APC, de André CDS, de Almeida R, Waked D, Veras MM, Saldiva PHN. Association of pulmonary black carbon accumulation with cardiac fibrosis in residents of Sao Paulo, Brazil. ENVIRONMENTAL RESEARCH 2024; 248:118380. [PMID: 38307182 DOI: 10.1016/j.envres.2024.118380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Evidence suggests that myocardial interstitial fibrosis, resulting from cardiac remodeling, may possibly be influenced by mechanisms activated through the inhalation of airborne pollutants. However, limited studies have explored the relationship between lifetime exposure to carbon-based particles and cardiac fibrosis, specially using post-mortem samples. This study examined whether long-term exposure to air pollution (estimated by black carbon accumulated in the lungs) is associated with myocardial fibrosis in urban dwellers of megacity of Sao Paulo. Data collection included epidemiological and autopsy-based approaches. Information was obtained by interviewing the next of kin and through the pathologist's report. The individual index of exposure to carbon-based particles, which we designed as the fraction of black carbon (FBC), was estimated through quantification of particles on the macroscopic lung surface. Myocardium samples were collected for histopathological analysis to evaluate the fraction of cardiac fibrosis. The association between cardiac fibrosis and FBC, age, sex, smoking status and hypertension was assessed by means of multiple linear regression models. Our study demonstrated that the association of FBC with cardiac fibrosis is influenced by smoking status and hypertension. Among hypertensive individuals, the cardiac fibrosis fraction tended to increase with the increase of the FBC in both groups of smokers and non-smokers. In non-hypertensive individuals, the association between cardiac fibrosis fraction and FBC was observed primarily in smokers. Long-term exposure to tobacco smoke and environmental particles may contribute to the cardiac remodeling response in individuals with pre-existing hypertension. This highlights the importance of considering hypertension as an additional risk factor for the health effects of air pollution on the cardiovascular system. Moreover, the study endorses the role of autopsy to investigate the effects of urban environment and personal habits in determining human disease.
Collapse
Affiliation(s)
- Ana Paula Cremasco Takano
- Universidade de Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil; Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | - Dunia Waked
- Universidade de Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | | | | |
Collapse
|
3
|
Yang MQ, Chen C, Mao YF, Li Y, Zhong X, Yu YD, Xue YT, Song YM. Application of network pharmacology and molecular docking approach to explore active compounds and potential pharmacological mechanisms of Aconiti Lateralis Radix Praeparata and Lepidii Semen Descurainiae Semen for treatment of heart failure. Medicine (Baltimore) 2022; 101:e30102. [PMID: 35984130 PMCID: PMC9387970 DOI: 10.1097/md.0000000000030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Heart failure (HF) is the end stage of the development of heart disease, whose prognosis is poor. The previous research of our team indicated that the formulae containing Aconiti Lateralis Radix Praeparata and Lepidii Semen Descurainiae Semen (ALRP-LSDS) could inhibit myocardial hypertrophy, inhibit cardiomyocyte apoptosis, delay myocardial remodeling (REM), and improve the prognosis of patients with HF effectively. In order to explore the mechanism of ALRP-LSDS for the treatment of HF, a combined approach of network pharmacology and molecular docking was conducted. METHODS Public database TCMSP was used to screen the active compounds of ALRP-LSDS. The targets of screened active compounds were obtained from the TCMSP database and predicted using the online analysis tool PharmMapper. The targets of HF were obtained from 6 databases including GeneCards, OMIM, DrugBank, TTD, PharmGKB, and DisGeNET. Protein-protein interaction and enrichment analysis were performed, respectively, by STRING and Metascape online tools after merging the targets of active compounds and HF. Cytoscape software was used to conduct networks. Finally, molecular docking was performed by Vina to verify the correlation between key targets and active compounds. RESULTS Final results indicated that the active compounds including β-sitosterol, isorhamnetin, quercetin, kaempferol, and (R)-norcoclaurine, the targets including AKT1, CASP3, and MAPK1 might be the main active compounds and key targets of ALRP-LSDS for the treatment of HF separately. The binding ability of AKT1 to the main active compounds was better compared with the other 2 key targets, which means it might be more critical. The pathways including AGE-RAGE signaling pathway in diabetic complications, Pathways in cancer, and Fluid shear stress and atherosclerosis might play important roles in the treatment of HF with ALRP-LSDS. In general, ALRP-LSDS could inhibit cardiomyocyte apoptosis, delay REM, and improve cardiac function through multicompound, multitarget, and multipathway, which contributes to the treatment of HF. CONCLUSIONS Based on the combined approach of network pharmacology and molecular docking, this study screened out the main active compounds, key targets, and main pathways of ALRP-LSDS for the treatment of HF, and revealed its potential mechanisms, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Meng-Qi Yang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cong Chen
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Fei Mao
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Ding Yu
- College for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Tao Xue
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yi-Tao Xue, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250024, China (e-mail: )
| | - Yong-Mei Song
- Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Zhou M, Chen JY, Chao ML, Zhang C, Shi ZG, Zhou XC, Xie LP, Sun SX, Huang ZR, Luo SS, Ji Y. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin 2022; 43:602-612. [PMID: 34011968 PMCID: PMC8888706 DOI: 10.1038/s41401-021-00674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiac fibrosis (CF) is an irreversible pathological process that occurs in almost all kinds of cardiovascular diseases. Phosphorylation-dependent activation of c-Jun N-terminal kinase (JNK) induces cardiac fibrosis. However, whether S-nitrosylation of JNK mediates cardiac fibrosis remains an open question. A biotin-switch assay confirmed that S-nitrosylation of JNK (SNO-JNK) increased significantly in the heart tissues of hypertrophic patients, transverse aortic constriction (TAC) mice, spontaneously hypertensive rats (SHRs), and neonatal rat cardiac fibroblasts (NRCFs) stimulated with angiotensin II (Ang II). Site to site substitution of alanine for cysteine in JNK was applied to determine the S-nitrosylated site. S-Nitrosylation occurred at both Cys116 and Cys163 and substitution of alanine for cysteine 116 and cysteine 163 (C116/163A) inhibited Ang II-induced myofibroblast transformation. We further confirmed that the source of S-nitrosylation was inducible nitric oxide synthase (iNOS). 1400 W, an inhibitor of iNOS, abrogated the profibrotic effects of Ang II in NRCFs. Mechanistically, SNO-JNK facilitated the nuclear translocation of JNK, increased the phosphorylation of c-Jun, and induced the transcriptional activity of AP-1 as determined by chromatin immunoprecipitation and EMSA. Finally, WT and iNOS-/- mice were subjected to TAC and iNOS knockout reduced SNO-JNK and alleviated cardiac fibrosis. Our findings demonstrate an alternative mechanism by which iNOS-induced SNO-JNK increases JNK pathway activity and accelerates cardiac fibrosis. Targeting SNO-JNK might be a novel therapeutic strategy against cardiac fibrosis.
Collapse
Affiliation(s)
- Miao Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Ji-yu Chen
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Meng-Lin Chao
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Chao Zhang
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zhi-guang Shi
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Xue-chun Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Li-ping Xie
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Shi-xiu Sun
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zheng-rong Huang
- grid.412625.6Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Shan-shan Luo
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 201203, China.
| |
Collapse
|
5
|
Zhu YC, Liang B, Gu N. Cellular and Molecular Mechanism of Traditional Chinese Medicine on Ventricular Remodeling. Front Cardiovasc Med 2021; 8:753095. [PMID: 34926607 PMCID: PMC8671630 DOI: 10.3389/fcvm.2021.753095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ventricular remodeling is related to the renin-angiotensin-aldosterone system, immune system, and various cytokines involved in inflammation, apoptosis, and cell signal regulation. Accumulated studies have shown that traditional Chinese medicine can significantly inhibit the process of ventricular remodeling, which may be related to the mechanism mentioned above. Here, we conducted a system overview to critically review the cellular and molecular mechanism of traditional Chinese medicine on ventricular remodeling. We mainly searched PubMed for basic research about the anti-ventricular remodeling of traditional Chinese medicine in 5 recent years, and then objectively summarized these researches. We included more than 25 kinds of Chinese herbal medicines including Qi-Li-Qian-Xin, Qi-Shen-Yi-Qi Pill, Xin-Ji-Er-Kang Formula, and Yi-Qi-Wen-Yang Decoction, and found that they can inhibit ventricular remodeling effectively through multi-components and multi-action targets, which are promoting the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Xu Y, Liang C, Luo Y, Zhang T. MBNL1 regulates isoproterenol-induced myocardial remodelling in vitro and in vivo. J Cell Mol Med 2021; 25:1100-1115. [PMID: 33295096 PMCID: PMC7812249 DOI: 10.1111/jcmm.16177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial remodelling is a common phenomenon in cardiovascular diseases, which threaten human health and the quality of life. Due to the lack of effective early diagnosis and treatment methods, the molecular mechanism of myocardial remodelling should be explored in depth. In this study, we observed the high expression of MBNL1 in cardiac tissue and peripheral blood of an isoproterenol (ISO)-induced cardiac hypertrophy mouse model. MBNL1 promoted ISO-induced cardiac hypertrophy and fibrosis by stabilizing Myocardin mRNA in vivo and in vitro. Meanwhile, an increase in MBNL1 may induce the apoptosis of cardiomyocytes treated with ISO via TNF-α signalling. Interestingly, MBNL1 can be activated by p300 in cardiomyocytes treated with ISO. At last, Myocardin can reverse activate the expression of MBNL1. These results suggest that MBNL1 may be a potential target for the early diagnosis and clinical treatment of myocardial remodelling.
Collapse
Affiliation(s)
- Yao Xu
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Chen Liang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Ying Luo
- College of Biological Science and TechnologyHubei Minzu UniversityEnshiChina
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic diseasesHubei Minzu UniversityEnshiChina
| | - Tongcun Zhang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
7
|
Mantzouratou P, Lavecchia AM, Novelli R, Xinaris C. Thyroid Hormone Signalling Alteration in Diabetic Nephropathy and Cardiomyopathy: a "Switch" to the Foetal Gene Programme. Curr Diab Rep 2020; 20:58. [PMID: 32984910 DOI: 10.1007/s11892-020-01344-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE OF THE REVIEW In this study, we will analyse how diabetes induces the reactivation of organs' developmental programmes and growth, discuss how thyroid hormone (TH) signalling orchestrates these processes, and suggest novel strategies for exploiting TH-mediated reparative and regenerative properties. RECENT FINDINGS Diabetes is a global pandemic that poses an enormous threat to human health. The kidney and the heart are among the organs that are the most severely damaged by diabetes over time. They undergo profound metabolic, structural, and functional changes that may be due (at least partially) to a recapitulation of their early developmental programmes. There is growing evidence to suggest that this foetal reprogramming is controlled by the TH/TH receptor alpha 1 (TRα1) axis. We introduce the hypothesis that in diabetes-and probably in other diseases-TH signalling acts in an antagonistic manner: it recapitulates a foetal profile that is necessary to coordinate metabolic and structural adaptations to sustain energy preservation and growth, but in the long term the persistent changes in these pathways are detrimental.
Collapse
Affiliation(s)
- Polyxeni Mantzouratou
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Angelo Michele Lavecchia
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Rubina Novelli
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
- University of Nicosia Medical School, 93 Agiou Nikolaou Street, Engomi, 2408, Nicosia, Cyprus.
| |
Collapse
|
8
|
LncRNA NRON alleviates atrial fibrosis through suppression of M1 macrophages activated by atrial myocytes. Biosci Rep 2020; 39:220726. [PMID: 31693733 PMCID: PMC6879354 DOI: 10.1042/bsr20192215] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to explore the role of long non-coding RNA (lncRNA) non-coding repressor of NFAT (NRON) in the atrial fibrosis and to explore whether its underlying mechanism was associated with macrophage polarization. Enzyme-linked immunosorbent assay (ELISA) analysis of pro-inflammatory cytokines revealed that NRON overexpression suppressed, whereas NRON silencing facilitated the angiotensin II (Ang II)-induced inflammatory response in primary cultured atrial myocytes. The chromatin immunoprecipitation (ChIP) results showed that nuclear factor of activated T cell 3 (NFATc3) was recruited to the promoter region of interleukin (IL) 12 (IL-12) in atrial myocytes. Further data showed that NRON overexpression suppressed, whereas NRON silencing further promoted the Ang II-induced NFATc3 nuclear transport and IL-12 expression in atrial myocytes. Moreover, RAW264.7 macrophages were incubated with the conditioned medium from the Ang II-treated atrial myocytes transfected with NRON and IL-12 overexpression vectors. IL-12 overexpression abrogated the NRON overexpression-mediated inhibition of RAW264.7 macrophage polarization to the M1-like phenotype. Additionally, mouse atrial fibroblasts were incubated with the culture medium from RAW264.7 macrophages treated as described above. IL-12 overexpression rescued the NRON overexpression-inhibited protein levels of fibrosis markers Collagen I/III in mouse atrial fibroblasts. Collectively, our data indicate that lncRNA NRON alleviates atrial fibrosis through suppression of M1 macrophages activated by atrial myocytes.
Collapse
|
9
|
Su C, Wang Q, Luo H, Jiao W, Tang J, Li L, Tian L, Chen X, Liu B, Yu X, Li S, Guo S, Wang W. Si-Miao-Yong-An decoction attenuates cardiac fibrosis via suppressing TGF-β1 pathway and interfering with MMP-TIMPs expression. Biomed Pharmacother 2020; 127:110132. [PMID: 32403042 DOI: 10.1016/j.biopha.2020.110132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Myocardial fibrosis is an important pathological feature of pressure overload cardiac remodeling. Si-Miao-Yong-An decoction (SMYAD), a traditional Chinese formula, is now clinically used in the treatment of cardiovascular diseases in China. However, its mechanisms in the prevention of heart failure are not fully revealed. PURPOSE To determine whether treatment with SMYAD for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a mice model of heart failure. METHODS Mice were subjected to transverse aorta constriction to generate pressure overload induced cardiac remodeling and then were administered SMYAD (14.85 g/kg/day) or captopril (16.5 mg/kg/day) intragastrically for 4 weeks after surgery. Echocardiography and immunohistochemical examination were used to evaluate the effects of SMYAD. The mRNA of collagen metabolism biomarkers were detected. Protein expression of TGF-β1/Smad and TGF-β1/TAK1/p38 pathway were assessed by Western blot. RESULTS SMYAD significantly improved cardiac function, increased left ventricle ejection fraction, and decreased fibrosis area and αSMA expression. Moreover, SMYAD reduced proteins expression related to collagen metabolism, including Col1, Col3, TIMP2 and CTGF. The increased levels of TGF-β1, Smad2, and Smad3 phosphorylation were attenuated in SMYAD group. In addition, SMYAD reduced the levels of TGF-β1, p-TAK1 and p-p38 compared with TAC group. CONCLUSIONS SMYAD improved cardiac fibrosis and heart failure by inhibition of TGF-β1/Smad and TGF-β1/TAK1/p38 pathway. SMYAD protected against cardiac fibrosis and maintained collagen metabolism balance by regulating MMP-TIMP expression. Taken together, these results indicate that SMYAD might be a promising therapeutic agent against cardiac fibrosis.
Collapse
Affiliation(s)
- Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lei Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
10
|
Abstract
Advanced heart failure (HF) is a progressive disease characterized by recurrent hospitalizations and high risk of mortality. Indeed, outcomes in late stages of HF approximate those seen in patients with various aggressive malignancies. Clinical trials assessing beneficial outcomes of new treatments in patients with cancer have used innovative approaches to measure impact on total disease burden or surrogates to assess treatment efficacy. Although most cardiovascular outcomes trials continue to use time-to-first event analyses to assess the primary efficacy end point, such analyses do not adequately reflect the impact of new treatments on the totality of the chronic disease burden. Consequently, patient enrichment and other strategies for ongoing clinical trial design, as well as new statistical methodologies, are important considerations, particularly when studying a population with advanced chronic HF. The DREAM-HF trial (Double-Blind Randomized Assessment of Clinical Events With Allogeneic Mesenchymal Precursor Cells in Advanced Heart Failure) is an ongoing, randomized, sham-controlled phase 3 study of the efficacy and safety of mesenchymal precursor cells as immunotherapy in patients with advanced chronic HF with reduced ejection fraction. Mesenchymal precursor cells have a unique multimodal mechanism of action that is believed to result in polarization of proinflammatory type 1 macrophages in the heart to an anti-inflammatory type 2 macrophage state, inhibition of maladaptive adverse left ventricular remodeling, reversal of cardiac and peripheral endothelial dysfunction, and recovery of deranged vasculature. The objective of DREAM-HF is to confirm earlier phase 2 results and evaluate whether mesenchymal precursor cells will reduce the rate of nonfatal recurrent HF-related major adverse cardiac events while delaying or preventing progression of HF to terminal cardiac events. DREAM-HF is an example of an ongoing contemporary events-driven cardiovascular cell-based immunotherapy study that has utilized the concepts of baseline disease enrichment, prognostic enrichment, and predictive enrichment to improve its efficiency by using accumulating data from within as well as external to the trial. Adaptive enrichment designs and strategies are important components of a rational approach to achieve clinical research objectives in shorter clinical trial timelines and with increased cost-effectiveness without compromising ethical standards or the overall statistical integrity of the study. The DREAM-HF trial also presents an alternative approach to traditional composite time-to-first event primary efficacy end points. Statistical methodologies such as the joint frailty model provide opportunities to expand the scope of events-driven HF with reduced ejection fraction clinical trials to utilize time to recurrent nonfatal HF-related major adverse cardiac events as the primary efficacy end point without compromising the integrity of the statistical analyses for terminal cardiac events. In advanced chronic HF with reduced ejection fraction studies, the joint frailty model is utilized to reflect characteristics of the high-risk patient population with important unmet therapeutic needs. In some cases, use of the joint frailty model may substantially reduce sample size requirements. In addition, using an end point that is acceptable to the Food and Drug Administration and the European Medicines Agency, such as recurrent nonfatal HF-related major adverse cardiac events, enables generation of clinically relevant pharmacoeconomic data while providing comprehensive views of the patient's overall cardiovascular disease burden. The major goal of this review is to provide lessons learned from the ongoing DREAM-HF trial that relate to biologic plausibility and flexible clinical trial design and are potentially applicable to other development programs of innovative therapies for patients with advanced cardiovascular disease. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02032004.
Collapse
Affiliation(s)
| | | | - Barry Greenberg
- University of California, San Diego School of Medicine, La Jolla (B.G.)
- Advanced Heart Failure Treatment Program, Sulpizio Cardiovascular Center, University of California, San Diego Healthcare System, La Jolla (B.G.)
| | - Emerson C. Perin
- Stem Cell Center and Adult Cardiology, Texas Heart Institute, Houston (E.C.P.)
| |
Collapse
|
11
|
Atorvastatin Improves Ventricular Remodeling after Myocardial Infarction by Interfering with Collagen Metabolism. PLoS One 2016; 11:e0166845. [PMID: 27880844 PMCID: PMC5120826 DOI: 10.1371/journal.pone.0166845] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/05/2016] [Indexed: 12/27/2022] Open
Abstract
Purpose Therapeutic strategies that modulate ventricular remodeling can be useful after acute myocardial infarction (MI). In particular, statins may exert effects on molecular pathways involved in collagen metabolism. The aim of this study was to determine whether treatment with atorvastatin for 4 weeks would lead to changes in collagen metabolism and ventricular remodeling in a rat model of MI. Methods Male Wistar rats were used in this study. MI was induced in rats by ligation of the left anterior descending coronary artery (LAD). Animals were randomized into three groups, according to treatment: sham surgery without LAD ligation (sham group, n = 14), LAD ligation followed by 10mg atorvastatin/kg/day for 4 weeks (atorvastatin group, n = 24), or LAD ligation followed by saline solution for 4 weeks (control group, n = 27). After 4 weeks, hemodynamic characteristics were obtained by a pressure-volume catheter. Hearts were removed, and the left ventricles were subjected to histologic analysis of the extents of fibrosis and collagen deposition, as well as the myocyte cross-sectional area. Expression levels of mediators involved in collagen metabolism and inflammation were also assessed. Results End-diastolic volume, fibrotic content, and myocyte cross-sectional area were significantly reduced in the atorvastatin compared to the control group. Atorvastatin modulated expression levels of proteins related to collagen metabolism, including MMP1, TIMP1, COL I, PCPE, and SPARC, in remote infarct regions. Atorvastatin had anti-inflammatory effects, as indicated by lower expression levels of TLR4, IL-1, and NF-kB p50. Conclusion Treatment with atorvastatin for 4 weeks was able to attenuate ventricular dysfunction, fibrosis, and left ventricular hypertrophy after MI in rats, perhaps in part through effects on collagen metabolism and inflammation. Atorvastatin may be useful for limiting ventricular remodeling after myocardial ischemic events.
Collapse
|
12
|
Yang L, Ni L, Duan Q, Wang X, Chen C, Chen S, Chaugai S, Zeldin DC, Tang JR, Wang DW. CYP epoxygenase 2J2 prevents cardiac fibrosis by suppression of transmission of pro-inflammation from cardiomyocytes to macrophages. Prostaglandins Other Lipid Mediat 2015; 116-117:64-75. [PMID: 25686540 DOI: 10.1016/j.prostaglandins.2015.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/03/2023]
Abstract
Cytochrome P450 epoxygenase (CYP450)-derived epoxyeicosatrienoic acids (EETs) are important regulators of cardiac remodeling; but the underlying mechanism remains unclear. The present study aimed to elucidate how EETs regulated cardiac fibrosis in response to isoprenaline (Iso) or angiotensin (Ang) II. Cardiac-specific human CYP2J2 transgenic mice (Tr) and wild-type (WT) C57BL/6 littermates were infused with Iso- or Ang II. Two weeks after infusion, Tr mice showed more alleviative cardiac fibrosis and inflammation compared with WT mice. In vitro, we found Iso or Ang II induced nuclear transfer of NF-κB p65 and inflammatory cytokines expression in cardiomyocytes. Furthermore, inflammation response emerged in macrophages cultured in cardiomyocytes-conditioned medium. When pretreatment with 14,15-EET in cardiomyocytes, the inflammatory response was markedly suppressed and the transmission of inflammation from cardiomyocytes to macrophages was reduced. In conclusion, CYP2J2 and EETs prevent cardiac fibrosis and cardiac dysfunction by suppressing transmission of pro-inflammation from cardiomyocytes to macrophages in heart, suggesting that elevation of EETs level could be a potential strategy to prevent cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Ni
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Quanlu Duan
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xingxu Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chen Chen
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Song Chen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Sandip Chaugai
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - D C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jia Rong Tang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Dao Wen Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
13
|
van Nierop BJ, Coolen BF, Bax NA, Dijk WJR, van Deel ED, Duncker DJ, Nicolay K, Strijkers GJ. Myocardial perfusion MRI shows impaired perfusion of the mouse hypertrophic left ventricle. Int J Cardiovasc Imaging 2014; 30:619-28. [DOI: 10.1007/s10554-014-0369-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
|
14
|
van Nierop BJ, van Assen HC, van Deel ED, Niesen LBP, Duncker DJ, Strijkers GJ, Nicolay K. Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI. PLoS One 2013; 8:e55424. [PMID: 23383329 PMCID: PMC3562232 DOI: 10.1371/journal.pone.0055424] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/22/2012] [Indexed: 11/18/2022] Open
Abstract
Background Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure. Methods MRI was used to quantify RV and LV function and morphology in healthy (n = 4) and sham operated (n = 3) C57BL/6 mice, and animals with a mild (n = 5) and a severe aortic constriction (n = 10). Results Mice subjected to a mild constriction showed increased LV mass (P<0.01) and depressed LV ejection fraction (EF) (P<0.05) as compared to controls, but had similar RVEF (P>0.05). Animals with a severe constriction progressively developed LV hypertrophy (P<0.001), depressed LVEF (P<0.001), followed by a declining RVEF (P<0.001) and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P<0.05). Conclusions Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence.
Collapse
Affiliation(s)
- Bastiaan J van Nierop
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Anagnostopoulos CD, Cokkinos DV. Prediction of left ventricular remodelling by radionuclide imaging. Eur J Nucl Med Mol Imaging 2011; 38:1120-3. [DOI: 10.1007/s00259-011-1797-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|