1
|
Traub J, Schuhmann MK, Sell R, Frantz S, Störk S, Stoll G, Frey A. S100B Serum Levels in Chronic Heart Failure Patients: A Multifaceted Biomarker Linking Cardiac and Cognitive Dysfunction. Int J Mol Sci 2024; 25:9094. [PMID: 39201780 PMCID: PMC11354705 DOI: 10.3390/ijms25169094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
S100 calcium-binding protein B (S100B) is a protein primarily known as a biomarker for central nervous system (CNS) injuries, reflecting blood-brain barrier (BBB) permeability and dysfunction. Recently, S100B has also been implicated in cardiovascular diseases, including heart failure (HF). Thus, we investigated serum levels of S100B in 146 chronic HF patients from the Cognition.Matters-HF study and their association with cardiac and cognitive dysfunction. The median S100B level was 33 pg/mL (IQR: 22-47 pg/mL). Higher S100B levels were linked to longer HF duration (p = 0.014) and increased left atrial volume index (p = 0.041), but also with a higher prevalence of mild cognitive impairment (p = 0.023) and lower visual/verbal memory scores (p = 0.006). In a multivariable model, NT-proBNP levels independently predicted S100B (T-value = 2.27, p = 0.026). S100B did not impact mortality (univariable HR (95% CI) 1.00 (0.99-1.01); p = 0.517; multivariable HR (95% CI) 1.01 (1.00-1.03); p = 0.142), likely due to its reflection of acute injury rather than long-term outcomes and the mild HF phenotype in our cohort. These findings underscore S100B's value in comprehensive disease assessment, reflecting both cardiac dysfunction and potentially related BBB disruption.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (S.F.); (A.F.)
- German Comprehensive Heart Failure Center, University Hospital Würzburg, 97087 Würzburg, Germany
| | - Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany; (M.K.S.); (G.S.)
| | - Roxanne Sell
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (S.F.); (A.F.)
- German Comprehensive Heart Failure Center, University Hospital Würzburg, 97087 Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (S.F.); (A.F.)
- German Comprehensive Heart Failure Center, University Hospital Würzburg, 97087 Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany; (M.K.S.); (G.S.)
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany; (S.F.); (A.F.)
- German Comprehensive Heart Failure Center, University Hospital Würzburg, 97087 Würzburg, Germany
| |
Collapse
|
2
|
Zhou Y, Zha Y, Yang Y, Ma T, Li H, Liang J. S100 proteins in cardiovascular diseases. Mol Med 2023; 29:68. [PMID: 37217870 DOI: 10.1186/s10020-023-00662-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Cardiovascular diseases have become a serious threat to human health and life worldwide and have the highest fatality rate. Therefore, the prevention and treatment of cardiovascular diseases have become a focus for public health experts. The expression of S100 proteins is cell- and tissue-specific; they are implicated in cardiovascular, neurodegenerative, and inflammatory diseases and cancer. This review article discusses the progress in the research on the role of S100 protein family members in cardiovascular diseases. Understanding the mechanisms by which these proteins exert their biological function may provide novel concepts for preventing, treating, and predicting cardiovascular diseases.
Collapse
Affiliation(s)
- Yue Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Yiwen Zha
- Medical College, Yangzhou University, Yangzhou, China
| | - Yongqi Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Tan Ma
- Medical College, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Hongliang Li
- Medical College, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Jingyan Liang
- Medical College, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Zhang G, Cui X, Zhang L, Liu G, Zhu X, Shangguan J, Zhang W, Zheng Y, Zhang H, Tang J, Zhang J. Uncovering the genetic links of SARS-CoV-2 infections on heart failure co-morbidity by a systems biology approach. ESC Heart Fail 2022; 9:2937-2954. [PMID: 35727093 PMCID: PMC9349450 DOI: 10.1002/ehf2.14003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023] Open
Abstract
Aims The co‐morbidities contribute to the inferior prognosis of COVID‐19 patients. Recent reports suggested that the higher co‐morbidity rate between COVID‐19 and heart failure (HF) leads to increased mortality. However, the common pathogenic mechanism between them remained elusive. Here, we aimed to reveal underlying molecule mechanisms and genetic correlation between COVID‐19 and HF, providing a new perspective on current clinical management for patients with co‐morbidity. Methods The gene expression profiles of HF (GSE26887) and COVID‐19 (GSE147507) were retrieved from the GEO database. After identifying the common differentially expressed genes (|log2FC| > 1 and adjusted P < 0.05), integrated analyses were performed, namely, enrichment analyses, protein–protein interaction network, module construction, critical gene identification, and functional co‐expression analysis. The performance of critical genes was validation combining hierarchical clustering, correlation, and principal component analysis in external datasets (GSE164805 and GSE9128). Potential transcription factors and miRNAs were obtained from the JASPER and RegNetwork repository used to construct co‐regulatory networks. The candidate drug compounds in potential genetic link targets were further identified using the DSigDB database. Results The alteration of 12 genes was identified as a shared transcriptional signature, with the role of immune inflammatory pathway, especially Toll‐like receptor, NF‐kappa B, chemokine, and interleukin‐related pathways that primarily emphasized in response to SARS‐CoV‐2 complicated with HF. Top 10 critical genes (TLR4, TLR2, CXCL8, IL10, STAT3, IL1B, TLR1, TP53, CCL20, and CXCL10) were identified from protein–protein interaction with topological algorithms. The unhealthy microbiota status and gut–heart axis in co‐morbidity were identified as potential disease roads in bridging pathogenic mechanism, and lipopolysaccharide acts as a potential marker for monitoring HF during COVID‐19. For transcriptional and post‐transcriptional levels, regulation networks tightly coupling with both disorders were constructed, and significant regulator signatures with high interaction degree, especially FOXC1, STAT3, NF‐κB1, miR‐181, and miR‐520, were detected to regulate common differentially expressed genes. According to genetic links targets, glutathione‐based antioxidant strategy combined with muramyl dipeptide‐based microbe‐derived immunostimulatory therapies was identified as promising anti‐COVID‐19 and anti‐HF therapeutics. Conclusions This study identified shared transcriptomic and corresponding regulatory signatures as emerging therapeutic targets and detected a set of pharmacologic agents targeting genetic links. Our findings provided new insights for underlying pathogenic mechanisms between COVID‐19 and HF.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, Canterbury, New Zealand
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Gangqiong Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jiahong Shangguan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Wenjing Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yingying Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Hui Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| |
Collapse
|
4
|
Krocker JD, Lee KH, Henriksen HH, Wang YWW, Schoof EM, Karvelsson ST, Rolfsson Ó, Johansson PI, Pedroza C, Wade CE. Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. Int J Mol Sci 2022; 23:6213. [PMID: 35682894 PMCID: PMC9181752 DOI: 10.3390/ijms23116213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D. Krocker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Hanne H. Henriksen
- Center for Endotheliomics CAG, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Yao-Wei Willa Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Sigurdur T. Karvelsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Pär I. Johansson
- Center for Endotheliomics CAG, Department of Clinical Immunology, Rigshospitalet, & Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| |
Collapse
|
5
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Involvement of Oxidative Stress in Protective Cardiac Functions of Calprotectin. Cells 2022; 11:cells11071226. [PMID: 35406797 PMCID: PMC8997643 DOI: 10.3390/cells11071226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Calprotectin (CLP) belonging to the S-100 protein family is a heterodimeric complex (S100A8/S100A9) formed by two binding proteins. Upon cell activation, CLP stored in neutrophils is released extracellularly in response to inflammatory stimuli and acts as damage-associated molecular patterns (DAMPs). S100A8 and S100A9 possess both anti-inflammatory and anti-bacterial properties. The complex is a ligand of the toll-like receptor 4 (TLR4) and receptor for advanced glycation end (RAGE). At sites of infection and inflammation, CLP is a target for oxidation due to its co-localization with neutrophil-derived oxidants. In the heart, oxidative stress (OS) responses and S100 proteins are closely related and intimately linked through pathophysiological processes. Our review summarizes the roles of S100A8, S100A9 and CLP in the inflammation in relationship with vascular OS, and we examine the importance of CLP for the mechanisms driving in the protection of myocardium. Recent evidence interpreting CLP as a critical modulator during the inflammatory response has identified this alarmin as an interesting drug target.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
- Correspondence:
| | - Geoffrey Dogon
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Eve Rigal
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Marianne Zeller
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Yves Cottin
- Service de Cardiologie, CHU-Dijon, 21000 Dijon, France;
| | - Catherine Vergely
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| |
Collapse
|
6
|
Di Salvo E, Di Gioacchino M, Tonacci A, Casciaro M, Gangemi S. Alarmins, COVID-19 and comorbidities. Ann Med 2021; 53:777-785. [PMID: 34042528 PMCID: PMC8168739 DOI: 10.1080/07853890.2021.1921252] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus SARS-CoV-2, the aetiological agent of COVID-19 disease, is representing a worldwide threat for the medical community and the society at large so that it is being defined as "the twenty-first-century disease". Often associated with a severe cytokine storm, leading to more severe cases, it is mandatory to block such occurrence early in the disease course, to prevent the patients from having more severe, sometimes fatal, outcomes. In this framework, early detection of "danger signals", possibly represented by alarmins, can represent one of the most promising strategies to effectively tailor the disease and to better understand the underlying mechanisms eventually leading to death or severe consequences. In light of such considerations, the present article aims at evaluating the role of alarmins in patients affected by COVID-19 disease and the relationship of such compounds with the most commonly reported comorbidities. The conducted researches demonstrated yet poor literature on this specific topic, however preliminarily confirming a role for danger signals in the amplification of the inflammatory reaction associated with SARS-CoV-2 infection. As such, a number of chronic conditions, including metabolic syndrome, gastrointestinal and respiratory diseases, in turn, associated with higher levels of alarmins, both foster the infection and predispose to a worse prognosis. According to these preliminary data, prompt detection of high levels of alarmins in patients with COVID-19 and co-morbidities could suggest an immediate intense anti-inflammatory treatment.Key messageAlarmins have a role in the amplification of the inflammatory reaction associated with SARS-CoV-2 infectiona prompt detection of high levels of alarmins in patients with COVID-19 could suggest an immediate intense anti-inflammatory treatment.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
- YDA – Institute for Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| | - Alessandro Tonacci
- National Research Council of Italy (IFC-CNR), Clinical Physiology Institute, Pisa, Italy
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, Messina
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, Messina
| |
Collapse
|
7
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
8
|
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent Advances in Gene Therapy for Cardiac Tissue Regeneration. Int J Mol Sci 2021; 22:9206. [PMID: 34502115 PMCID: PMC8431496 DOI: 10.3390/ijms22179206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for enormous socio-economic impact and the highest mortality globally. The standard of care for CVDs, which includes medications and surgical interventions, in most cases, can delay but not prevent the progression of disease. Gene therapy has been considered as a potential therapy to improve the outcomes of CVDs as it targets the molecular mechanisms implicated in heart failure. Cardiac reprogramming, therapeutic angiogenesis using growth factors, antioxidant, and anti-apoptotic therapies are the modalities of cardiac gene therapy that have led to promising results in preclinical studies. Despite the benefits observed in animal studies, the attempts to translate them to humans have been inconsistent so far. Low concentration of the gene product at the target site, incomplete understanding of the molecular pathways of the disease, selected gene delivery method, difference between animal models and humans among others are probable causes of the inconsistent results in clinics. In this review, we discuss the most recent applications of the aforementioned gene therapy strategies to improve cardiac tissue regeneration in preclinical and clinical studies as well as the challenges associated with them. In addition, we consider ongoing gene therapy clinical trials focused on cardiac regeneration in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.K.); (Z.Z.); (M.S.); (G.Y.)
| |
Collapse
|
9
|
IL-33 in Mental Disorders. ACTA ACUST UNITED AC 2021; 57:medicina57040315. [PMID: 33810498 PMCID: PMC8066291 DOI: 10.3390/medicina57040315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/05/2023]
Abstract
Mental disorders are common in the general population; every year about 25% of the total European population is affected by a mental condition. The prevalence of psychiatric disorders might be underestimated. Emerging evidence highlights the role of immune response as a key factor in MDs. Immunological biomarkers seem to be related to illness progression and to treatment effectiveness; several studies suggest strong associations among IL-6, TNFa, S100b, IL 1b, and PCR with affective or schizophrenic disorders. The purpose of this review is to examine and to understand the possible link between mental disorders and interleukin 33 to clarify the role of this axis in the immune system. We found 13 research papers that evaluated interleukin 33 or interleukin 31 levels in subjects affected by mental disorders. Eight studies investigated cytokines in affective disorders. Three studies measured levels of IL-33 in schizophrenia and two studies focused on patients affected by autism spectrum disorders. Alterations in brain structure and neurodevelopmental outcome are affected by multiple levels of organization. Disorders of the autoimmune response, and of the IL-33/31 axis, may therefore be one of the factors involved in this process. These results support the evidence that alarmins, particularly the IL-33/31 axis, need more consideration among researchers and practitioners.
Collapse
|
10
|
Zhu Q, Wang J, Ma J, Sheng X, Li F. Changes in inflammatory factors in the Brown Norway rat model of food allergy. BMC Immunol 2021; 22:8. [PMID: 33499808 PMCID: PMC7839196 DOI: 10.1186/s12865-021-00398-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The role of serum S100A8/A9 in intestinal inflammation has been confirmed, and its role in food allergy is currently being investigated. OBJECTIVE To explore the levels of S100A8/A9 and inflammatory factors, including Toll-like receptors 4 (TLR4), Nuclear transcription factors (NF-κB) and Tumor necrosis factor α (TNF-α), in mild food allergies. METHODS Eighty 3-week-old male Brown Norway rats were used. Forty rats were randomly assigned to the ovalbumin-sensitized experimental group, while 40 rats were assigned to the normal saline sham-sensitized control group. Body weight and length and the levels of serum ovalbumin-specific IgE (OVA-IgE), histamine, Th1-associated and Th2-associated factors, S100A8/A9 and inflammation-associated cytokines were compared. RESULTS Through the evaluation of OVA-IgE level and Th1/Th2 balance in the experimental group, a successful IgE-mediated food allergy model was constructed. Compared with the control group, the experimental group had higher serum S100A8/A9 levels on days 21, 28, 35 and 42 (all P < 0.05); higher TLR4 levels on days 28, 35 and 42 (all P < 0.05); higher TNF-α levels on days 28, 35 and 42 (all P < 0.05); higher NF-κB levels on days 35 and 42 (all P < 0.05); and higher IL-1β and IL-6 levels on days 7 to 42 (all P < 0.05). Moreover, positive correlations were found between the serum levels of S100A8/A9 and inflammation-associated cytokines [TNF-α: r = 0.378, P = 0.039; IL-1β: r = 0.679, P = 0.000; IL-6: r = 0.590, P = 0.001]. CONCLUSION S100A8/A9 and inflammatory-related factors, including TLR4, NF-κB, TNF-α, IL-6 and IL-1β, is closely related to food allergies. Moreover, immune and inflammatory factors interact with each other in food allergies, which may provide insight into food allergy causes and treatments.
Collapse
Affiliation(s)
- Qingling Zhu
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China.,Department of Children Healthcare, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian, China
| | - Junli Wang
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China
| | - Jingqiu Ma
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China
| | - Xiaoyang Sheng
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China.
| | - Feng Li
- Department of Child and Adolescent Healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Yangpu Shanghai, 200092, China.
| |
Collapse
|
11
|
Sharif AF, Elsheikh E, Al-Asmari AZ, Gameel DE. Potential Role of Serum S-100β Protein as a Predictor of Cardiotoxicity and Clinical Poor Outcome in Acute Amphetamine Intoxication. Cardiovasc Toxicol 2021; 21:375-386. [PMID: 33423174 DOI: 10.1007/s12012-020-09630-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022]
Abstract
Cardio- and neurotoxicity of amphetamines play an important role in worsening morbidity, making the initial evaluation of the patient's status a potentially lifesaving action. The current study hypothesized that the S-100β serum level could predict the severity of acute amphetamine toxicity and the in-hospital outcome. The current study is a prospective cohort study conducted on 77 patients diagnosed with acute amphetamine exposure and referred to Aseer Poison Control Center, Saudi Arabia. The patients admitted to ICU showed significantly higher serum levels of S-100β in comparison to those not admitted (p < 0.05). Moreover, the S-100β level was significantly elevated among patients with prolonged QTc intervals. Receiver-operating characteristic curve of S-100β serum level as an in-hospital outcome predictor showed that at a cutoff value > 0.430 ug/L, the sensitivity of S-100β serum level as severity predictor was 100%, and the specificity was 74.1%. In conclusion, the current study revealed that the S-100β serum level could be used as an outcome predictor in hospital admission cases due to toxic amphetamine exposure and offers an idea about the cardiac and neuronal involvement. This can help select patients who will benefit most from ICU admission and early management and assess the severity of cases in settings where GC-MS is not available.
Collapse
Affiliation(s)
- Asmaa F Sharif
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta, Egypt. .,Clinical Sciences Departement, College of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia.
| | - Eman Elsheikh
- Cardiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Internal Medicine Department, King Faisal University, Hofuf, Saudi Arabia
| | - Abdullah Z Al-Asmari
- Poison Control Centers and Medical Chemistry Legitimacy South, Aseer, Saudi Arabia.,Poison Control Center, Aseer, Saudi Arabia
| | - Dina El Gameel
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Poison Control Center, Aseer, Saudi Arabia
| |
Collapse
|
12
|
Imbalzano E, Quartuccio S, Casciaro M, Gangemi S. S100B in heart diseases. Cardiovasc Pathol 2020; 49:107235. [PMID: 32950202 DOI: 10.1016/j.carpath.2020.107235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University Hospital of Messina "G. Martino", University of Messina, Messina, Italy
| | - Sebastiano Quartuccio
- Department of Clinical and Experimental Medicine, University Hospital of Messina "G. Martino", University of Messina, Messina, Italy
| | - Marco Casciaro
- School and Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital of Messina "G. Martino", University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital of Messina "G. Martino", University of Messina, Messina, Italy
| |
Collapse
|
13
|
Sun H, Zhao A, Li M, Dong H, Sun Y, Zhang X, Zhu Q, Bukhari AAS, Cao C, Su D, Liu Y, Liang X. Interaction of calcium binding protein S100A16 with myosin-9 promotes cytoskeleton reorganization in renal tubulointerstitial fibrosis. Cell Death Dis 2020; 11:146. [PMID: 32094322 PMCID: PMC7039973 DOI: 10.1038/s41419-020-2337-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/10/2022]
Abstract
Renal fibrosis arises by the generation of matrix-producing fibroblasts and myofibroblasts through the epithelial-mesenchymal transition (EMT), a process in which epithelial cells undergo a transition into a fibroblast phenotype. A key feature of the EMT is the reorganization of the cytoskeletons, which may involve the Ca2+-binding protein S100A16, a newly reported member of the S100 protein family. However, very few studies have examined the role of S100A16 in renal tubulointerstitial fibrosis. In this study, S100A16 expression was examined by immunohistochemical staining of kidney biopsy specimens from patients with various nephropathies and kidney tissues from a unilateral ureteral obstruction (UUO) mouse model. Renal histological changes were investigated in S100A16Tg, S100A16+/-, and WT mouse kidneys after UUO. The expression of epithelia marker E-cadherin, mesenchymal markers N-cadherin, and vimentin, extracellular matrix protein, and S100A16, as well as the organization of F-actin, were investigated in S100A16 overexpression or knockdown HK-2 cells. Mass spectrometry was employed to screen for S100A16 binding proteins in HK-2 cells. The results indicated that S100A16 is high expressed and associated with renal tubulointerstitial fibrosis in patient kidney biopsies and in those from UUO mice. S100A16 promotes renal interstitial fibrosis in UUO mice. S100A16 expression responded to increasing Ca2+ and interacted with myosin-9 during kidney injury or TGF-β stimulation to promote cytoskeleton reorganization and EMT progression in renal tubulointerstitial fibrosis. Therefore, S100A16 is a critical regulator of renal tubulointerstitial fibroblast activation and is therefore a potential therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Nanjing Medical University, 211166, Nanjing, China.,Departments of Pathology, The Affiliated Hospital of Nantong University, 226001, Nantong, China
| | - Anran Zhao
- Department of Pathophysiology, Nanjing Medical University, 211166, Nanjing, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, 211166, Nanjing, China
| | - Hao Dong
- Department of Pathophysiology, Nanjing Medical University, 211166, Nanjing, China
| | - Yifei Sun
- Department of Pathophysiology, Nanjing Medical University, 211166, Nanjing, China
| | - Xue Zhang
- Department of Pathophysiology, Nanjing Medical University, 211166, Nanjing, China
| | - Qian Zhu
- Department of Pathophysiology, Nanjing Medical University, 211166, Nanjing, China
| | | | - Changchun Cao
- Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, 211166, Nanjing, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, 211166, Nanjing, China.,Center of Pathology and Clinical Laboratory, The Affiliated Sir Run Run Hospital of Nanjing Medical University, 211166, Nanjing, China
| | - Yun Liu
- Department of Geratology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, 211166, Nanjing, China. .,Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
14
|
Ryan CT, Ghanta RK. Commentary: Doubling down on adeno-associated viruses for cardiac gene therapy. J Thorac Cardiovasc Surg 2019; 159:1823-1824. [PMID: 31839232 DOI: 10.1016/j.jtcvs.2019.10.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Christopher T Ryan
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Ravi K Ghanta
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
15
|
Liu P, Bao HY, Jin CC, Zhou JC, Hua F, Li K, Lv XX, Cui B, Hu ZW, Zhang XW. Targeting Extracellular Heat Shock Protein 70 Ameliorates Doxorubicin-Induced Heart Failure Through Resolution of Toll-Like Receptor 2-Mediated Myocardial Inflammation. J Am Heart Assoc 2019; 8:e012338. [PMID: 31576776 PMCID: PMC6818050 DOI: 10.1161/jaha.119.012338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Heart failure (HF) is one of the most significant causes of morbidity and mortality for the cardiovascular risk population. We found previously that extracellular HSP70 (heat shock protein) is an important trigger in cardiac hypertrophy and fibrosis, which are associated with the development of heart dysfunction. However, the potential role of HSP70 in response to HF and whether it could be a target for the therapy of HF remain unknown. Methods and Results An HF mouse model was generated by a single IP injection of doxorubicin at a dose of 15 mg/kg. Ten days later, these mice were treated with an HSP70 neutralizing antibody for 5 times. We observed that doxorubicin treatment increased circulating HSP70 and expression of HSP70 in myocardium and promoted its extracellular release in the heart. Blocking extracellular HSP70 activity by its antibody significantly ameliorated doxorubicin‐induced left ventricular dilation and dysfunction, which was accompanied by a significant inhibition of cardiac fibrosis. The cardioprotective effect of the anti‐HSP70 antibody was largely attributed to its ability to promote the resolution of myocardial inflammation, as evidenced by its suppression of the toll‐like receptor 2–associated signaling cascade and modulation of the intracellular distribution of the p50 and p65 subunits of nuclear factor‐κB. Conclusions Extracellular HSP70 serves as a noninfectious inflammatory factor in the development of HF, and blocking extracellular HSP70 activity may provide potential therapeutic benefits for the treatment of HF.
Collapse
Affiliation(s)
- Peng Liu
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hua-Yan Bao
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Cai-Cai Jin
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ji-Chao Zhou
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Fang Hua
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ke Li
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiao-Xi Lv
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Bing Cui
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Zhuo-Wei Hu
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiao-Wei Zhang
- Molecular Immunology and Pharmacology Group State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
16
|
Gergs U, Jahn T, Werner F, Köhler C, Köpp F, Großmann C, Neumann J. Overexpression of protein phosphatase 5 in the mouse heart: Reduced contractility but increased stress tolerance - Two sides of the same coin? PLoS One 2019; 14:e0221289. [PMID: 31425567 PMCID: PMC6699691 DOI: 10.1371/journal.pone.0221289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 11/18/2022] Open
Abstract
The pathophysiological mechanisms of sepsis-induced cardiac dysfunction are largely unknown. The Toll-like receptor 4 (TLR4) is expressed in cardiac myocytes and is involved in bacterial endotoxin-mediated inflammatory disorders. TLR4 signaling leads to activation of the nuclear factor kappa B followed by increased expression of cytokines. Several protein phosphatases including PP2Cβ, PP2A or PP1 are known to act as regulators of this signaling pathway. Here, we examined the role of PP5 for the inflammatory response to the bacterial endotoxin lipopolysaccharide in the heart using a transgenic mouse model with cardiac myocyte directed overexpression of PP5. In these transgenic mice, basal cardiac contractility was reduced, in vivo as well as in vitro, but LPS-induced cardiac dysfunction was less pronounced compared to wild type mice. Quantitative RT-PCR suggested an attenuated NF-κB signaling in the heart and cardiac expression of heat shock protein 25 (HSP25) was increased in PP5 transgenic mice. From our data we assume that PP5 increases stress tolerance of cardiac myocytes by downregulation of NF-κB signaling and upregulation of HSP25 expression.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Tina Jahn
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Köhler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Großmann
- Julius-Bernstein-Institut für Physiologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
17
|
Sadigh AR, Mihanfar A, Fattahi A, Latifi Z, Akbarzadeh M, Hajipour H, Bahrami‐asl Z, Ghasemzadeh A, Hamdi K, Nejabati HR, Nouri M. S100 protein family and embryo implantation. J Cell Biochem 2019; 120:19229-19244. [DOI: 10.1002/jcb.29261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine Urmia University of Medical Sciences Urmia Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Akbarzadeh
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry Erasmus University Medical Center Rotterdam The Netherlands
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Bahrami‐asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
18
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Quezada-Fernández P, Trujillo-Quiros J, Pascoe-González S, Trujillo-Rangel WA, Cardona-Müller D, Ramos-Becerra CG, Barocio-Pantoja M, Rodríguez-de la Cerda M, Nérida Sánchez-Rodríguez E, Cardona-Muñóz EG, García-Benavides L, Grover-Páez F. Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled trial. Int J Food Sci Nutr 2019; 70:977-985. [DOI: 10.1080/09637486.2019.1589430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Patricia Quezada-Fernández
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Jhonatan Trujillo-Quiros
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Sara Pascoe-González
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Walter A. Trujillo-Rangel
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - David Cardona-Müller
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Carlos G. Ramos-Becerra
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Maricruz Barocio-Pantoja
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Mariana Rodríguez-de la Cerda
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | | | - Ernesto G. Cardona-Muñóz
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Leonel García-Benavides
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | - Fernando Grover-Páez
- Department of Physiology, Pharmacology, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, Arterial Stiffness Laboratory, Experimental Therapeutic and Clinic Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
20
|
Li Y, Han C, Zhang P, Zang W, Guo R. Association between serum S100A1 level and Global Registry of Acute Coronary Events score in patients with non-ST-segment elevation acute coronary syndrome. J Int Med Res 2018; 46:2670-2678. [PMID: 29761721 PMCID: PMC6124256 DOI: 10.1177/0300060518769524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective Acute coronary syndrome (ACS) is associated with several clinical syndromes, one of which is acute non-ST-segment ACS (NSTE-ACS). S100A1 is a calcium-dependent regulator of heart contraction and relaxation. We investigated the association between the serum S100A1 level and the Global Registry of Acute Coronary Events (GRACE) risk score in patients with NSTE-ACS and the potential of using the serum S100A1 level to predict the 30-day prognosis of NSTE-ACS. Methods The clinical characteristics of 162 patients with NSTE-ACS were analyzed to determine the GRACE score. The serum S100A1 concentration was determined using fasting antecubital venous blood. The patients were divided into different groups according to the serum S100A1 level, and the 30-day NSTE-ACS prognosis was evaluated using Kaplan–Meier analysis. Results The serum S100A1 levels differed significantly among the groups. Correlation analysis showed that the serum S100A1 level was positively correlated with the GRACE score. Kaplan–Meier analysis revealed that the number of 30-day cardiac events was significantly higher in patients with an S100A1 level of >3.41 ng/mL. Conclusions S100A1 is a potential biomarker that can predict the progression of NSTE-ACS and aid in its early risk stratification and prognosis.
Collapse
Affiliation(s)
- Yuanmin Li
- 1 Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenjun Han
- 1 Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhang
- 1 Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wangfu Zang
- 1 Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Guo
- 2 Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Zhai Y, Luo Y, Wu P, Li D. New insights into SERCA2a gene therapy in heart failure: pay attention to the negative effects of B-type natriuretic peptides. J Med Genet 2018; 55:287-296. [PMID: 29478009 DOI: 10.1136/jmedgenet-2017-105120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) is a target of interest in gene therapy for heart failure with reduced ejection fraction (HFrEF). However, the results of an important clinical study, the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, were controversial. Promising results were observed in the CUPID 1 trial, but the results of the CUPID 2 trial were negative. The factors that caused the controversial results remain unclear. Importantly, enrolled patients were required to have a higher plasma level of B-type natriuretic peptide (BNP) in the CUPID 2 trial. Moreover, BNP was shown to inhibit SERCA2a expression. Therefore, it is possible that high BNP levels interact with treatment effects of SERCA2a gene transfer and accordingly lead to negative results of CUPID 2 trial. From this point of view, effects of SERCA2a gene therapy should be explored in heart failure with preserved ejection fraction, which is characterised by lower BNP levels compared with HFrEF. In this review, we summarise the current knowledge of SERCA2a gene therapy for heart failure, analyse potential interaction between BNP levels and therapeutic effects of SERCA2a gene transfer and provide directions for future research to solve the identified problems.
Collapse
Affiliation(s)
- Yuting Zhai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pei Wu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
22
|
Data on a new sensitivity-improved miniaturized label-free electrochemical biosensor. Data Brief 2018; 17:1288-1294. [PMID: 29845100 PMCID: PMC5966522 DOI: 10.1016/j.dib.2018.01.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
This article presents a new sensitivity-improved electrochemical measurement architecture for cardiovascular disease (CVD) diagnosis by detecting CVD biomarkers, S100 beta protein and C-reactive protein (CRP). The new architecture includes a design for a new electrochemical measurement set-up, which improves the reaction conditions of chemical and biological molecules and incorporates a newly biochip design. With the new architecture, electrochemical measurement experiments were undertaken. The results obtained are related to the research article entitled “Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes” [1].
Collapse
|
23
|
Regouat N, Cheboub A, Benahmed M, Belarbi A, Hadj-Bekkouche F. Effect of testosterone supplementation on nitroso-redox imbalance, cardiac metabolism markers, and S100 proteins expression in the heart of castrated male rats. Andrology 2017; 6:74-85. [PMID: 29194990 DOI: 10.1111/andr.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the effects of castration and testosterone supplementation on nitroso-redox status, cardiac metabolism markers, and S100 proteins expression in the heart of male rats. 50 male Wistar rats were randomized into five groups with ten animals each: group 1: control intact (CON); group 2: sham operated (Sh-O); group 3: sesame oil-treated rats (S-oil); group 4: gonadoectomized (GDX); and group 5: gonadoectomized rats treated with testosterone (GDX-T) for 8 weeks. Our results showed myofibrillar weaving, apoptosis, inflammation, and fibrosis (as reflected by increased activity of MMP 9 and MMP 2) in the heart of gonadoectomized rats. Testosterone supplementation restored the normal structure of the heart. In addition, a state of nitroso-redox imbalance was observed in the heart of castrated rats with increased NO (425.1 ± 322.8 vs. 208 ± 67.06, p ˂ 0.05) and MDA (33.18 ± 9.45 vs. 22.04 ± 7.13, p ˂ 0.05) and decreased GSH levels (0.71 ± 0.13 vs. 1.09 ± 0.19, p = 0.001). Testosterone treatment leads to a re-establish of only NO levels (425.1 ± 322.8 vs. 210.4 ± 114.3, p > 0.05). Markers of cardiac metabolism showed an enhancement of LDH activity (12725 ± 4604 vs. 5381 ± 3122, p ˂ 0.05) in the heart of castrated rats. This was inversed by testosterone replacement (12725 ± 4604 vs. 5781 ± 5187, p ˂ 0.05). Furthermore, castration induced heart's accumulation of triglycerides (37.24 ± 6.17 vs. 27.88 ± 6.47, p ˂ 0.05) and total cholesterol (61.44 ± 3.59 vs. 54.11 ± 7.55, p ˂ 0.05), which were significantly reduced by testosterone supplementation (29.03 ± 2.47 vs. 37.24 ± 6.17, p ˂ 0.05) and (47.9 ± 4.15 vs. 61.44 ± 3.59, p ˂ 0.001). Cardiomyocytes of castrated rats showed a decreased immunoexpression of S100 proteins compared to control animals. A restoration of S100 proteins immunostaining in cardiomyocyte cytoplasm was observed after testosterone supplementation. These findings confirm the deleterious effects of testosterone deficiency on cardiac function and highlight the involvement of nitric oxide, metalloproteinases 2 and 9, and S100 proteins.
Collapse
Affiliation(s)
- N Regouat
- Team of Endocrinology, Laboratory of Biology and Physiology of Organisms, Faculty of Biological Sciences, University of Sciences and Technology, Algiers, Algeria
| | - A Cheboub
- Team of Endocrinology, Laboratory of Biology and Physiology of Organisms, Faculty of Biological Sciences, University of Sciences and Technology, Algiers, Algeria
| | - M Benahmed
- Pathological Anatomy Service of Pierre and Marie Curie Center Larbi Tebessi, Mustapha Bacha Hospital, Algiers, Algeria
| | - A Belarbi
- Pathological Anatomy Service of Djillali Bounaâma Hospital, Douera-Algiers, Algeria
| | - F Hadj-Bekkouche
- Team of Endocrinology, Laboratory of Biology and Physiology of Organisms, Faculty of Biological Sciences, University of Sciences and Technology, Algiers, Algeria
| |
Collapse
|
24
|
Kuo YC, Lee CK, Lin CT. Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes. Biosens Bioelectron 2017; 103:130-137. [PMID: 29291592 DOI: 10.1016/j.bios.2017.11.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/29/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death among chronic diseases worldwide. Therefore, it is important to be able to detect CVD biomarkers early so that patients can be diagnosed properly and begin treatment as soon as possible. To detect biomarkers more conveniently, point-of-care (PoC) biosensors, which are easy to use and are of low cost, are becoming even more necessary. This paper focuses on developing a label-free electrochemical biosensor with high sensitivity for PoC applications to detect CVD biomarkers such as S100 beta proteins and C-reactive proteins (CRP). To meet the requirements of a PoC application and to improve the measurement sensitivity for detection purposes, a three-electrode configuration was miniaturized and fitted onto a biochip. Computer simulation of an electrolyte current density was used to investigate several potential effective possibilities. It was found that an electrolyte current density at an edge tip structure near the working electrode (WE) and counter electrode (CE) was higher than at other locations. A zigzag structure was then designed at the edge near the WE and CE positions. With this design, we can obtain a higher total electrolyte current. This newly-designed biochip was then used to measure the electrochemical feature. It was found that the measurement efficiency was also improved using this newly designed biochip.
Collapse
Affiliation(s)
- Yi-Ching Kuo
- Engineering Science & Ocean Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Kung Lee
- Engineering Science & Ocean Engineering, National Taiwan University, Taipei, Taiwan; Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan; Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Ting Lin
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Leśniak W, Wilanowski T, Filipek A. S100A6 - focus on recent developments. Biol Chem 2017; 398:1087-1094. [PMID: 28343163 DOI: 10.1515/hsz-2017-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/21/2017] [Indexed: 01/08/2023]
Abstract
The Ca2+-binding protein, S100A6, belongs to the S100 family. Binding of Ca2+ induces a conformational change, which causes an increase in the overall S100A6 hydrophobicity and allows it to interact with many targets. S100A6 is expressed in different normal tissues and in many tumors. Up to now it has been shown that S100A6 is involved in cell proliferation, cytoskeletal dynamics and tumorigenesis, and that it might have some extracellular functions. In this review, we summarize novel discoveries concerning S100A6 targets, its involvement in cellular signaling pathways, and presence in stem/progenitor cells, extracellular matrix and body fluids of diseased patients.
Collapse
|
26
|
Takano APC, Munhoz CD, Moriscot AS, Gupta S, Barreto-Chaves MLM. S100A8/MYD88/NF-қB: a novel pathway involved in cardiomyocyte hypertrophy driven by thyroid hormone. J Mol Med (Berl) 2017; 95:671-682. [DOI: 10.1007/s00109-017-1511-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
|
27
|
Matkar PN, Leong-Poi H, Singh KK. Cardiac gene therapy: are we there yet? Gene Ther 2016; 23:635-48. [DOI: 10.1038/gt.2016.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 01/19/2023]
|