1
|
Katz MG, Hadas Y, Shtraizent N, Ravvin S, Madjarov JM, Eliyahu E. Unilateral Lung Removal in Combination with Monocrotaline or SU5416 in Rodents: A Reliable Model to Mimic the Pathology of the Human Pulmonary Hypertension. Methods Mol Biol 2024; 2803:173-185. [PMID: 38676893 DOI: 10.1007/978-1-0716-3846-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Pulmonary hypertension (PH) is a chronic and progressive disorder characterized by elevated mean pulmonary arterial pressure, pulmonary vascular remodeling, and the development of concentric laminar intimal fibrosis with plexiform lesions. While rodent models have been developed to study PH, they have certain deficiencies and do not entirely replicate the human disease due to the heterogeneity of PH pathology. Therefore, combined models are necessary to study PH. Recent studies have shown that altered pulmonary blood flow is a significant trigger in the development of vascular remodeling and neointimal lesions. One of the most promising rodent models for increased pulmonary flow is the combination of unilateral left pneumonectomy with a "second hit" of monocrotaline (MCT) or SU5416. The removal of one lung in this model forces blood to circulate only in the other lung and induces increased and turbulent pulmonary blood flow. This increased vascular flow leads to progressive remodeling and occlusion of small pulmonary arteries. The second hit by MCT or SU5416 leads to endothelial cell dysfunction, resulting in severe PH and the development of plexiform arteriopathy.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cardiovascular Surgery and Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Shana Ravvin
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeko M Madjarov
- Atrium Health Sanger Heart and Vascular Institute, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Zhang Z, Zhang M, Xu Y, Lu M, Zhang L, Li C. Effect of Astragaloside IV on improving cardiac function in rats with heart failure: a preclinical systematic review and meta-analysis. Front Pharmacol 2023; 14:1226008. [PMID: 37854719 PMCID: PMC10579795 DOI: 10.3389/fphar.2023.1226008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Background: Astragaloside IV (ASIV) is the primary pharmacologically active compound found in Astragalus propinquus Schischkin, which has potential protective effects on cardiac function. However, there are almost no systematic evaluations of ASIV for the treatment of heart failure (HF). Methods: Preclinical studies published before 27 December 2022, were retrieved from PubMed, Web of Science, MEDLINE, SinoMed, Chinese National Knowledge Infrastructure (CNKI), VIP information database, and Wanfang Data information site. The quality of included research was evaluated using SYRCLE's RoB tool. Review Manager 5.4.1 was used to perform meta-analyses of the cardiac function parameters and other indicators. Regression analysis was conducted to observe the dose-efficacy relationship. Results: Nineteen studies involving 489 animals were included. Results indicated that compared with the control group, ASIV could enhance cardiac function indicators, including left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular pressure change rate (±dp/dtmax), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW). Furthermore, the regression analysis showed that the treatment of HF with ASIV was dose-dependent. Conclusion: Findings suggest that ASIV can inhibit cardiac hypertrophy by reducing cardiac preload and afterload, thereby protecting cardiac function.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongkai Xu
- Department of Peripheral Vascular Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Katz MG, Hadas Y, Vincek A, Freage-Kahn L, Shtraizent N, Madjarov JM, Pastuszko P, Eliyahu E. Acid ceramidase gene therapy ameliorates pulmonary arterial hypertension with right heart dysfunction. Respir Res 2023; 24:197. [PMID: 37568148 PMCID: PMC10416391 DOI: 10.1186/s12931-023-02487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/03/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Up-regulation of ceramides in pulmonary hypertension (PH), contributing to perturbations in sphingolipid homeostasis and the transition of cells to a senescence state. We assessed the safety, feasibility, and efficiency of acid ceramidase gene transfer in a rodent PH model. METHODS A model of PH was established by the combination of left pneumonectomy and injection of Sugen toxin. Magnetic resonance imaging and right heart catheterization confirmed development of PH. Animals were subjected to intratracheal administration of synthetic adeno-associated viral vector (Anc80L65) carrying the acid ceramidase (Anc80L65.AC), an empty capsid vector, or saline. Therapeutic efficacy was evaluated 8 weeks after gene delivery. RESULTS Hemodynamic assessment 4 weeks after PH model the development demonstrated an increase in the mean pulmonary artery pressure to 30.4 ± 2.13 mmHg versus 10.4 ± 1.65 mmHg in sham (p < 0.001), which was consistent with the definition of PH. We documented a significant increase in pulmonary vascular resistance in the saline-treated (6.79 ± 0.85 mm Hg) and empty capsid (6.94 ± 0.47 mm Hg) groups, but not in animals receiving Anc80L65.AC (4.44 ± 0.71 mm Hg, p < 0.001). Morphometric analysis demonstrated an increase in medial wall thickness in control groups in comparison to those treated with acid ceramidase. After acid ceramidase gene delivery, a significant decrease of pro-inflammatory factors, interleukins, and senescence markers was observed. CONCLUSION Gene delivery of acid ceramidase provided tropism to pulmonary tissue and ameliorated vascular remodeling with right ventricular dysfunction in pulmonary hypertension.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA
- Department of Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA
| | | | | | - Jeko M Madjarov
- Atrium Health Sanger Heart and Vascular Institute, Charlotte, NC, USA
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Peter Pastuszko
- Department of Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, P.O. Box 1030, New York, NY, 10029-6574, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
5
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
6
|
Katz MG, Hadas Y, Bailey RA, Fazal S, Vincek A, Madjarova SJ, Shtraizent N, Vandenberghe LH, Eliyahu E. Efficient cardiac gene transfer and early-onset expression of a synthetic adeno-associated viral vector, Anc80L65, after intramyocardial administration. J Thorac Cardiovasc Surg 2022; 164:e429-e443. [PMID: 34985414 PMCID: PMC8733395 DOI: 10.1016/j.jtcvs.2021.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Gene therapy is a promising approach in the treatment of cardiovascular diseases. Preclinical and clinical studies have demonstrated that adeno-associated viral vectors are the most attractive vehicles for gene transfer. However, preexisting immunity, delayed gene expression, and postinfection immune response limit the success of this technology. The aim of this study was to investigate the efficacy of the first synthetic adeno-associated viral lineage clone, Anc80L65, for cardiac gene therapy. METHODS By combining 2 different reporter approaches by fluorescence with green fluorescent protein and bioluminescence (Firefly luciferase), we compared transduction efficiency of Anc80L65 and adeno-associated virus, serotype 9 in neonatal rat cardiomyocytes ex vivo and rat hearts in vivo after intramyocardial and intracoronary administration. RESULTS In cardiomyocytes, Anc80L65 provided a green fluorescent protein expression of 28.9% (36.4 ± 3.34 cells/field) at 24 hours and approximately 100% on day 7. In contrast, adeno-associated virus, serotype 9 green fluorescent protein provided minimal green fluorescent protein expression of 5.64% at 24 hours and 11.8% on day 7. After intramyocardial injection, vector expression peaked on day 7 with Anc80L65; however, with adeno-associated virus, serotype 9 the peak expression was during week 6. Administration of Anc80L65 demonstrated significantly more efficient expression of reporter gene than after adeno-associated virus, serotype 9 at 6 weeks (6.81 ± 0.64 log10 gc/100 ng DNA vs 6.49 ± 0.28 log10 gc/100 ng DNA, P < .05). These results were consistent with the amount of genome copy per cell observed in the heart. CONCLUSIONS Anc80L65 vector allows fast and robust gene transduction compared with adeno-associated virus, serotype 9 vector in cardiac gene therapy. Anc80L65 did not adversely affect cardiac function and caused no inflammatory response or toxicity.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rasheed A Bailey
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shahood Fazal
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Luk H Vandenberghe
- Grousbeck Center of Gene Therapy, Ocular Genomics Institute, Mass Eye and Ear, Boston, Mass; Department of Ophthalmology, Harvard Medical School, Boston, Mass; The Broad Institute of Harvard and MIT, Cambridge, Mass
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Icahn School for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Katz MG, Hadas Y, Vincek AS, Shtraizent N, Schadt E, Eliyahu E. Cardiac Targeted Adeno-Associated Virus Injection in Rats. Methods Mol Biol 2022; 2573:135-145. [PMID: 36040591 DOI: 10.1007/978-1-0716-2707-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gene therapy is a promising approach in the treatment of cardiovascular diseases. The vectors available for cardiovascular gene therapy have significantly improved over time. Cardiac tropism is a primary characteristic of an ideal vector along with a long-term expression profile and a minimal risk of cellular immune response. Preclinical and clinical studies have demonstrated that adeno-associated viral (AAV) vectors are one of the most attractive vehicles for gene transfer. AAV has gained great popularity in the last years because of its biological properties and advantages over other viral vector systems. In this chapter we will describe methods for intracardiac delivery of AAV vector in rats.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cardiovascular Surgery and Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam S Vincek
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Stefani GP, Capalonga L, da Silva LR, Heck TG, Frizzo MN, Sulzbacher LM, Sulzbacher MM, de Batista D, Vedovatto S, Bertoni APS, Wink MR, Dal Lago P. Effects of aerobic and resistance exercise training associated with carnosine precursor supplementation on maximal strength and V̇O 2max in rats with heart failure. Life Sci 2021; 282:119816. [PMID: 34273376 DOI: 10.1016/j.lfs.2021.119816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Combined exercise training (CET) has been associated with positive responses in the clinical status of patients with heart failure (HF). Other nonpharmacological tools, such as amino acid supplementation, may further enhance its adaptation. The aim was to test whether CET associated with supplementing carnosine precursors could present better responses in the functional capacity and biochemical variables of rats with HF. METHODS Twenty-one male Wistar rats were subjected to myocardial infarction and allocated to three groups: sedentary (SED, n = 7), CET supplemented with placebo (CETP, n = 7), and CET with HF supplemented with β-alanine and L-histidine (CETS, n = 7). The trained animals were submitted to a strength protocol three times per week. Aerobic training was conducted twice per week. The supplemented group received β-alanine and L-histidine orally (250 mg/kg per day). RESULTS Maximum oxygen uptake, running distance, time to exhaustion and maximum strength were higher in the CET-P group than that in the SED group and even higher in the CET-S group than that in the CET-P group (P < 0.01). CET-S showed lower oxidative stress and inflammation markers and higher heat shock protein 72 kDa content and mRNA expression for calcium transporters in the skeletal muscle compared to SED. CONCLUSION CET together with β-alanine and L-histidine supplementation in rats with HF can elicit adaptations in both maximum oxygen uptake, running distance, time to exhaustion, maximum strength, oxidative stress, inflammation and mRNA expression. Carnosine may influence beneficial adjustments in the cell stress response in the skeletal muscle and upregulate the mRNA expression of calcium transporters.
Collapse
Affiliation(s)
- Giuseppe Potrick Stefani
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Capalonga
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Ribeiro da Silva
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Graduate Program in Comprehensive Health Care, Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Ijuí, Rio Grande do Sul, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Graduate Program in Comprehensive Health Care, Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Ijuí, Rio Grande do Sul, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Graduate Program in Comprehensive Health Care, Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Ijuí, Rio Grande do Sul, Brazil
| | - Maicon Machado Sulzbacher
- Research Group in Physiology, Graduate Program in Comprehensive Health Care, Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Ijuí, Rio Grande do Sul, Brazil
| | - Diovana de Batista
- Research Group in Physiology, Graduate Program in Comprehensive Health Care, Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Ijuí, Rio Grande do Sul, Brazil
| | - Samlai Vedovatto
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Santin Bertoni
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Dal Lago
- Laboratory of Experimental Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Yang D, Liu HQ, Liu FY, Tang N, Guo Z, Ma SQ, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. Critical roles of macrophages in pressure overload-induced cardiac remodeling. J Mol Med (Berl) 2020; 99:33-46. [PMID: 33130927 DOI: 10.1007/s00109-020-02002-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are integral components of the mammalian heart that show extensive expansion in response to various internal or external stimuli. After the onset of sustained pressure overload (PO), the accumulation of cardiac macrophages through local macrophage proliferation and monocyte migration has profound effects on the transition to cardiac hypertrophy and remodeling. In this review, we describe the heterogeneity and diversity of cardiac macrophages and summarize the current understanding of the important roles of macrophages in PO-induced cardiac remodeling. In addition, the possible mechanisms involved in macrophage modulation are also described. Finally, considering the significant effects of cardiac macrophages, we highlight their emerging role as therapeutic targets for alleviating pathological cardiac remodeling after PO.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
10
|
Kim HB, Hong YJ, Park HJ, Ahn Y, Jeong MH. Effects of Fimasartan/Amlodipine Fixed-Dose Combination on Left Ventricular Systolic Function and Infarct Size in Rat Myocardial Infarction Model. Chonnam Med J 2019; 55:144-149. [PMID: 31598471 PMCID: PMC6769248 DOI: 10.4068/cmj.2019.55.3.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to evaluate the effects of fimasartan/amlodipine fixed-dosed combination (F/A) on left ventricle (LV) systolic function and infarct size in the rat myocardial infarction (MI) model. We induced MI in 20 rats by ligation of the left anterior descending coronary artery and they were divided into two groups [MI group (n=10) vs. MI+F/A 10 mg/kg group (n=10)]. F/A was administered for 28 days between day-7 and day-35 in the MI+F/A group and echocardiography was performed at day-7 and at day-35 after the induction of MI. Picrosirius red staining was performed to confirm the fibrotic tissue and infarct size was measured using image analysis program for Image J. At the 35-day follow-up, the LV ejection fraction (EF) was significantly higher (38.10±3.92% vs. 29.86±4.56%, p<0.001) and delta (day-35 minus day-7) EF was significantly higher (0.14±2.66% vs. −8.53±2.66%. p<0.001) in the MI+F/A group than the MI group. Systolic blood pressure was significantly lower in the MI+F/A group than the MI group (103.23±13.35 mmHg vs. 123.43±14.82 mmHg, p<0.01). The MI+F/A group had a smaller infarct size (26.84±5.31% vs. 36.79±3.10%, p<0.01) than the MI group at the 35-day follow-up. Oral administration of F/A 10 mg/kg could improve LV systolic function and reduce infarct size in a rat MI model.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Cardiology, Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Chonnam National University Hospital, Gwangju, Korea
| | - Young Joon Hong
- Division of Cardiology, Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Chonnam National University Hospital, Gwangju, Korea
| | - Hyuk Jin Park
- Division of Cardiology, Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Division of Cardiology, Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Division of Cardiology, Cardiovascular Convergence Research Center Nominated by Korea Ministry of Health and Welfare, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
11
|
Katz MG, Gubara SM, Hadas Y, Weber T, Kumar A, Eliyahu E, Bridges CR, Fargnoli AS. Effects of genetic transfection on calcium cycling pathways mediated by double-stranded adeno-associated virus in postinfarction remodeling. J Thorac Cardiovasc Surg 2019; 159:1809-1819.e3. [PMID: 31679707 DOI: 10.1016/j.jtcvs.2019.08.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Restoring calcium sensor protein (S100A1) activity in failing hearts poses a promising therapeutic strategy. We hypothesize that cardiac overexpression of the S100A1 gene mediated by a double-stranded adeno-associated virus (scAAV) results in better functional and molecular improvements compared with the single-stranded virus (ssAAV). METHODS Heart failure was induced by coronary artery ligation. Then, intramyocardial injections of saline, AAV9 empty capsid, scAAV9.S100A1, and ssAAV9.S100A1 were performed. Ten weeks postinfarction, all rats received cardiac evaluation; serum and tissue were collected for genetic analysis, cytokine profiling, and assessments of mitochondrial function and structure. RESULTS Overexpression of AAV9.S100A1 improved systolic and diastolic function. Compared with control, ejection fraction was greater in treated groups (54.8% vs 32.3%, P < .05). Similarly, end-diastolic volume index was significantly less in the treated group than in control (1.14 vs 1.59 mL/cm2), whereas fractional shortening was greater in treated groups than control (26% vs 38%, P < .05). Interestingly, cardiac mechanics were significantly better when treated with double-stranded virus compared with single-stranded. Quantitative polymerase chain reaction demonstrated robust transfection of myocardium with the S100A1 gene, with more infection in the self-complimentary group compared with the single-stranded group (5.68 ± 0.44 vs 4.09 ± 0.25 log10 genome copies per 100 ng of DNA; P < .0001). Concentrations of the inflammatory cytokines were elevated in the ssAAV9/S100A1 group compared with the scAAV9/S100A1. Assessment of mitochondrial respiration and morphology demonstrated that injection of self-complementary vector saved both mitochondrial structure and function. CONCLUSIONS Gene therapy of S100A1 can prevent pathologic postmyocardial infarction remodeling and decrease inflammatory response in ischemic heart failure.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Sarah M Gubara
- Department of Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thomas Weber
- Department of Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arvind Kumar
- Department of Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charles R Bridges
- Department of Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anthony S Fargnoli
- Department of Cardiology, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|