1
|
Miura S, Iwamoto H, Namba M, Yamaguchi K, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Ohshimo S, Fujitaka K, Hamada H, Hattori N. High S100A9 level predicts poor survival, and the S100A9 inhibitor paquinimod is a candidate for treating idiopathic pulmonary fibrosis. BMJ Open Respir Res 2024; 11:e001803. [PMID: 38378778 PMCID: PMC10882411 DOI: 10.1136/bmjresp-2023-001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND S100A9 is a damage-associated molecular pattern protein that may play an important role in the inflammatory response and fibrotic processes. Paquinimod is an immunomodulatory compound that prevents S100A9 activity. Its safety and pharmacokinetics have been confirmed in human clinical trials. In this study, we investigated the effects of paquinimod in preventing the development of lung fibrosis in vivo and examined the prognostic values of circulatory and lung S100A9 levels in patients with idiopathic pulmonary fibrosis (IPF). METHODS The expression and localisation of S100A9 and the preventive effect of S100A9 inhibition on fibrosis development were investigated in a mouse model of bleomycin-induced pulmonary fibrosis. In this retrospective cohort study, the S100A9 levels in the serum and bronchoalveolar lavage fluid (BALF) samples from 76 and 55 patients with IPF, respectively, were examined for associations with patient survival. RESULTS S100A9 expression was increased in the mouse lungs, especially in the inflammatory cells and fibrotic interstitium, after bleomycin administration. Treatment with paquinimod ameliorated fibrotic pathological changes and significantly reduced hydroxyproline content in the lung tissues of mice with bleomycin-induced pulmonary fibrosis. Additionally, we found that paquinimod reduced the number of lymphocytes and neutrophils in BALF and suppressed endothelial-mesenchymal transition in vivo. Kaplan-Meier curve analysis and univariate and multivariate Cox hazard proportion analyses revealed that high levels of S100A9 in the serum and BALF were significantly associated with poor prognoses in patients with IPF (Kaplan-Meier curve analysis: p=0.037 (serum) and 0.019 (BALF); multivariate Cox hazard proportion analysis: HR=3.88, 95% CI=1.06 to 14.21, p=0.041 (serum); HR=2.73, 95% CI=1.05 to 7.10, p=0.039 (BALF)). CONCLUSIONS The present results indicate that increased S100A9 expression is associated with IPF progression and that the S100A9 inhibitor paquinimod is a potential treatment for IPF.
Collapse
Affiliation(s)
- Shinichiro Miura
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Namba
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Xin X, Liu H, Zhang S, Li P, Zhao X, Zhang X, Li S, Wu S, Zhao F, Tan J. S100A8/A9 promotes endometrial fibrosis via regulating RAGE/JAK2/STAT3 signaling pathway. Commun Biol 2024; 7:116. [PMID: 38253716 PMCID: PMC10803310 DOI: 10.1038/s42003-024-05814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial fibrosis. S100A8/A9 plays an important role in inflammation and fibroblast activation. However, the role of S100A8/A9 in IUA remains unclear. In this study, we collect normal and IUA endometrium to verify the expression of S100A8/A9. Human endometrial stromal cells (hEnSCs) are isolated to evaluate fibrosis progression after S100A8/A9 treatment. A porcine IUA model is established by electrocautery injury to confirm the therapeutic effect of menstrual blood-derived stromal cells (MenSCs) on IUA. Our study reveals increased S100A8/A9 expression in IUA endometrium. S100A8/A9 significantly enhances hEnSCs proliferation and upregulates fibrosis-related and inflammation-associated markers. Furthermore, S100A8/A9 induces hEnSCs fibrosis through the RAGE-JAK2-STAT3 pathway. Transplantation of MenSCs in a porcine IUA model notably enhances angiogenesis, mitigates endometrial fibrosis and downregulates S100A8/A9 expression. In summary, S100A8/A9 induces hEnSCs fibrosis via the RAGE-JAK2-STAT3 pathway, and MenSCs exhibit marked effects on endometrial restoration in the porcine IUA model.
Collapse
Affiliation(s)
- Xing Xin
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Hao Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Minimally Invasive Surgical Robot, Liaoning Province, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Xinyang Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Shuyu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Fujie Zhao
- Obstetrics and Gynecology Department, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110022, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China.
| |
Collapse
|
3
|
Lee JU, Kim MK, Kim MS, Lee SJ, Park SL, Chang HS, Park JS, Park CS. S100 Calcium-Binding Protein A9, a Potential Novel Diagnostic Biomarker for Idiopathic Pulmonary Fibrosis. J Korean Med Sci 2024; 39:e13. [PMID: 38193329 PMCID: PMC10782039 DOI: 10.3346/jkms.2024.39.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/06/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation is a characteristic feature of idiopathic pulmonary fibrosis (IPF). S100 calcium-binding protein A9 (S100A9) is a neutrophil-derived protein involved in the development of neutrophil-related chronic inflammatory disorders. However, the role of S100A9 in IPF remains unclear. METHODS We used enzyme-linked immunosorbent assays to measure S100A9 levels in bronchoalveolar lavage fluid (BALF) and serum obtained from healthy controls (HCs) and patients with IPF, non-specific interstitial pneumonia, hypersensitivity pneumonitis, and sarcoidosis. RESULTS Compared with HCs, BALF S100A9 levels were significantly higher in IPF patients (P < 0.001), patients with hypersensitivity pneumonitis (P = 0.043), and patients with nonspecific interstitial pneumonia (P < 0.001). The S100A9 level in BALF of 0.093 ng/mL could distinguish IPF patients from HCs, with a specificity of 78.8% and a sensitivity of 81.6%. Similarly, the S100A9 level in BALF of 0.239 ng/mL had a specificity of 64.7% and a sensitivity of 66.7% for distinguishing IPF patients from patients with other interstitial lung diseases. Additionally, BALF S100A9 levels were significantly correlated with neutrophil counts (r = 0.356, P < 0.001) in BALF. IPF patients with S100A9 levels in BALF > 0.533 ng/mL had lower survival rates, compared with patients who had levels ≤ 0.553 ng/mL (n = 49; hazard ratio [HR], 3.62; P = 0.021). Combination analysis revealed that IPF patients with S100A9 levels in BALF> 0.553 ng/mL or neutrophil percentages > 49.1% (n = 43) had significantly lower survival rates than patients with S100A9 levels in BALF ≤ 0.553 ng/mL and neutrophil percentages ≤ 49.1% (n = 41) (HR, 3.91; P = 0.014). Additionally, patients with serum S100A9 levels > 0.077 ng/mL (n = 29) had significantly lower survival rates than patients with levels ≤ 0.077 ng/mL (n = 53, HR, 2.52; P = 0.013). S100A9 was expressed on neutrophils and macrophages in BALF from IPF patients as well as α-smooth muscle actin positive cells in the lung tissues. CONCLUSION S100A9 is involved in the development and progression of IPF. Moreover, S100A9 levels in BALF and serum may be surrogate markers for IPF diagnosis and survival prediction, particularly when analyzed in combination with neutrophil percentages.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Min Kyung Kim
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Myung-Shin Kim
- Division of Allergy and Respiratory Disease, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Sun Ju Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Seung-Lee Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hun Soo Chang
- Department of Microbiology and BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jong-Sook Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| | - Choon-Sik Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
4
|
Vantaggiato L, Shaba E, Cameli P, Bergantini L, d’Alessandro M, Carleo A, Montuori G, Bini L, Bargagli E, Landi C. BAL Proteomic Signature of Lung Adenocarcinoma in IPF Patients and Its Transposition in Serum Samples for Less Invasive Diagnostic Procedures. Int J Mol Sci 2023; 24:ijms24020925. [PMID: 36674438 PMCID: PMC9861565 DOI: 10.3390/ijms24020925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a form of chronic and irreversible fibrosing interstitial pneumonia of unknown etiology. Although antifibrotic treatments have shown a reduction of lung function decline and a slow disease progression, IPF is characterize by a very high mortality. Emerging evidence suggests that IPF increases the risk of lung carcinogenesis. Both diseases show similarities in terms of risk factors, such as history of smoking, concomitant emphysema, and viral infections, besides sharing similar pathogenic pathways. Lung cancer (LC) diagnosis is often difficult in IPF patients because of the diffuse lung injuries and abnormalities due to the underlying fibrosis. This is reflected in the lack of optimal therapeutic strategies for patients with both diseases. For this purpose, we performed a proteomic study on bronchoalveolar lavage fluid (BALF) samples from IPF, LC associated with IPF (LC-IPF) patients, and healthy controls (CTRL). Molecular pathways involved in inflammation, immune response, lipid metabolism, and cell adhesion were found for the dysregulated proteins in LC-IPF, such as TTHY, APOA1, S10A9, RET4, GDIR1, and PROF1. The correlation test revealed a relationship between inflammation- and lipid metabolism-related proteins. PROF1 and S10A9, related to inflammation, were up-regulated in LC-IPF BAL and serum, while APOA1 and APOE linked to lipid metabolism, were highly abundant in IPF BAL and low abundant in IPF serum. Given the properties of cytokine/adipokine of the nicotinamide phosphoribosyltransferase, we also evaluated its serum abundance, highlighting its down-regulation in LC-IPF. Our retrospective analyses of BAL samples extrapolated some potential biomarkers of LC-IPF useful to improve the management of these contemporary pathologies. Their differential abundance in serum samples permits the measurement of these potential biomarkers with a less invasive procedure.
Collapse
Affiliation(s)
- Lorenza Vantaggiato
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Enxhi Shaba
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Paolo Cameli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Laura Bergantini
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Miriana d’Alessandro
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Alfonso Carleo
- Department of Pneumology, Medical School Hannover (MHH), 30539 Hannover, Germany
| | - Giusy Montuori
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Elena Bargagli
- UOC Respiratory Diseases and Lung Transplantation, Department Internal and Specialist Medicine, University of Siena, 53100 Siena, Italy
| | - Claudia Landi
- Functional Proteomic Section, Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
5
|
Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Fujitaka K, Hamada H, Hattori N. Association of the RAGE/RAGE-ligand axis with interstitial lung disease and its acute exacerbation. Respir Investig 2022; 60:531-542. [PMID: 35504814 DOI: 10.1016/j.resinv.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The receptor for advanced glycation end product (RAGE) is a transmembrane receptor highly expressed in type 1 pneumocytes of healthy lungs. RAGE is considered to play a homeostatic role in the lung, as RAGE knockout mice develop lung fibrosis as they age. In contrast, RAGE can bind numerous ligands, including high-mobility group box 1 (HMGB1). These interactions initiate pro-inflammatory signaling associated with the pathogenesis of lung injury and interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF). ILD is a broad category of diffuse parenchymal lung disease characterized by various extents of lung fibrosis and inflammation, and IPF is a common and progressive ILD of unknown cause. The prognosis of patients with IPF is poor, and acute exacerbation of IPF (AE-IPF) is one of the main causes of death. Recent reports indicate that acute exacerbations can occur in other ILDs (AE-ILD). Notably, ILD is frequently observed in patients with lung cancer, and AE-ILD after surgical procedures or the initiation of chemotherapy for concomitant lung cancer are clinically important due to their association with increased mortality. In this review, we summarize the associations of RAGE/soluble RAGE (sRAGE)/RAGE ligands with the pathogenesis and clinical course of ILD, including IPF and AE-IPF. Additionally, the potential use of sRAGE and RAGE ligands as predictive markers of AE-IPF and cancer treatment-triggered AE-ILD is also discussed.
Collapse
Affiliation(s)
- Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan.
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| |
Collapse
|
6
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
7
|
Lin L, Zhao Y, Li Z, Li Y, Wang W, Kang J, Wang Q. Expression of S100A9 and KL-6 in common interstitial lung diseases. Medicine (Baltimore) 2022; 101:e29198. [PMID: 35512076 PMCID: PMC9276110 DOI: 10.1097/md.0000000000029198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/10/2022] [Indexed: 01/04/2023] Open
Abstract
By evaluating S100 calcium binding protein A9 (S100A9) and Klebs von den Lungen-6 (KL-6) expression in patients with 4 common interstitial lung diseases (ILDs), we aimed to investigate whether S100A9 or KL-6 can be of any value in the differential diagnosis of these ILDs and simultaneously signal the disease progression.We collected the data of patients diagnosed with the 4 ILDs and underwent fiber-optic bronchoscopy and BAL in the First Affiliated Hospital, China Medical University from January 2012 to December 2020. The data related to BGA, C-reactive protein, pulmonary function test, total number and fraction of cells, T lymphocyte subsets in bronchoalveolar lavage fluid (BALF), and the expression of S100A9 and KL-6 in BALF and serum were collected. We analyzed, whether S100A9 or KL-6 could serve as a biomarker for differential diagnosis between the 4 common ILDs; whether the levels of S100A9 and KL-6 correlated with each other; whether they were correlated with other clinical parameters and disease severity.This study included 98 patients, 37 patients with idiopathic pulmonary fibrosis (IPF), 12 with hypersensitivity pneumonitis, 13 with connective tissue disease-associated ILD, and 36 with sarcoidosis (SAR): stage I (18), stage II (9), stage III (5), and stage IV (4). The expression of KL-6 in BALF was significantly higher in IPF patients than other 3 groups (all P-value < .05). However, there was no significant difference in the levels of S100A9 in BALF and serum between the 4 groups (P-value > .05). The levels of S100A9 in BALF of IPF patients was positively and significantly correlated with KL-6 expression and the percentage of neutrophils in BALF (P-value < .05). Along with the stage increase of SAR patients, the level of S100A9 in BALF gradually increased, which was negatively and significantly correlated with the forced vital capacity/predicted, carbon monoxide diffusing capacity/predicted%, and PaO2 (all P-value < .05).The expression of KL-6 in BALF can be used as a biomarker to differentiate IPF from the other 3 common ILDs. While, this was not the case with expression of S100A9 in BALF and serum. However, the expression S100A9 in BALF is useful to indicate the progression of SAR. Thus, simultaneous measurement of KL-6 and S100A9 levels in BALF makes more sense in differential diagnosing of the 4 common ILDS.
Collapse
Affiliation(s)
- Li Lin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Yabin Zhao
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Yun Li
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
- Department of Geriatric Respiratory, The First Hospital of Kunming Medical University, Kunming, China
| | - Wei Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Perkins TN, Oury TD. The perplexing role of RAGE in pulmonary fibrosis: causality or casualty? Ther Adv Respir Dis 2021; 15:17534666211016071. [PMID: 34275342 PMCID: PMC8293846 DOI: 10.1177/17534666211016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, S-784 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Tanaka K, Enomoto N, Hozumi H, Isayama T, Naoi H, Aono Y, Katsumata M, Yasui H, Karayama M, Suzuki Y, Furuhashi K, Fujisawa T, Inui N, Nakamura Y, Suda T. Serum S100A8 and S100A9 as prognostic biomarkers in acute exacerbation of idiopathic pulmonary fibrosis. Respir Investig 2021; 59:827-836. [PMID: 34154976 DOI: 10.1016/j.resinv.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is a devastating and life-threatening condition during its clinical course. Biomarkers for precisely anticipating the prognosis of AE-IPF remain to be fully established. The objective of this study was to clarify whether S100A8 and S100A9, which are calcium-binding proteins mainly produced by activated neutrophils, are significant prognostic biomarkers in AE-IPF. METHODS Thirty-seven patients with AE-IPF who were diagnosed and treated at our hospital were retrospectively evaluated. The serum levels of S100A8 and S100A9 were measured using enzyme-linked immunosorbent assay, and the relationships between these levels and clinical parameters or prognosis were evaluated. RESULTS The serum levels of S100A8 (median 386.5 ng/mL) and S100A9 (median 60.2 ng/mL) in patients with AE-IPF were significantly higher than those in age-matched healthy controls and in patients at IPF diagnosis (p < 0.001 for all combinations). The serum levels of S100A8 negatively correlated with percent forced vital capacity (r = -0.356, p = 0.049) and positively correlated with peripheral white blood cell number (r = 0.509, p = 0.002). Immunohistochemical staining of autopsy lung specimens showed that neutrophils, present mainly in the alveolar septum, were positive for S100A8 and S100A9. Patients with AE-IPF with higher levels of S100A8 or S100A9 showed significantly worse 3-month survival than those with lower levels (log-rank test, both p = 0.028). Finally, in multivariate analysis, the serum levels of both S100A8 and S100A9 were significant prognostic factors (hazard ratio 4.032, p = 0.023 and hazard ratio 4.327, p = 0.012). CONCLUSION The serum levels of S100A8 and S100A9 at AE were significant prognostic biomarkers in patients with AE-IPF.
Collapse
Affiliation(s)
- Kazuki Tanaka
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Health Administration Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Isayama
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | - Hyogo Naoi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuya Aono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mineo Katsumata
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Long non-coding RNA NEAT1 functions as a competing endogenous RNA to regulate S100A9 expression by sponging miR-196a-5p in rosacea. J Dermatol Sci 2021; 102:58-67. [PMID: 33678493 DOI: 10.1016/j.jdermsci.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rosacea is a complex, chronic, and recurrent dermatologic condition that adversely affects quality of life and self-esteem. However, clinical relevance and molecular mechanisms underlying NEAT1 influence in rosacea remain unclear. OBJECTIVE The present study aims to investigate the dynamics and influences of lncRNAs, miRNAs, and mRNAs in rosacea patients, and to explore the impacts of NEAT1 treatments on miR-196a-5p and S100A9 expression in LL37-treated HaCaT cells. METHODS RNA-sequencing of skin tissues from rosacea patients and integrative analyses facilitated comprehensive exploration of lncRNA, mRNA, and miRNA networks. We identified differentially expressed lncRNAs in paired rosacea afflicted and non-lesioned tissues by hub lncRNAs in the ceRNA network. The role of NEAT1 in LL37-treated HaCaT cells was identified by in vitro experiments. RESULTS There were 237 lncRNAs, 38 miRNAs, and 1784 mRNAs in lesioned skin compared to non-lesioned skin in six rosacea patients. NEAT1 was upregulated in rosacea skin and in LL37-treated HaCaT cells. Moreover, inflammatory damage was able to be reduced in vitro after knockdown of NEAT1. Finally, NEAT1 was able to directly interact with miR-196a-5p, and downregulating miR-196a-5p was efficient in reversing the influence of NEAT1 siRNA on S100A9. CONCLUSION We have completed the first genome-wide lncRNA profiling of paired lesioned and non-lesioned samples from rosacea afflicted patients. The NEAT1/miR-196a-5p/S100A9 axis may have played an important role in the dynamics underlying inflammatory responses of rosacea. NEAT1 may have functioned as a competing endogenous RNA which regulated inflammatory responses in rosacea by sponging miR-196a-5p and upregulating S100A9 expression.
Collapse
|
11
|
Machahua C, Guler SA, Horn MP, Planas-Cerezales L, Montes-Worboys A, Geiser TK, Molina-Molina M, Funke-Chambour M. Serum calprotectin as new biomarker for disease severity in idiopathic pulmonary fibrosis: a cross-sectional study in two independent cohorts. BMJ Open Respir Res 2021; 8:8/1/e000827. [PMID: 33451989 PMCID: PMC7813379 DOI: 10.1136/bmjresp-2020-000827] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Non-invasive biomarkers for the assessment of disease severity in idiopathic pulmonary fibrosis (IPF) are urgently needed. Calprotectin belongs to the S-100 proteins produced by neutrophils, which likely contribute to IPF pathogenesis. Calprotectin is a well-established biomarker in inflammatory bowel diseases. In this cross-sectional study, we aimed to establish the potential role of calprotectin as a biomarker in IPF. Specifically, we hypothesised that patients with IPF have higher serum calprotectin levels compared with healthy controls, and that calprotectin levels are associated with disease severity. METHODS Blood samples were obtained from healthy volunteers (n=26) and from two independent IPF cohorts (derivation cohort n=26, validation cohort n=66). Serum calprotectin levels were measured with a commercial kit adapted for that purpose and compared between healthy controls and patients with IPF. Clinical parameters, including forced vital capacity, diffusing capacity for carbon monoxide (DLCO) and the Composite Physiologic Index (CPI), were correlated with calprotectin serum levels. RESULTS The IPF derivation cohort showed increased serum calprotectin levels compared with healthy controls (2.47±1.67 vs 0.97±0.53 µg/mL, p<0.001). In addition, serum calprotectin levels correlated with DLCO% predicted (r=-0.53, p=0.007) and with CPI (r=0.66, p=0.007). These findings were confirmed in an independent IPF validation cohort. CONCLUSION Serum calprotectin levels are significantly increased in patients with IPF compared with healthy controls and correlate with DLCO and CPI. Calprotectin might be a potential new biomarker for disease severity in IPF.
Collapse
Affiliation(s)
- Carlos Machahua
- Department for Pulmonary Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabina A Guler
- Department for Pulmonary Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael P Horn
- Department of Clinical Chemistry, Inselspital University Hospital Bern, Bern, Switzerland
| | - Lurdes Planas-Cerezales
- Unit of interstitial lung disease, Department of Pneumology, University Hospital of Bellvitge L'Hospitalet de Llobregat, Barcelona, Spain.,Pneumology Research Group, Institut D'Investigació Biomedica de Bellvitge IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Montes-Worboys
- Pneumology Research Group, Institut D'Investigació Biomedica de Bellvitge IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Thomas K Geiser
- Department for Pulmonary Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Maria Molina-Molina
- Unit of interstitial lung disease, Department of Pneumology, University Hospital of Bellvitge L'Hospitalet de Llobregat, Barcelona, Spain.,Pneumology Research Group, Institut D'Investigació Biomedica de Bellvitge IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland .,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Zheng WB, Zou Y, He JJ, Liu GH, Hu MH, Zhu XQ. Proteomic alterations in the plasma of Beagle dogs induced by Toxocara canis infection. J Proteomics 2020; 232:104049. [PMID: 33212252 DOI: 10.1016/j.jprot.2020.104049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Toxocara canis causes ocular larva migrans and visceral larva migrans in humans. Knowledge about the molecular mechanism of T. canis-hosts interaction is limited. The proteomic alterations in the plasma of Beagle dogs induced by T. canis infection were studied by the quantitative mass spectrometry-based data-independent acquisition (DIA). 418, 414 and 411 plasma proteins were identified at 24 h post-infection (hpi), 96 hpi and 36 days post-infection (dpi), including 6, 5 and 23 proteins with differential abundance, respectively. At 24 hpi, the altered proteins, retinoic acid receptor responder protein 2 (RARRES2), WD repeat-containing protein 1 (WDR1), moesin and filamin-A, may participate in pro-inflammatory reaction or promote larvae migration. At 96 hpi, the altered protein C and fibroleukin may maintain the stability of the coagulation system to protect the lung. At 36 dpi, the alterations of C-reactive protein (CRP), ficolin (FCN), complement factor H-related protein 5 (CFHR5) and other complements can affect the three traditional complement system, including the classic pathway, lectin pathway and alternative pathway. These proteins may play important roles in the interaction between T. canis and its definitive hosts. Further study on these altered proteins triggered by T. canis infection may discovery novel therapeutic or diagnostic targets for toxocariasis. SIGNIFICANCE OF THE STUDY: Toxocara canis is one of the globally distributed soil-transmitted helminths, which causes ocular larva migrans and visceral larva migrans in humans and a wide range of warm-blooded animals. T. canis adapts to different microenvironments by resisting and adjusting various biological processes of the hosts. Knowledge about the molecular mechanism of T. canis-hosts interaction is limited. Plasma proteins are good marker for monitoring the occurrence and development of diseases. The proteomic alterations in the plasma of Beagle dogs induced by T. canis infection were studied by the quantitative mass spectrometry-based data-independent acquisition (DIA) in this study. A total of 418, 414 and 411 plasma proteins were identified at 24 h post-infection (hpi), 96 hpi and 36 days post-infection, respectively. Ten protein with differential abundances were validated by using parallel reaction monitoring (PRM). Collectively, our deep proteomic analysis of plasma revealed that proteins alterations were affected by disease development, and proteomic analysis is an ideal method for quantifying changes in circulating factors on a global scale in response to pathophysiological perturbations such as T. canis infection.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | - Min-Hua Hu
- National Canine Laboratory Animal Resource Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, Guangdong Province 510240, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| |
Collapse
|
13
|
Araki K, Kinoshita R, Tomonobu N, Gohara Y, Tomida S, Takahashi Y, Senoo S, Taniguchi A, Itano J, Yamamoto KI, Murata H, Suzawa K, Shien K, Yamamoto H, Okazaki M, Sugimoto S, Ichimura K, Nishibori M, Miyahara N, Toyooka S, Sakaguchi M. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J Mol Med (Berl) 2020; 99:131-145. [PMID: 33169236 DOI: 10.1007/s00109-020-02001-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In patients with interstitial pneumonia, pulmonary fibrosis is an irreversible condition that can cause respiratory failure. Novel treatments for pulmonary fibrosis are necessary. Inflammation is thought to activate lung fibroblasts, resulting in pulmonary fibrosis. Of the known inflammatory molecules, we have focused on S100A8/A9 from the onset of inflammation to the subsequent progression of inflammation. Our findings confirmed the high expression of S100A8/A9 in specimens from patients with pulmonary fibrosis. An active role of S100A8/A9 was demonstrated not only in the proliferation of fibroblasts but also in the fibroblasts' differentiation to myofibroblasts (the active form of fibroblasts). S100A8/A9 also forced fibroblasts to upregulate the production of collagen. These effects were induced via the receptor of S100A8/A9, i.e., the receptor for advanced glycation end products (RAGE), on fibroblasts. The anti-S100A8/A9 neutralizing antibody inhibited the effects of S100A8/A9 on fibroblasts and suppressed the progression of fibrosis in bleomycin (BLM)-induced pulmonary fibrosis mouse model. Our findings strongly suggest a crucial role of S100A8/A9 in pulmonary fibrosis and the usefulness of S100A8/A9-targeting therapy for fibrosis interstitial pneumonia. HIGHLIGHTS: S100A8/A9 level is highly upregulated in the IPF patients' lungs as well as the blood. S100A8/A9 promotes not only the growth of fibroblasts but also differentiation to myofibroblasts. The cell surface RAGE acts as a crucial receptor to the extracellular S100A8/A9 in fibroblasts. The anti-S100A8/A9 antibody effectively suppresses the progression of IPF in a mouse model. In idiopathic pulmonary fibrosis (IPF), S100A8/A9, a heterodimer composed of S100A8 and S100A9 proteins, plays a crucial role in the onset of inflammation and the subsequent formation of a feed-forward inflammatory loop that promotes fibrosis. (1) The local, pronounced increase in S100A8/A9 in the injured inflammatory lung region-which is provided mainly by the activated neutrophils and macrophages-exerts strong inflammatory signals accompanied by dozens of inflammatory soluble factors including cytokines, chemokines, and growth factors that further act to produce and secrete S100A8/A9, eventually making a sustainable inflammatory circuit that supplies an indefinite presence of S100A8/A9 in the extracellular space with a mal-increased level. (2) The elevated S100A8/A9 compels fibroblasts to activate through receptor for advanced glycation end products (RAGE), one of the major S100A8/A9 receptors, resulting in the activation of NFκB, leading to fibroblast mal-events (e.g., elevated cell proliferation and transdifferentiation to myofibroblasts) that actively produce not only inflammatory cytokines but also collagen matrices. (3) Finally, the S100A8/A9-derived activation of lung fibroblasts under a chronic inflammation state leads to fibrosis events and constantly worsens fibrosis in the lung. Taken together, these findings suggest that the extracellular S100A8/A9 heterodimer protein is a novel mainstay soluble factor for IPF that exerts many functions as described above (1-3). Against this background, we herein applied the developed S100A8/A9 neutralizing antibody to prevent IPF. The IPF imitating lung fibrosis in an IPF mouse model was effectively blocked by treatment with the antibody, leading to enhanced survival. The developed S100A8/A9 antibody, as an innovative novel biologic, may help shed light on the difficulties encountered with IPF therapy in clinical settings.
Collapse
Affiliation(s)
- Kota Araki
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yuta Takahashi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Senoo
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Junko Itano
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Kouichi Ichimura
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.,Department of Medical Technology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
14
|
Dong W, Yu H, Zhu YY, Xian ZH, Chen J, Wang H, Shi CC, Jin GZ, Dong H, Cong WM. A Novel Pathological Scoring System for Hepatic Cirrhosis with Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:5537-5547. [PMID: 32753967 PMCID: PMC7354953 DOI: 10.2147/cmar.s223417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aimed to propose an effective quantitative pathological scoring system and to establish nomogram to assess the stage of cirrhosis and predict postoperative survival of hepatocellular carcinoma (HCC) with cirrhosis patients after hepatectomy. Methods The scoring system was based on a retrospective study on 163 patients who underwent partial hepatectomy for HCC with cirrhosis. The clinicopathological and follow-up data of 163 HCC with cirrhosis patients who underwent hepatectomy in our hospital from 2010 to 2014 were retrospectively reviewed. A scoring system was established based on the total value of independent predictive factors of cirrhosis. The results were validated using 97 patients operated on from 2011 to 2015 at the same institution. Nomogram was then formulated using a multivariate Cox proportional hazards model to analyze. Results The scoring system was ultimately composed of 4 independent predictive factors and was divided into 3 levels. The new cirrhosis system score strongly correlated with Child–Pugh score (r=0.8058, P<0.0001) 3 months after surgery; higher cirrhosis system scores predicted poorer liver function and stronger liver damage 3 months after surgery. Then, a four-factor nomogram for survival prediction was established. The concordance indices were 0.79 for the survival-prediction nomogram. The calibration curves showed good agreement between predictions by the nomogram and actual survival outcomes. Conclusion This new scoring system of cirrhosis can help us predict the liver function and liver injury 3 months after surgery, and the nomogram enabled accurate predictions of risk of overall survival in patients of HCC with cirrhosis after hepatectomy.
Collapse
Affiliation(s)
- Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Hua Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Yu-Yao Zhu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Zhi-Hong Xian
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Jia Chen
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Hao Wang
- Department of Hepatobiliary Diseases, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China
| | - Chun-Chao Shi
- Second Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China
| | - Guang-Zhi Jin
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200050, People's Republic of China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, People's Republic of China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, The Ministry of Education, Shanghai 200438, People's Republic of China
| |
Collapse
|
15
|
Frohberger SJ, Fercoq F, Neumann AL, Surendar J, Stamminger W, Ehrens A, Karunakaran I, Remion E, Vogl T, Hoerauf A, Martin C, Hübner MP. S100A8/S100A9 deficiency increases neutrophil activation and protective immune responses against invading infective L3 larvae of the filarial nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 2020; 14:e0008119. [PMID: 32107497 PMCID: PMC7064255 DOI: 10.1371/journal.pntd.0008119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/10/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.
Collapse
Affiliation(s)
- Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Estelle Remion
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Thomas Vogl
- Institute of Immunology, University Hospital of Münster, Münster, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
16
|
Affiliation(s)
- Vahid Bagheri
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | | |
Collapse
|
17
|
Bennett D, Salvini M, Fui A, Cillis G, Cameli P, Mazzei MA, Fossi A, Refini RM, Rottoli P. Calgranulin B and KL-6 in Bronchoalveolar Lavage of Patients with IPF and NSIP. Inflammation 2019; 42:463-470. [DOI: 10.1007/s10753-018-00955-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Karadjian G, Fercoq F, Pionnier N, Vallarino-Lhermitte N, Lefoulon E, Nieguitsila A, Specht S, Carlin LM, Martin C. Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung. PLoS Negl Trop Dis 2017; 11:e0005596. [PMID: 28486498 PMCID: PMC5438187 DOI: 10.1371/journal.pntd.0005596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/19/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
Filarial infections are tropical diseases caused by nematodes of the Onchocercidae family such as Mansonella perstans. The infective larvae (L3) are transmitted into the skin of vertebrate hosts by blood-feeding vectors. Many filarial species settle in the serous cavities including M. perstans in humans and L. sigmodontis, a well-established model of filariasis in mice. L. sigmodontis L3 migrate to the pleural cavity where they moult into L4 around day 9 and into male and female adult worms around day 30. Little is known of the early phase of the parasite life cycle, after the L3 is inoculated in the dermis by the vector and enters the afferent lymphatic vessels and before the moulting processes in the pleural cavity. Here we reveal a pulmonary phase associated with lung damage characterized by haemorrhages and granulomas suggesting L3 reach the lung via pulmonary capillaries and damage the endothelium and parenchyma by crossing them to enter the pleural cavity. This study also provides evidence for a transient inflammation in the lung characterized by a very early recruitment of neutrophils associated with high expression levels of S100A8 and S100A9 proteins.
Collapse
Affiliation(s)
- Gregory Karadjian
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nicolas Pionnier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Emilie Lefoulon
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Adélaïde Nieguitsila
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Leo M. Carlin
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| |
Collapse
|
19
|
Fujii K, Nakamura H, Nishimura T. Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma. Expert Rev Proteomics 2017; 14:373-386. [PMID: 28271730 DOI: 10.1080/14789450.2017.1304215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Lung cancer and related diseases have been one of the most common causes of deaths worldwide. Genomic-based biomarkers may hardly reflect the underlying dynamic molecular mechanism of functional protein interactions, which is the center of a disease. Recent developments in mass spectrometry (MS) have made it possible to analyze disease-relevant proteins expressed in clinical specimens by proteomic challenges. Areas covered: To understand the molecular mechanisms of lung cancer and its subtypes, chronic obstructive pulmonary disease (COPD), asthma and others, great efforts have been taken to identify numerous relevant proteins by MS-based clinical proteomic approaches. Since lung cancer is a multifactorial disease that is biologically associated with asthma and COPD among various lung diseases, this study focused on proteomic studies on biomarker discovery using various clinical specimens for lung cancer, COPD, and asthma. Expert commentary: MS-based exploratory proteomics utilizing clinical specimens, which can incorporate both experimental and bioinformatic analysis of protein-protein interaction and also can adopt proteogenomic approaches, makes it possible to reveal molecular networks that are relevant to a disease subgroup and that could differentiate between drug responders and non-responders, good and poor prognoses, drug resistance, and so on.
Collapse
Affiliation(s)
- Kiyonaga Fujii
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| | - Haruhiko Nakamura
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan.,b Department of Chest Surgery , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| | - Toshihide Nishimura
- a Department of Translational Medicine Informatics , St. Marianna University School of Medicine, Miyamae-ku , Kawasaki , Japan
| |
Collapse
|
20
|
Abu El-Asrar AM, Alam K, Siddiquei MM, Van den Eynde K, Mohammad G, De Hertogh G, Opdenakker G. Myeloid-Related Protein-14/MRP-14/S100A9/Calgranulin B is Associated with Inflammation in Proliferative Diabetic Retinopathy. Ocul Immunol Inflamm 2016; 26:615-624. [PMID: 27849448 DOI: 10.1080/09273948.2016.1245759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the expression of the leukocyte proteins myeloid-related protein (MRP)-8 and MRP-14 in proliferative diabetic retinopathy (PDR) and the effect of MRP-8/MRP-14 (calprotectin) heterodimer on induction of proinflammatory factors in human retinal microvascular endothelial cells (HRMEC). METHODS Epiretinal membranes from 20 patients with PDR and 10 patients with proliferative vitreoretinopathy (PVR), vitreous fluid samples from PDR and non-diabetic subjects and HRMEC were studied by immunohistochemistry and Western blot analysis. RESULTS MRP-14 expression was localized in endothelial cells, leukocytes and myofibroblasts in all PDR membranes. MRP-8 expression was limited to intravascular leukocytes in 42% of the studied membranes. In PVR membranes, MRP-14 was expressed in leukocytes and myofibroblasts, whereas MRP-8 immunoreactivity was limited to leukocytes. MRP-14 was significantly upregulated in vitreous from PDR patients. MRP-8/MRP-14 (calprotectin) increased expression of intercellular adhesion molecule-1, but attenuated vascular cell adhesion molecule-1 expression in HRMEC. CONCLUSIONS Increased MRP-14 levels are associated with inflammation in PDR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia.,b Dr Nasser Al-Rashid Research Chair in Ophthalmology , Riyadh , Saudi Arabia
| | - Kaiser Alam
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Mohammad M Siddiquei
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Kathleen Van den Eynde
- c Laboratory of Histochemistry and Cytochemistry, University of Leuven , KU Leuven , Leuven , Belgium
| | - Ghulam Mohammad
- a Department of Ophthalmology , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Gert De Hertogh
- c Laboratory of Histochemistry and Cytochemistry, University of Leuven , KU Leuven , Leuven , Belgium
| | - Ghislain Opdenakker
- d Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology , University of Leuven , KU Leuven , Leuven , Belgium
| |
Collapse
|
21
|
Bennett D, Fossi A, Bargagli E, Refini RM, Pieroni M, Luzzi L, Ghiribelli C, Paladini P, Voltolini L, Rottoli P. Mortality on the Waiting List for Lung Transplantation in Patients with Idiopathic Pulmonary Fibrosis: A Single-Centre Experience. Lung 2015. [PMID: 26216722 DOI: 10.1007/s00408-015-9767-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Lung transplantation (LTX) is nowadays accepted as a treatment option for selected patients with end-stage pulmonary disease. Idiopathic pulmonary fibrosis (IPF) is characterized by the radiological and histologic appearance of usual interstitial pneumonia. It is associated with a poor prognosis, and LTX is considered an effective treatment to significantly modify the natural history of this disease. The aim of the present study was to analyse mortality during the waiting list in IPF patients at a single institution. METHODS A retrospective analysis on IPF patients (n = 90) referred to our Lung Transplant Program in the period 2001-2014 was performed focusing on patients' characteristics and associated risk factors. RESULTS Diagnosis of IPF was associated with high mortality on the waiting list with respect to other diagnosis (p < 0.05). No differences in demographic, clinical, radiological data and time spent on the waiting list were observed between IPF patients who underwent to LTX or lost on the waiting list. Patients who died showed significant higher levels of pCO2 and needed higher flows of O2-therapy on effort (p < 0.05). Pulmonary function tests failed to predict mortality and no other medical conditions were associated with survival. CONCLUSIONS Patients newly diagnosed with IPF, especially in small to medium lung transplant volume centres and in Countries where a long waiting list is expected, should be immediately referred to transplantation, delay results in increased mortality. Early identification of IPF patients with a rapid progressive phenotype is strongly needed.
Collapse
Affiliation(s)
- David Bennett
- Respiratory Diseases and Lung Transplantation Unit, Internal and Specialist Medicine Department, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci n° 16, 2nd Floor, 3rd Building, 53100, Siena, Italy.
| | - Antonella Fossi
- Respiratory Diseases and Lung Transplantation Unit, Internal and Specialist Medicine Department, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci n° 16, 2nd Floor, 3rd Building, 53100, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation Unit, Internal and Specialist Medicine Department, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci n° 16, 2nd Floor, 3rd Building, 53100, Siena, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation Unit, Internal and Specialist Medicine Department, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci n° 16, 2nd Floor, 3rd Building, 53100, Siena, Italy
| | - Maria Pieroni
- Respiratory Diseases and Lung Transplantation Unit, Internal and Specialist Medicine Department, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci n° 16, 2nd Floor, 3rd Building, 53100, Siena, Italy
| | - Luca Luzzi
- Thoracic Surgery Unit, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Claudia Ghiribelli
- Thoracic Surgery Unit, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Piero Paladini
- Thoracic Surgery Unit, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Luca Voltolini
- Thoracic Surgery Unit, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Paola Rottoli
- Respiratory Diseases and Lung Transplantation Unit, Internal and Specialist Medicine Department, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci n° 16, 2nd Floor, 3rd Building, 53100, Siena, Italy
| |
Collapse
|
22
|
Nonalcoholic Steatohepatitis: Involvement of the Telomerase and Proinflammatory Mediators. BIOMED RESEARCH INTERNATIONAL 2015; 2015:850246. [PMID: 26273651 PMCID: PMC4529930 DOI: 10.1155/2015/850246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/20/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Abstract
Nonalcoholic steatohepatitis or NASH is an excessive accumulation of fat in hepatocytes accompanied by inflammation and hepatic injury. Proinflammatory molecules such as IL-17, CCL20, S100A8, S100A9, and S100A8/A9 have been shown to be implicated in many types of cancer. Telomerase activity has been found to be associated with chronic inflammation and cancer. NASH can progress to fibrosis then cirrhosis and finally to hepatocellular carcinoma (HCC). Our objective is to try to find a relation between inflammation and the progression of NASH into HCC. We found that there was a significant elevation in the telomerase activity, detected by real-time PCR, between NASH and fibrotic NASH in the liver biopsies of patients. The expression of S100A8, S100A9, S100A8/A9, CCL20, and IL-17, detected by ELISA, is significantly increased in NASH patients with fibrosis in comparison with controls. But, in NASH patients, S100A9, S100A8/A9, and IL-17 only are significantly elevated in comparison with controls. The same, on the mRNA level, expression of IL-17, detected by RT-PCR, is significantly elevated in NASH patients in comparison with controls. Therefore, there is a direct link between the expression of IL-17, CCL20, telomerase, S100A8, and S100A9 in the fibrotic condition and the progression towards cancer.
Collapse
|
23
|
Campo I, Zorzetto M, Bonella F. Facts and promises on lung biomarkers in interstitial lung diseases. Expert Rev Respir Med 2015; 9:437-57. [DOI: 10.1586/17476348.2015.1062367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Terracciano R, Pelaia G, Preianò M, Savino R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl 2015; 9:203-20. [PMID: 25504544 DOI: 10.1002/prca.201400099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 12/25/2022]
Abstract
Although asthma and chronic obstructive pulmonary disease COPD represent the two most common chronic respiratory diseases worldwide, the mechanisms underlying their pathobiology need to be further elucidated. Presently, differentiation of asthma and COPD are largely based on clinical and lung function parameters. However, the complexity of these multifactorial diseases may lead to misclassification and to inappropriate management strategies. Recently, tremendous progress in MS has extended the sensitivity, accuracy, and speed of analysis, enabling the identification of thousands of proteins per experiment. Beyond identification, MS has also greatly implemented quantitation issues allowing to assess qualitative-quantitative differences in protein profiles of different samples, in particular diseased versus normal. Herein, we provide a summary of recent proteomics-based investigations in the field of asthma/COPD, highlighting major issues related to sampling and processing procedures for proteomic analyses of specific airway and parenchymal specimens (induced sputum, exhaled breath condensate, epithelial lining fluid, bronchoalveolar and nasal lavage fluid), as well as blood-derived specimen (plasma and serum). Within such a context, together with current difficulties and limitations mainly due to lack of general standardization in preanalytical sampling procedure, our discussion will focus on the challenges and possible benefits of proteomic studies in phenotypic stratification of asthma and COPD.
Collapse
Affiliation(s)
- Rosa Terracciano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | | | | | | |
Collapse
|
25
|
Xu X, Chen H, Zhu X, Ma Y, Liu Q, Xue Y, Chu H, Wu W, Wang J, Zou H. S100A9 promotes human lung fibroblast cells activation through receptor for advanced glycation end-product-mediated extracellular-regulated kinase 1/2, mitogen-activated protein-kinase and nuclear factor-κB-dependent pathways. Clin Exp Immunol 2013; 173:523-35. [PMID: 23682982 DOI: 10.1111/cei.12139] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 11/30/2022] Open
Abstract
S100A9 belongs to the S100 family of calcium-binding proteins and plays a key role in many inflammatory conditions. Recent studies have found that S100A9 was elevated significantly in the bronchoalveolar lavage fluid of idiopathic pulmonary fibrosis patients, and might be a biomarker for fibrotic interstitial lung diseases. However, the exact function of S100A9 in pulmonary fibrosis needs further studies. We performed this study to investigate the effect of S100A9 on human embryo lung fibroblast (HLF) proliferation and production of cytokines and collagen, providing new insights into the possible mechanism. S100A9 promoted proliferation of fibroblasts and up-regulated expression of both proinflammatory cytokines interleukin (IL)-6, IL-8, IL-1β and collagen type III. S100A9 also induced HLF cells to produce α-smooth muscle actin (α-SMA) and receptor for advanced glycation end-product (RAGE). In addition, S100A9 caused a significant increase in extracellular-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) phosphorylation, while the status of p38 and c-Jun N-terminal kinase (JNK) phosphorylation remained unchanged. Treatment of cells with S100A9 also enhanced nuclear factor kappa B (NF-κB) activation. RAGE blocking antibody pretreatment inhibited the S100A9-induced cell proliferation, cytokine production and pathway phosphorylation. S100A9-mediated cell activation was suppressed significantly by ERK1/2 MAPK inhibitor and NF-κB inhibitor. In conclusion, S100A9 promoted HLF cell growth and induced cells to secret proinflammatory cytokines and collagen through RAGE signalling and activation of ERK1/2 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- X Xu
- Division of Rheumatology, Huashan Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee TH, Jang AS, Park JS, Kim TH, Choi YS, Shin HR, Park SW, Uh ST, Choi JS, Kim YH, Kim Y, Kim S, Chung IY, Jeong SH, Park CS. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol 2013; 111:268-275.e1. [DOI: 10.1016/j.anai.2013.06.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 11/16/2022]
|
27
|
Martinez-Skinner AL, Veerubhotla RS, Liu H, Xiong H, Yu F, McMillan JM, Gendelman HE. Functional proteome of macrophage carried nanoformulated antiretroviral therapy demonstrates enhanced particle carrying capacity. J Proteome Res 2013; 12:2282-94. [PMID: 23544708 DOI: 10.1021/pr400185w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our laboratory developed long-acting nanoformulations of antiretroviral therapy (nanoART) to improve drug compliance, reduce toxicities, and facilitate access of drug to viral reservoirs. These all function to inevitably improve treatment of human immunodeficiency virus (HIV) infection. Formulations are designed to harness the carrying capacities of mononuclear phagocytes (MP; monocytes and macrophages) and to use these cells as Trojan horses for drug delivery. Such a drug distribution system limits ART metabolism and excretion while facilitating access to viral reservoirs. Our prior works demonstrated a high degree of nanoART sequestration in macrophage recycling endosomes with broad and sustained drug tissue biodistribution and depots with limited untoward systemic toxicities. Despite such benefits, the effects of particle carriage on the cells' functional capacities remained poorly understood. Thus, we employed pulsed stable isotope labeling of amino acids in cell culture to elucidate the macrophage proteome and assess any alterations in cellular functions that would affect cell-drug carriage and release kinetics. NanoART-MP interactions resulted in the induction of a broad range of activation-related proteins that can enhance phagocytosis, secretory functions, and cell migration. Notably, we now demonstrate that particle-cell interactions serve to enhance drug loading while facilitating drug tissue depots and transportation.
Collapse
Affiliation(s)
- Andrea L Martinez-Skinner
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 2013; 3:1. [PMID: 23282144 PMCID: PMC3599653 DOI: 10.1186/2044-5040-3-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 01/09/2023] Open
Abstract
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E, Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
29
|
Hara A, Sakamoto N, Ishimatsu Y, Kakugawa T, Nakashima S, Hara S, Adachi M, Fujita H, Mukae H, Kohno S. S100A9 in BALF is a candidate biomarker of idiopathic pulmonary fibrosis. Respir Med 2012; 106:571-80. [DOI: 10.1016/j.rmed.2011.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
30
|
Tsitsiou E, Williams AE, Moschos SA, Patel K, Rossios C, Jiang X, Adams OD, Macedo P, Booton R, Gibeon D, Chung KF, Lindsay MA. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J Allergy Clin Immunol 2011; 129:95-103. [PMID: 21917308 DOI: 10.1016/j.jaci.2011.08.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Although previous studies have implicated tissue CD4(+) T cells in the development and maintenance of the inflammatory response in asthmatic patients, little is known about the role of CD8(+) T cells. There is now accumulating evidence that microRNAs and other noncoding RNAs are important regulators of T-cell function. OBJECTIVES We sought to use transcriptomics to determine the activation state of circulating CD4(+) and CD8(+) T cells in patients with nonsevere and severe asthma. METHODS mRNA and noncoding RNA expression in circulating T cells was measured by means of microarray, quantitative real-time PCR, or both. RESULTS Comparison of mRNA expression showed widespread changes in the circulating CD8(+) but not CD4(+) T cells from patients with severe asthma. No changes were observed in the CD4(+) and CD8(+) T cells in patients with nonsevere asthma versus those in healthy control subjects. Bioinformatics analysis showed that the changes in CD8(+) T-cell mRNA expression were associated with multiple pathways involved in T-cell activation. As with mRNAs, we also observed widespread changes in expression of noncoding RNA species, including natural antisense, pseudogenes, intronic long noncoding RNAs (lncRNAs), and intergenic lncRNAs in CD8(+) T cells from patients with severe asthma. Measurement of the microRNA expression profile showed selective downregulation of miR-28-5p in CD8(+) T cells and reduction of miR-146a and miR-146b in both CD4(+) and CD8(+) T cells. CONCLUSIONS Severe asthma is associated with the activation of circulating CD8(+) T cells but not CD4(+) T cells. This response is correlated with the downregulation of miR-146a/b and miR-28-5p, as well as changes in the expression of multiple species of lncRNA that might regulate CD8(+) T-cell function.
Collapse
Affiliation(s)
- Eleni Tsitsiou
- Respiratory Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Macrophage-derived biomarkers of idiopathic pulmonary fibrosis. Pulm Med 2010; 2011:717130. [PMID: 21637368 PMCID: PMC3101790 DOI: 10.1155/2011/717130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/09/2010] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe, rapidly progressive diffuse lung disease. Several pathogenetic mechanisms have been hypothesized on the basis of the fibrotic lung damage occurring in this disease, and a potential profibrotic role of activated alveolar macrophages and their mediators in the pathogenesis of IPF was recently documented. This paper focuses on recent literature on potential biomarkers of IPF derived from activated alveolar macrophages. Biomarker discovery and clinical application are a recent topic of interest in the field of interstitial lung diseases (ILDs). Cytokines, CC-chemokines, and other macrophage-produced mediators are the most promising prognostic biomarkers. Many molecules have been proposed in the literature as potential biomarker of IPF; however, a rigorous validation is needed to confirm their clinical utility.
Collapse
|