1
|
Jiang F, Wang MQ, Zhang MY, Gu SL, Xie YW, Huang Y, Zhou MY, Li FL, Yang YC, Zhang PP, Liu XS, Li R. CPD-002, a novel VEGFR2 inhibitor, relieves rheumatoid arthritis by reducing angiogenesis through the suppression of the VEGFR2/PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 131:111850. [PMID: 38479157 DOI: 10.1016/j.intimp.2024.111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Synovial angiogenesis is a key player in the development of rheumatoid arthritis (RA), and anti-angiogenic therapy is considered a promising approach for treating RA. CPD-002 has demonstrated efficacy in suppressing tumor angiogenesis as a VEGFR2 inhibitor, but its specific impacts on RA synovial angiogenesis and possible anti-RA effects need further study. We examined the influences of CPD-002 on the migration and invasion of human umbilical vein endothelial cells (HUVECs) and its impacts on HUVECs' tube formation and vessel sprouting ex vivo. The therapeutic potential of CPD-002 in adjuvant-induced arthritis (AIA) rats and its suppression of synovial angiogenesis were examined. The involvement of the VEGFR2/PI3K/AKT pathway was assessed both in HUVECs and AIA rat synovium. Here, CPD-002 inhibited the migration and invasion of VEGF-stimulated HUVECs, decreased their chemotactic response to RA fibroblast-like synoviocyte-released chemoattractants, and exhibited anti-angiogenic effects in vitro and ex vivo. CPD-002's targeting of VEGFR2 was confirmed with molecular docking and cellular thermal shift assays, supported by the abolishment of CPD-002's effects upon using VEGFR2 siRNA. CPD-002 relieved paw swelling, arthritis index, joint damage, and synovial angiogenesis, indicating its anti-arthritic and anti-angiogenic effects in AIA rats. Moreover, the anti-inflammatory effects in vivo and in vitro of CPD-002 contributed to its anti-angiogenic effects. Mechanistically, CPD-002 hindered the activation of VEGFR2/PI3K/AKT pathway in VEGF-induced HUVECs and AIA rat synovium, as evidenced by reduced p-VEGFR2, p-PI3K, and p-AKT protein levels alongside elevated PTEN protein levels. Totally, CPD-002 showed anti-rheumatoid effects via attenuating angiogenesis through the inhibition of the VEGFR2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Man-Yu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Ya-Wen Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Fei-Long Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Yu-Chen Yang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Pei-Pei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Xue-Song Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, PR China.
| |
Collapse
|
2
|
Nisimura LM, Ferreira RR, Coelho LL, de Oliveira GM, Gonzaga BM, Meuser-Batista M, Lannes-Vieira J, Araujo-Jorge T, Garzoni LR. Vascular Growth Factor Inhibition with Bevacizumab Improves Cardiac Electrical Alterations and Fibrosis in Experimental Acute Chagas Disease. BIOLOGY 2023; 12:1414. [PMID: 37998013 PMCID: PMC10669550 DOI: 10.3390/biology12111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
Chagas disease (CD) caused by Trypanosoma cruzi is a neglected illness and a major reason for cardiomyopathy in endemic areas. The existing therapy generally involves trypanocidal agents and therapies that control cardiac alterations. However, there is no treatment for the progressive cardiac remodeling that is characterized by inflammation, microvasculopathy and extensive fibrosis. Thus, the search for new therapeutic strategies aiming to inhibit the progression of cardiac injury and failure is necessary. Vascular Endothelial Growth Factor A (VEGF-A) is the most potent regulator of vasculogenesis and angiogenesis and has been implicated in inducing exacerbated angiogenesis and fibrosis in chronic inflammatory diseases. Since cardiac microvasculopathy in CD is also characterized by exacerbated angiogenesis, we investigated the effect of inhibition of the VEGF signaling pathway using a monoclonal antibody (bevacizumab) on cardiac remodeling and function. Swiss Webster mice were infected with Y strain, and cardiac morphological and molecular analyses were performed. We found that bevacizumab significantly increased survival, reduced inflammation, improved cardiac electrical function, diminished angiogenesis, decreased myofibroblasts in cardiac tissue and restored collagen levels. This work shows that VEGF is involved in cardiac microvasculopathy and fibrosis in CD and the inhibition of this factor could be a potential therapeutic strategy for CD.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (LAGABI-IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Gabriel Melo de Oliveira
- Laboratory of Cell Biology, Oswaldo Cruz Institute (LBC-IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Beatriz Matheus Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Marcelo Meuser-Batista
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute (LBI-IOC/Fiocruz), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | - Tania Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| |
Collapse
|
3
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
5
|
Qian K, Zheng XX, Wang C, Huang WG, Liu XB, Xu SD, Liu DK, Liu MY, Lin CS. β-Sitosterol Inhibits Rheumatoid Synovial Angiogenesis Through Suppressing VEGF Signaling Pathway. Front Pharmacol 2022; 12:816477. [PMID: 35295740 PMCID: PMC8918576 DOI: 10.3389/fphar.2021.816477] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic disabling inflammatory disease that causes synovial angiogenesis in an invasive manner and leads to joint destruction. Currently available pharmacotherapy for RA has unwanted side effects and limitations. Although anti-angiogenic therapy is regarded as a new potential treatment for RA, only a few anti-angiogenic drugs are available. An increasing number of studies have shown that β-sitosterol (BSS) may exert inhibitory effects against angiogenesis. However, the mechanisms involved are still unclear.Methods: Based on the results of the gene set enrichment analysis (GSEA) of the transcriptome data of endothelial cells from RA patients, we evaluated the pharmacological effects of BSS on the tube formation, cell proliferation, and migration of human umbilical vein endothelial cells (HUVECs). Furthermore, the effects of BSS treatment on vascular endothelial growth factor receptor 2 (VEGFR2) were determined using molecular docking and Western blotting. Additionally, in the presence or absence of BSS, synovial angiogenesis and joint destruction of the ankle were investigated in collagen-induced arthritis (CIA) mice. The effect of BSS treatment on VEGFR2/p-VEGFR2 expression was verified through immunohistochemical staining.Results: The immunohistochemistry results revealed that BSS treatment inhibited angiogenesis both in vitro and in vivo. In addition, the results of 5-ethynyl-2′-deoxyuridine and cell cycle analysis showed that BSS treatment suppressed the proliferation of HUVECs, while the Transwell migration and stress fiber assays demonstrated that BSS treatment inhibited the migration of HUVECs. Notably, the inhibitory effect of BSS treatment on VEGFR2/p-VEGFR2 was similar to that of axitinib. In CIA mice, BSS also exerted therapeutic effects on the ankles by reducing the degree of swelling, ameliorating bone and cartilage damage, preventing synovial angiogenesis, and inhibiting VEGFR2 and p-VEGFR2 expression.Conclusion: Therefore, our findings demonstrate that BSS exerts an inhibitory effect on synovial angiogenesis by suppressing the proliferation and migration of endothelial cells, thereby alleviating joint swelling and bone destruction in CIA mice. Furthermore, the underlying therapeutic mechanisms may involve the inhibition of VEGF signaling pathway activation.
Collapse
Affiliation(s)
- Kai Qian
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Postdoctoral Research Station, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xue-Xia Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Xiao-Bao Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Di Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-Kai Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min-Ying Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chang-Song Lin, ; Min-Ying Liu,
| | - Chang-Song Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chang-Song Lin, ; Min-Ying Liu,
| |
Collapse
|
6
|
Wang Y, Wu H, Deng R. Angiogenesis as a potential treatment strategy for rheumatoid arthritis. Eur J Pharmacol 2021; 910:174500. [PMID: 34509462 DOI: 10.1016/j.ejphar.2021.174500] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis is an early and key event in the pathogenesis of rheumatoid arthritis (RA) and is crucial for the proliferation of synovial tissue and the formation of pannus. This process is regulated by both angiogenesis-stimulating factors and angiogenesis inhibitors, the basis for the "on-off hypothesis of angiogenesis." In RA, inflammation, immune imbalance, and hypoxia can further turn on the switch for blood vessel formation and induce angiogenesis. The new vasculature can recruit white blood cells, induce immune imbalance, and aggravate inflammation. At the same time, it also can provide oxygen and nutrients for the proliferating synovial tissue, which can accelerate the process of RA. The current therapies for RA mainly target the inflammatory response of autoimmune activation. Although these therapies have been greatly improved, there are still many patients whose RA is difficult to treat or who do not fully respond to treatment. Therefore, new innovative therapies are still urgently needed. This review covers the mechanism of synovial angiogenesis in RA, including the detailed process of angiogenesis and the relationship between inflammation, immune imbalance, hypoxia, and synovial angiogenesis, respectively. At the same time, in the context of the development of angiogenesis inhibition therapy for cancer, we also discuss similar treatment strategies for RA, especially the combination of targeted angiogenesis inhibition therapy and immunotherapy.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Ran Deng
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| |
Collapse
|
7
|
Adiponectin Promotes VEGF Expression in Rheumatoid Arthritis Synovial Fibroblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-106a-5p. Cells 2021; 10:cells10102627. [PMID: 34685605 PMCID: PMC8534315 DOI: 10.3390/cells10102627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an erosive polyarthritis that can lead to severe joint destruction and painful disability if left untreated. Angiogenesis, a critical pathogenic mechanism in RA, attracts inflammatory leukocytes into the synovium, which promotes production of proinflammatory cytokines and destructive proteases. Adipokines, inflammatory mediators secreted by adipose tissue, also contribute to the pathophysiology of RA. The most abundant serum adipokine is adiponectin, which demonstrates proinflammatory effects in RA, although the mechanisms linking adiponectin and angiogenic manifestations of RA are not well understood. Our investigations with the human MH7A synovial cell line have revealed that adiponectin dose- and time-dependently increases vascular endothelial growth factor (VEGF) expression, stimulating endothelial progenitor cell (EPC) tube formation and migration. These adiponectin-induced angiogenic activities were facilitated by MEK/ERK signaling. In vivo experiments confirmed adiponectin-induced downregulation of microRNA-106a-5p (miR-106a-5p). Inhibiting adiponectin reduced joint swelling, bone destruction, and angiogenic marker expression in collagen-induced arthritis (CIA) mice. Our evidence suggests that targeting adiponectin has therapeutic potential for patients with RA. Clinical investigations are needed.
Collapse
|
8
|
Certo M, Elkafrawy H, Pucino V, Cucchi D, Cheung KC, Mauro C. Endothelial cell and T-cell crosstalk: Targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol 2021; 178:2041-2059. [PMID: 31999357 PMCID: PMC8246814 DOI: 10.1111/bph.15002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, T cells need to generate sufficient energy and biomolecules to support growth, proliferation, and effector functions. Therefore, T cells need to rearrange their metabolism to meet these demands. A similar metabolic reprogramming has been described in endothelial cells, which have the ability to interact with and modulate the function of immune cells. In this overview, we will discuss recent insights in the complex crosstalk between endothelial cells and T cells as well as their metabolic reprogramming following activation. We highlight key components of this metabolic switch that can lead to the development of new therapeutics against chronic inflammatory disorders. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Hagar Elkafrawy
- Medical Biochemistry and Molecular Biology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Danilo Cucchi
- Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Kenneth C.P. Cheung
- School of Life SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Metabolism and Systems Research, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
9
|
Shao W, Zhou Q, Tang X. Current and emerging treatment options for lung cancer in patients with pre-existing connective tissue disease. Pulm Pharmacol Ther 2020; 63:101937. [PMID: 32810582 DOI: 10.1016/j.pupt.2020.101937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/29/2022]
Abstract
An association between connective tissue disease (CTD) and lung cancer has been claimed in accumulating studies. However, the management of lung cancer with CTD is challenging because the pre-existing CTDs have proved to be significant risk factors for treatment-related toxicity, resulting in poor survival. In this review, we summarize the available information related to the treatment for lung cancer with CTD, discuss risk factors for treatment-related toxicities and management recommendations, which attempts to approach lung cancer with comorbid CTD systematically. Preliminary data show that: i) limited studies have focused on the effect of traditional therapeutic modalities, such as surgical treatment and chemotherapy; ii) with the development of the modern radiation techniques, radiotherapy would be well tolerated in this challenging clinical situation, but a cautious decision should be made for patients with CTD associated interstitial lung disease (ILD); iii) for patients with inactive CTD, immunotherapy was shown to have excellent local control with acceptable toxicity; iv) little information is available on the effects of tyrosine kinase inhibitors because of acute exacerbation (AE) of ILD risks; v) antiangiogenic therapy might be useful in preventing the progression in both lung cancer and CTD without increasing the AE-ILD risk; vi) Nintedanib would be a potentially promising novel therapy since it has recently been developed with promising results for both lung cancer and CTD-ILD. Further large-scale, randomized, controlled studies are still required to develop better therapeutic management for patients with lung cancer and pre-existing CTD.
Collapse
Affiliation(s)
- Weihua Shao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaokui Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Abdel-Maged AE, Gad AM, Wahdan SA, Azab SS. Efficacy and safety of Ramucirumab and methotrexate co-therapy in rheumatoid arthritis experimental model: Involvement of angiogenic and immunomodulatory signaling. Toxicol Appl Pharmacol 2019; 380:114702. [PMID: 31398424 DOI: 10.1016/j.taap.2019.114702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune inflammatory disease associated with irreversible joint destruction that leads to permanent motor disability and compromised quality of life. However, the main cause of RA is still unknown though stimulation of immune system and cells plays pivotal role in disease development and progression. Ramucirumab (RAM) is the monoclonal antibody against VEGF- receptor. This study aimed to investigate and evaluate the therapeutic effect of RAM with or without Methotrexate (MTX) against adjuvant-induced arthritis in rats. Complete Freund's adjuvant (CFA)-induced arthritic rats were treated for three consecutive weeks with MTX or RAM alone and MTX-RAM co-therapy. Arthritic score, gait score, ankle diameter, paw thickness, angiogenic, inflammatory cytokines, bone erosion markers, and apoptotic markers were assessed to evaluate the anti-arthritic effect. RAM monotherapy exhibited anti-inflammatory, anti-angiogenic and anti-apoptotic effects similar to MTX alone to treat RA in the current study. Furthermore, RAM alone had a protective effect on bone and cartilage health better than standard anti-rheumatic agent MTX. Interestingly, combined therapy of MTX and RAM produced significant differences in comparison with MTX or RAM monotherapy in all tested parameters. Moreover, the current study proved that MTX-RAM co-therapy has a synergistic effect.
Collapse
MESH Headings
- Animals
- Ankle Joint/drug effects
- Ankle Joint/pathology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Drug Therapy, Combination
- Foot/pathology
- Gene Expression/drug effects
- Immunomodulation
- Interleukin-17/genetics
- Male
- Methotrexate/pharmacology
- Methotrexate/therapeutic use
- Neovascularization, Physiologic
- Rats
- STAT3 Transcription Factor/genetics
- Treatment Outcome
- Tumor Necrosis Factor-alpha/blood
- Vascular Endothelial Growth Factor A/blood
- Ramucirumab
Collapse
Affiliation(s)
- Amany E Abdel-Maged
- National Organization for Research and Control of Biologicals (NORCB), Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Korntner S, Lehner C, Gehwolf R, Wagner A, Grütz M, Kunkel N, Tempfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 2019; 146:170-189. [PMID: 29501628 DOI: 10.1016/j.addr.2018.02.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction. However, in order to elucidate targetable factors to promote functional tissue regeneration we need to understand the molecular and cellular underpinnings of physiological angiogenesis, ranging from induction to resolution of blood vessels. Especially for avascular tissues (e.g. cornea, tendon, ligament, cartilage, etc.), limiting rather than boosting vessel growth during wound repair potentially is beneficial to restore full tissue function and may result in favourable long-term healing outcomes.
Collapse
|
12
|
Abdel-Maged AES, Gad AM, Abdel-Aziz AK, Aboulwafa MM, Azab SS. Comparative study of anti-VEGF Ranibizumab and Interleukin-6 receptor antagonist Tocilizumab in Adjuvant-induced Arthritis. Toxicol Appl Pharmacol 2018; 356:65-75. [PMID: 30025850 DOI: 10.1016/j.taap.2018.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 02/08/2023]
Abstract
Although the precise etiology of Rheumatoid arthritis (RA) remains obscure, heightened immune response is thought to play a vital role in provoking joint inflammation and bone erosion. This study aims at comparatively evaluating the effects of two monoclonal antibodies Ranibizumab (RANI) as anti-VEGF antibody and Tocilizumab (TCZ) as interleukin-6 receptor (IL-6R) antagonist, against adjuvant induced arthritis in rats. CFA-induced arthritic rats were treated for three consecutive weeks with Methotrexate (MTX), TCZ and RANI monotherapy. Clinical assessment of RA, bone erosion, inflammatory, angiogenic and apoptotic markers were determined to assess the anti-arthritic effect. Liver enzymes and histopathological examination of liver and spleen were assessed to evaluate the toxicity profile of the tested therapeutic agents. MTX, TCZ and RANI monotherapy significantly enhanced the anti-arthritic parameters in comparison with the Complete Freund's Adjuvant (CFA)-induced arthritic rats through significant reduction of ankle and paw swelling. Also, they significantly reduced inflammatory, angiogenic and apoptotic markers. Importantly, Ranibizumab showed better effect than the standard anti-rheumatic drugs Methotrexate (MTX) or Tocilizumab (TCZ) in bone protection and cartilage health; hence proves to be a promising new therapeutic agent for RA.
Collapse
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
13
|
You S, Koh JH, Leng L, Kim WU, Bucala R. The Tumor-Like Phenotype of Rheumatoid Synovium: Molecular Profiling and Prospects for Precision Medicine. Arthritis Rheumatol 2018; 70:637-652. [PMID: 29287304 PMCID: PMC5920713 DOI: 10.1002/art.40406] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by destructive hyperplasia of the synovium. Fibroblast-like synoviocytes (FLS) are a major component of synovial pannus and actively participate in the pathologic progression of RA. How rheumatoid FLS acquire and sustain such a uniquely aggressive phenotype remains poorly understood. We describe the current state of knowledge of the molecular alterations in rheumatoid FLS at the genomic, epigenomic, transcriptomic, proteomic, and metabolomic levels, which offers a means to reconstruct the pathways leading to rheumatoid pannus. Such data provide new pathologic insight and suggest means to more sensitively assess disease activity and response to therapy, as well as support new avenues for therapeutic development.
Collapse
Affiliation(s)
- Sungyong You
- Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jung Hee Koh
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Lin Leng
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Richard Bucala
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
14
|
Chen L, Wu X, Zhong J, Li D. L161982 alleviates collagen-induced arthritis in mice by increasing Treg cells and down-regulating Interleukin-17 and monocyte-chemoattractant protein-1 levels. BMC Musculoskelet Disord 2017; 18:462. [PMID: 29145862 PMCID: PMC5691865 DOI: 10.1186/s12891-017-1819-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To investigate the effects and potential mechanism of L161982 (a kind of EP4 antagonist) on the collagen-induced arthritis (CIA) mice model. METHODS The CIA mice model were first established by immunizing with Chicken Type II Collagen on DBA/1 mice. The CIA groups were administered once a day for 2 weeks with either 5 mg/kg L161982 by intraperitoneal injections (IP), 200 U celecoxib by intragastrical injections, or 100 μl PBS (IP). At the end of the study, total arthritis score and histopathologic examination were assessed to determine CIA severity. The plasma and tissue expressions of IL-17 and monocyte chemoattractant protein-1 (MCP-1) were detected by enzyme-linked immunosorbent assay (ELISA) and Immunohistochemical staining (IHC) respectively; The number of CD4+CD25+Foxp3+ regulatory T cells (Treg) determined as a proportion of total CD4+ cells in the lymph nodes and spleen. We also tested the proliferation of isolated Tregs and the ratio of Th17 polarization of Naïve T cells under the treatment of L161982 by BrdU assay and flow cytometry respectively. RESULTS CIA mice treated with L161982 showed reduced arthritis scores, joint swellings, cracked cartilage surface, and less hyperplasia in the connective tissue of the articular cavity. Plasma and tissue IL-17 and MCP-1 decreased, while the proportion of Treg cells is increased both in the spleen and lymph nodes of CIA mice. Otherwise, L161982 have no direct effect on Tregs proliferation; a decreased tendency of Th17 polarization in vitro were observed in L161982-treated naïve T cells. CONCLUSION Although less effective than Celecoxib, L161982 also resulted in a reduction of ankle joint inflammation in CIA mice. L161982 reduces the RA severity in CIA mice through inhibition of IL-17 and MCP-1, increasing Treg cells, and reducing inflammation. The mechanism of the reduction of IL-17 in plasma or tissue after administration of L161982 might be potentially derived from the suppression of CD4+ T cells differentiation into Th-17 cells.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, 9 Zhangzhidong Street, Wuhan, Hubei, 430060, People's Republic of China
| | - Xianglei Wu
- Laboratory of Immunology, University of Lorraine, Avenue du Morvan, 54511 Vandoeuvre lès Nancy, Nancy, France
| | - Jun Zhong
- Department of Orthopedics, Renmin Hospital of Wuhan University, 9 Zhangzhidong Street, Wuhan, Hubei, 430060, People's Republic of China
| | - Dongqing Li
- Department of Microbiology, School of Basic Medical Science, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
15
|
Al-Soudi A, Kaaij MH, Tas SW. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmun Rev 2017; 16:951-962. [PMID: 28698091 DOI: 10.1016/j.autrev.2017.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023]
Abstract
The endothelium is crucially important for the delivery of oxygen and nutrients throughout the body under homeostatic conditions. However, it also contributes to pathology, including the initiation and perpetuation of inflammation. Understanding the function of endothelial cells (ECs) in inflammatory diseases and molecular mechanisms involved may lead to novel approaches to dampen inflammation and restore homeostasis. In this article, we discuss the various functions of ECs in inflammation with a focus on pathological angiogenesis, attraction of immune cells, antigen presentation, immunoregulatory properties and endothelial-to-mesenchymal transition (EndMT). We also review the current literature on approaches to target these processes in ECs to modulate immune responses and advance anti-inflammatory therapies.
Collapse
Affiliation(s)
- A Al-Soudi
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M H Kaaij
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - S W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology & Rheumatology and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev 2017; 16:594-601. [PMID: 28414154 DOI: 10.1016/j.autrev.2017.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
In Rheumatoid arthritis (RA), neoangiogenesis is an early and crucial event to promote the development of the hyperplasic proliferative pathologic synovium. Endothelial cells are critical for the formation of new blood vessels since they highly contribute to angiogenesis and vasculogenesis. Current therapies in RA target the inflammatory consequences of autoimmune activation and despite major improvements these last years still refractory patients or incomplete responders may be seen raising the point of the need to identify complementary additive and innovative therapies. This review resumes the mechanisms of synovial neoangiogenesis in RA, including recent insights on the implication of vasculogenesis, and the regulation of synovial neoangiogenesis by angiogenic and inflammatory mediators. In line with the recent development of vascular-targeted therapies used in cancer and beyond, we also discuss possible therapeutic implications in RA, in particular the combination of targeted immunotherapies with anti-angiogenic molecules.
Collapse
Affiliation(s)
- Agathe Leblond
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France.
| |
Collapse
|
17
|
Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 2016; 12:385-97. [PMID: 27225300 DOI: 10.1038/nrrheum.2016.69] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im HJ. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res 2016; 31:911-24. [PMID: 27163679 PMCID: PMC4863467 DOI: 10.1002/jbmr.2828] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 01/15/2023]
Abstract
Increased vascular endothelial growth factor (VEGF) levels are associated with osteoarthritis (OA) progression. Indeed, VEGF appears to be involved in OA-specific pathologies including cartilage degeneration, osteophyte formation, subchondral bone cysts and sclerosis, synovitis, and pain. Moreover, a wide range of studies suggest that inhibition of VEGF signaling reduces OA progression. This review highlights both the potential significance of VEGF in OA pathology and pain, as well as potential benefits of inhibition of VEGF and its receptors as an OA treatment. With the emergence of the clinical use of anti-VEGF therapy outside of OA, both as high-dose systemic treatments and low-dose local treatments, these particular therapies are now more widely understood. Currently, there is no established disease-modifying drug available for patients with OA, which warrants continued study of the inhibition of VEGF signaling in OA, as stand-alone or adjuvant therapy. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John L. Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Masashi Nagao
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Internal Medicine Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Lee S, Nemeño JGE, Lee JI. Repositioning Bevacizumab: A Promising Therapeutic Strategy for Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:341-357. [PMID: 26905221 DOI: 10.1089/ten.teb.2015.0300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug discovery and development has been garnering an increasing trend of research due to the growing incidence of the diverse types of diseases. Recently, drug repositioning, also known as drug repurposing, has been emerging parallel to cancer and tissue engineering studies. Drug repositioning involves the application of currently approved or even abandoned drugs as alternative treatments to other diseases or as biomaterials in other fields including cell therapy and tissue engineering. In this review, the advancement of the antiangiogenesis drugs that were used as treatment for cancer and other diseases, with particular focus on bevacizumab, will be described. This will include an overview of the nature and progression of osteoarthritis (OA), one of the leading global degenerative diseases that cause morbidity, and the development of its therapeutic strategies. In addition, this will also feature the nonsteroidal anti-inflammatory drugs that are commonly prescribed for OA and the benefits of repositioning bevacizumab as alternative treatments for other diseases and as biomaterials for cartilage regeneration. To date, a few number of studies, employing different modes of administration and varying dosages in diverse animal models, have shown that bevacizumab can be used as a signal and can promote both in vitro and in vivo cartilage regeneration. However, other antiangiogenesis drugs and their effects in chondrogenesis and cartilage regeneration are also worth investigating.
Collapse
Affiliation(s)
- Soojung Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Judee Grace E Nemeño
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Jeong Ik Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea.,2 Deparment of Veterinary Medicine, College of Veterinary Medicine, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
20
|
Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis. Mediators Inflamm 2016; 2016:6813016. [PMID: 27122657 PMCID: PMC4829719 DOI: 10.1155/2016/6813016] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
Inflammation, as a feature of rheumatoid arthritis (RA), leads to the activation of endothelial cells (ECs). Activated ECs induce atherosclerosis through an increased expression of leukocyte adhesion molecules. Endothelial dysfunction (ED) is recognized as a failure of endothelial repair mechanisms. It is also an early preclinical marker of atherosclerosis and is commonly found in RA patients. RA is now established as an independent cardiovascular risk factor, while mechanistic determinants of ED in RA are still poorly understood. An expanding body of study has shown that EC at a site of RA is both active participant and regulator of inflammatory process. Over the last decade, a role for endothelial dysfunction in RA associated with cardiovascular disease (CVD) has been hypothesized. At the same time, several maintenance drugs targeting this phenomenon have been tested, which has promising results. Assessment of endothelial function may be a useful tool to identify and monitor RA patients.
Collapse
|
21
|
Su CM, Huang CY, Tang CH. Characteristics of resistin in rheumatoid arthritis angiogenesis. Biomark Med 2016; 10:651-60. [PMID: 26867862 DOI: 10.2217/bmm.15.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adipokines have been reported to be involved in the regulation of various physiological processes, including the immune response. Rheumatoid arthritis (RA) is an example of a systemic immune disease that causes chronic inflammation of the synovium and bone destruction in the joint. Recent therapeutic strategies based on the understanding of the role of cytokines and cellular mechanisms in RA have improved our understanding of angiogenesis. On the other hand, endogenous endothelial progenitor cells, which are a population isolated from peripheral blood monocytes have recently been identified as a homing target for pro-angiogeneic factor and vessel formation. In this review, we summarize the effects of common adipokines, such as adiponectin, leptin and resistin in RA pathogenesis and discuss other potential mechanisms of relevance for the therapeutic treatment of RA.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chun-Yin Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Semerano L, Duvallet E, Belmellat N, Marival N, Schall N, Monteil M, Grouard-Vogel G, Bernier E, Lecouvey M, Hlawaty H, Muller S, Boissier MC, Assier E. Targeting VEGF-A with a vaccine decreases inflammation and joint destruction in experimental arthritis. Angiogenesis 2015; 19:39-52. [PMID: 26419779 DOI: 10.1007/s10456-015-9487-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether vaccination against vascular endothelial growth factor (VEGF) ameliorates collagen-induced arthritis (CIA). METHODS Anti-VEGF vaccines were heterocomplexes consisting of the entire VEGF cytokine (or a VEGF-derived peptide) linked to the carrier protein keyhole limpet hemocyanin (KLH). Two kinds of vaccines were separately tested in two independent experiments of CIA. In the first, we tested a kinoid of the murine cytokine VEGF (VEGF-K), obtained by conjugating VEGF-A to KLH. For the second, we selected two VEGF-A-derived peptide sequences to produce heterocomplexes (Vpep1-K and Vpep2-K). DBA/1 mice were immunized with either VEGF-K, Vpep1-K, or Vpep2-K, before CIA induction. Clinical and histological scores of arthritis, anti-VEGF, anti-Vpep Ab titers, and anti-VEGF Abs neutralizing capacity were determined. RESULTS Both VEGF-K and Vpep1-K significantly ameliorated clinical arthritis scores and reduced synovial inflammation and joint destruction at histology. VEGF-K significantly reduced synovial vascularization. None of the vaccines reduced anti-collagen Ab response in mice. Both VEGF-K and Vpep1-K induced persistently high titers of anti-VEGF Abs capable of inhibiting VEGF-A bioactivity. CONCLUSION Vaccination against the pro-angiogenic factor VEGF-A leads to the production of anti-VEGF polyclonal Abs and has a significant anti-inflammatory effect in CIA. Restraining Ab response to a single peptide sequence (Vpep1) with a peptide vaccine effectively protects immunized mice from joint inflammation and destruction.
Collapse
Affiliation(s)
- Luca Semerano
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Service de Rhumatologie, Assistance Publique - Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, 125 rue de Stalingrad, 93000, Bobigny, France.
| | - Emilie Duvallet
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nadia Belmellat
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nicolas Marival
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Inserm UMR 1148, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nicolas Schall
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Maëlle Monteil
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,CNRS UMR 7244, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | | | | | - Marc Lecouvey
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,CNRS UMR 7244, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Hanna Hlawaty
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Inserm UMR 1148, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Sylviane Muller
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Marie-Christophe Boissier
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Service de Rhumatologie, Assistance Publique - Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, 125 rue de Stalingrad, 93000, Bobigny, France.
| | - Eric Assier
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| |
Collapse
|