1
|
Yu Q, Gao Y, Guo J, Wang X, Gao X, Zhao Y, Liu Y, Wen M, Zhang X, An M. Bioactivity and in vitro immunological studies of xenogeneic decellularized extracellular matrix scaffolds for implantable applications. J Mater Chem B 2024; 12:9390-9407. [PMID: 39189732 DOI: 10.1039/d4tb00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Decellularized scaffolds retain the main bioactive substances of the extracellular matrix, which can better promote cell proliferation and matrix reconstruction at the defect site, and have great potential for morphological and functional restoration in patients with tissue defects. Due to the safety of the material source of allogeneic decellularized scaffolds, there is a great limitation in their clinical application, so the preparation and evaluation of xenodermal acellular scaffolds have attracted much attention. In terms of skin tissue structure and function, porcine skin has a high degree of similarity to human skin and has the advantages of sufficient quantity and no ethical issues. However, there is a risk of immune rejection after xenodermal acellular scaffold transplantation. To address the above problems, this paper focuses on porcine dermal decellularized scaffolds prepared using two common decellularization preparation methods and compares the decellularization efficiency, retention of active components of the extracellular matrix, structural characterization of the decellularized scaffolds, and the effect of porcine dermal decellularized scaffolds on mouse Raw264.7 macrophages, so as to make a functional evaluation of the active components and immune effects of porcine dermal decellularized scaffolds, and to provide a reference for filling trauma-induced defects in humans.
Collapse
Affiliation(s)
- Qing Yu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yuantao Gao
- School of Medicine, Zhejiang University, Zhejiang 310058, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xinyue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yifan Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Xiangyu Zhang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China.
| |
Collapse
|
2
|
Yin XW, Hu JJ, Ren FC, Pu XD, Yang MY, Yang BY, Wang P, Shen CP. Anti-inflammatory Lindenane Sesquiterpene Dimers from the Roots of Chloranthus fortunei. ACS OMEGA 2024; 9:34869-34879. [PMID: 39157111 PMCID: PMC11325489 DOI: 10.1021/acsomega.4c04403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
In this study, eight lindenane-type sesquiterpene dimers, including five previously undescribed sesquiterpene dimers (1-5), were isolated from the roots of Chloranthus fortunei, and their structures were elucidated using 1D/2D NMR, HRESIMS, and ECD calculations. Compound 1 presents the second example of a type of novel 8,9-seco lindenane-type sesquiterpene dimer, considered a product of 8/9-diketone oxidation. Compounds 2 and 3 represent the third and fourth examples, respectively, of this kind of C-11 methine dimer. Furthermore, compound 4 was considered as an artifact generated from the radical reaction of a known compound chlojaponilide F (6), which was explained by the density functional theory quantum calculation. All isolates were evaluated for their protective activity against the LPS-induced pulmonary epithelial cell line with compound 7 exhibiting the most potent bioactivity. Further in vitro biological evaluation demonstrated that 7 reduced the production of reactive oxygen species and interleukin-1β, further regulated by the expression of the NLRP3. These results show that compound 7 exhibits therapeutic potential for lung inflammatory diseases.
Collapse
Affiliation(s)
- Xiu-Wen Yin
- Anhui
Provincial Laboratory of Inflammatory and Immunity Disease, Anhui
Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Jun-Jie Hu
- Anhui
Provincial Laboratory of Inflammatory and Immunity Disease, Anhui
Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Fu-Cai Ren
- Anhui
Provincial Laboratory of Inflammatory and Immunity Disease, Anhui
Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Xiang-Dong Pu
- Anhui
Provincial Laboratory of Inflammatory and Immunity Disease, Anhui
Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Meng-Yu Yang
- Anhui
Provincial Laboratory of Inflammatory and Immunity Disease, Anhui
Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| | - Bing-Yuan Yang
- Guangxi
Key Laboratory of Plant Functional Phytochemicals and Sustainable
Utilization, Guangxi Institute of Botany,
Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, People’s Republic of China
| | - Peng Wang
- School
of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Chuan-Pu Shen
- Anhui
Provincial Laboratory of Inflammatory and Immunity Disease, Anhui
Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, People’s Republic of China
| |
Collapse
|
3
|
Zhao L, Liu H, Wang Y, Wang S, Xun D, Wang Y, Cheng Y, Zhang B. Multimodal Identification by Transcriptomics and Multiscale Bioassays of Active Components in Xuanfeibaidu Formula to Suppress Macrophage-Mediated Immune Response. ENGINEERING (BEIJING, CHINA) 2023; 20:63-76. [PMID: 34815890 PMCID: PMC8601788 DOI: 10.1016/j.eng.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/23/2021] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Xuanfeibaidu Formula (XFBD) is a Chinese medicine used in the clinical treatment of coronavirus disease 2019 (COVID-19) patients. Although XFBD has exhibited significant therapeutic efficacy in clinical practice, its underlying pharmacological mechanism remains unclear. Here, we combine a comprehensive research approach that includes network pharmacology, transcriptomics, and bioassays in multiple model systems to investigate the pharmacological mechanism of XFBD and its bioactive substances. High-resolution mass spectrometry was combined with molecular networking to profile the major active substances in XFBD. A total of 104 compounds were identified or tentatively characterized, including flavonoids, terpenes, carboxylic acids, and other types of constituents. Based on the chemical composition of XFBD, a network pharmacology-based analysis identified inflammation-related pathways as primary targets. Thus, we examined the anti-inflammation activity of XFBD in a lipopolysaccharide-induced acute inflammation mice model. XFBD significantly alleviated pulmonary inflammation and decreased the level of serum proinflammatory cytokines. Transcriptomic profiling suggested that genes related to macrophage function were differently expressed after XFBD treatment. Consequently, the effects of XFBD on macrophage activation and mobilization were investigated in a macrophage cell line and a zebrafish wounding model. XFBD exerts strong inhibitory effects on both macrophage activation and migration. Moreover, through multimodal screening, we further identified the major components and compounds from the different herbs of XFBD that mediate its anti-inflammation function. Active components from XFBD, including Polygoni cuspidati Rhizoma, Phragmitis Rhizoma, and Citri grandis Exocarpium rubrum, were then found to strongly downregulate macrophage activation, and polydatin, isoliquiritin, and acteoside were identified as active compounds. Components of Artemisiae annuae Herba and Ephedrae Herba were found to substantially inhibit endogenous macrophage migration, while the presence of ephedrine, atractylenolide I, and kaempferol was attributed to these effects. In summary, our study explores the pharmacological mechanism and effective components of XFBD in inflammation regulation via multimodal approaches, and thereby provides a biological illustration of the clinical efficacy of XFBD.
Collapse
Affiliation(s)
- Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dejin Xun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Bakhouche I, Boubellouta T, Aliat T, Gali L, Bellik Y. HPLC-DAD profiling, enzyme inhibitory, antihemolytic, and photoprotective activities of Limonium delicatulum leaf extract. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Bian XX, Zhao X, Liu SS, Wu L, Yin XW, Shen CP. Sesquiterpene dimers from Chloranthus fortunei and their protection activity against acute lung injury. Fitoterapia 2022; 159:105191. [DOI: 10.1016/j.fitote.2022.105191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
|
6
|
The Anti-Inflammatory Effect of Smilax china L. Extract on LPS-Stimulated THP-1 via Downregulation of MAPK and NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9958808. [PMID: 34824594 PMCID: PMC8610668 DOI: 10.1155/2021/9958808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/25/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
Background Traditional Chinese medicine Smilax is the rhizome of liliaceous plant Smilax china L., which is used to treat pelvic inflammatory disease and anxieties. Purpose To investigate the mechanism of anti-inflammatory activity of the extract from Smilax china L. (ES). Methods The components of ES were identified by UPLC-QTOF-MS/MS. The anti-inflammatory activities were evaluated in xylene-induced ear oedema and egg white-induced plantar swelling test. Cell viability was examined by CCK-8 assay. The inflammatory mediators, proinflammatory cytokines, and MAPK and NF-κB signals in LPS-stimulated THP-1 cells were determined using ELISA, real-time PCR, and Western blot, respectively. Results 20 compounds of ES were confirmed by comparing with the reference substance. ES displayed more prominent anti-inflammatory activity than the positive control “Jin Gang Teng” capsule in the in vivo acute inflammatory model. ES suppressed the expression of PGE2 and 6-Keot-PGF1α, and the ratio of IC50 (COX-1)/IC50 (COX-2) of ES was 3.15, which indicated that ES could selectively inhibit COX-2. ES dose-dependently (12.5, 25, and 50 mg/L) decreased the production and mRNA levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α. Furthermore, ES significantly decreased LPS-induced phosphorylation of p38, JNK, ERK1/2, and p65, inhibiting the expression of IKKα and the degradation of IκBα. Conclusion The results suggested that ES could selectively inhibit the activity of COX-2, and the anti-inflammatory effect of ES was associated with the inhibition of IL-1β, IL-6, and TNF-α via negative regulation of MAPK and NF-κB signaling pathways in LPS-induced THP-1 cells.
Collapse
|
7
|
Protective Effect of Topiroxostat on Myocardial Injury Induced by Lipopolysaccharide. J Surg Res 2021; 271:171-179. [PMID: 34815074 DOI: 10.1016/j.jss.2021.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Myocardial injury induced by sepsis is the most common cause of death. Topiroxostat has been found to have organ protective effects, but its role in septic shock-related cardiomyocyte damage is still unclear and needs further study. MATERIAL AND METHODS An endotoxemic shock model in rats was constructed. After topiroxostat treatment, hemodynamic parameters, myocardial injury marker enzymes, oxidative stress, myocardial injury, and apoptosis were measured by polyphysiograph, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, TUNEL staining, and western blot. During in vitro experiments, the effect of topiroxostat on cell vitality, oxidative stress, inflammatory factors, apoptosis-related markers, phosphorylated-p65 (p-p65) and p65 expressions were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and western blot. RESULTS Topiroxostat improved myocardial dysfunction and superoxide dismutase activity while suppressing levels of creatine kinase, lactate dehydrogenase and malondialdehyde in serum of endotoxemic shock rats. Additionally, topiroxostat augmented dry-wet weight ratios of the hearts in rats. Meanwhile, topiroxostat was proved to alleviate interstitial edema and apoptosis in myocardial tissues of endotoxemic shock rats. During in vitro experiments, topiroxostat pretreatment elevated lipopolysaccharide (LPS)-induced H9c2 cell vitality, and alleviated oxidative stress and inflammation. Moreover, topiroxostat pretreatment downregulated apoptosis-related markers, p-p65, and p-p65/p65 levels in LPS-induced H9c2 cells. CONCLUSIONS Topiroxostat attenuated LPS-induced myocardial injury via repressing apoptosis and oxidative stress.
Collapse
|
8
|
Lu X, Xu C, Yang R, Zhang G. Ganoderic Acid A Alleviates OVA-Induced Asthma in Mice. Inflammation 2021; 44:1908-1915. [PMID: 34037898 PMCID: PMC8460586 DOI: 10.1007/s10753-021-01468-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the effects of ganoderic acid A (GAA) on OVA-induced asthma in mice. Mouse asthma model was established by ovalbumin (OVA) in vitro. Diff-Quik staining was used to observe the total numbers of cells and the number of classification cells in each group, and HE staining was used to observe lung inflammation in lung tissue sections. ELISA was used to detect the effect of GAA on the levels of interleukin-4 (IL-4), IL-5, and IL-13 in serum and lung tissue. The expression levels of TLR/NF-κB were detected by Western blot. Immunohistochemistry was used to observe the expression changes of TLR4 and P-P65. Compared with the normal group, the inflammatory cell count, IL-4, IL-5, and IL-13 expression in the model group increased, and TLR/NF-kB signal protein expression increased. Compared with the model group, in GAA group, the number of inflammatory cells, the expression of IL-4, IL-5, and IL-13 decreased, and the expression of TLR/NF-kB signaling protein decreased. GAA regulated lung inflammation in asthmatic mice by inhibiting TLR/NF-kB signaling pathway.
Collapse
Affiliation(s)
- Xinhua Lu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenyang Xu
- Henan Luoyang Orthopedic-Traumatological Hospital, Luoyang, 471000, China
| | - Rui Yang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guojun Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Cai X, Sha F, Zhao C, Zheng Z, Zhao S, Zhu Z, Zhu H, Chen J, Chen Y. Synthesis and anti-inflammatory activity of novel steroidal chalcones with 3β-pregnenolone ester derivatives in RAW 264.7 cells in vitro. Steroids 2021; 171:108830. [PMID: 33836205 DOI: 10.1016/j.steroids.2021.108830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
To identify new potential anti-inflammatory agents, we herein report the synthesis of novel steroidal chalcones with 3β-pregnenolone esters of cinnamic acid derivatives using pregnenolone as the starting material. The structures of the newly synthesised compounds were confirmed by 1H NMR, 13C NMR, HRMS and infrared imaging. All the derivatives were examined to determine their in vitro anti-inflammatory profiles against LPS-induced inflammation in RAW 264.7 cells; the derivates were evaluated by the quantification of the pro-inflammatory mediator nitric oxide (NO) in the cell culture supernatant based on the Griess reaction, which measures nitrite levels, followed by an in vitro cytotoxicity study. Among these novel derivatives, compound 11e [3β-3-phenyl acrylate-pregn-5-en-17β-yl-3' -(p-fluoro)-phenylprop-2'-en-1'-one] was identified as the most potent anti-inflammatory agent, which showed significant anti-inflammatory activity by inhibiting the LPS-induced pro-inflammatory mediator NO in a dose-dependent manner without any cytotoxicity. Moreover, compound 11e markedly inhibited the expression of pro-inflammatory cytokines, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2), in LPS-induced RAW 264.7 cells. Further studies confirmed that compound 11e significantly suppressed the transcriptional activity of NF-κB in activated RAW 264.7 cells. Molecular docking study revealed the strong binding affinity of compound 11e to the active site of the pro-inflammatory proteins, which confirmed that compound 11e acted as an anti-inflammatory mediator. These results indicated that steroidal chalcones with 3β-pregnenolone esters of cinnamic acid derivatives might be considered for further research in the design of anti-inflammatory drugs, and compound 11e might be a promising therapeutic anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fei Sha
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Chuanyi Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zheng
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shulin Zhao
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiaoling Chen
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
10
|
Su ZDZ, Wei XB, Fu YB, Xu J, Wang ZH, Wang Y, Cao JF, Huang JL, Yu DQ. Melatonin alleviates lipopolysaccharide-induced myocardial injury by inhibiting inflammation and pyroptosis in cardiomyocytes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:413. [PMID: 33842634 PMCID: PMC8033388 DOI: 10.21037/atm-20-8196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Melatonin (MT) has been shown to protect against various cardiovascular diseases. However, the effect of MT on lipopolysaccharide (LPS)-induced myocardial injury is poorly understood. This study aims to evaluate the effects of MT on LPS-induced myocardial injury in vitro. Methods H9C2 cells were divided into a control group, MT group, LPS group, and MT + LPS group. The control group was treated with sterile saline solution, the LPS group received 8 µg/mL LPS for 24 h, MT + LPS cells were pretreated with 200 µmol/L MT for 2 h then with 8 µg/mL LPS for 24 h, and the MT group received only 200 µmol/L MT for 2 h. The CCK-8 assay and lactate dehydrogenase (LDH) activity assay were used to analyze cell viability and LDH release, respectively. Intracellular reactive oxygen species (ROS) and the rate of pyroptosis were measured using the fluorescent probe dichloro-dihydro-fluorescein diacetate (DCFH-DA) and propidium iodide (PI) staining, respectively. The cell supernatants were used to measure the levels of inflammatory cytokines, including IL-6, TNF-α, and IL-1β by enzyme-linked immunosorbent assay (ELISA). The protein levels of iNOS, COX-2, NF-κB, p-NF-κB, NLRP3, caspase-1, and GSDMD were detected by western blot. Results MT pretreatment significantly improved LPS-induced myocardial injury by inhibiting inflammation and pyroptosis in H9C2 cells. Moreover, MT inhibited the activation of the NF-κB pathway, and reduced the expression of inflammation-related proteins (iNOS and COX-2), and pyroptosis-related proteins (NLRP3, caspase-1, and GSDMD). Conclusions Our data suggests that MT can alleviate LPS-induced myocardial injury, providing novel insights into the treatment of sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Ze-Da-Zhong Su
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Biao Wei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Bin Fu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jia Xu
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhong-Hua Wang
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Feng Cao
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Leng Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dan-Qing Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
11
|
Abd El-Hameed AM. Polydatin-loaded chitosan nanoparticles ameliorates early diabetic nephropathy by attenuating oxidative stress and inflammatory responses in streptozotocin-induced diabetic rat. J Diabetes Metab Disord 2021; 19:1599-1607. [PMID: 33520856 DOI: 10.1007/s40200-020-00699-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
In various developed countries, diabetic nephropathy (DN) is the principal cause of end-stage kidney disease and a main reason of injury and mortality in individuals with renal morbidity worldwide. Polydatin (POL) has been evaluated as a potential antioxidant, anti-inflammatory and a nephroprotective agent. In spite of this, the possible benefits and protective effects of POL on early diabetic nephropathy are not quite clarified. For the effective clearance from the body besides safe drug delivery, biodegradable nanoparticles have interesting attraction. This work was designed to evaluate the positive effect and possible mechanisms of Polydatin-loaded Chitosan-Nanoparticles (POL-NPs) on early DN in streptozotocin-induced diabetic rats. Followed the induction of diabetes, rats classified into four groups, diabetic control and diabetic rats treated daily and orally with; POL, Polydatin-loaded chitosan-Nanoparticles (POL-NPs), plus normal control rats. Our findings showed that diabetic group presented a significant high level of the blood glucose, blood glycosylated hemoglobin (HbA1c), serum insulin, renal function related parameters, renal Advanced glycation-end products (AGEs) and lipid peroxidation level compared to normal control rats, while serum albumin level and the activities of renal antioxidant enzymes were significantly decreased. Moreover, in the kidney of diabetic rat mRNA expression of nuclear factor-kappa B (NF-κB) and cyclooxygenase-2 (Cox-2) were up-regulated. Besides, increase in serum levels of pro-inflammatory cytokines (TNF-α, IL-6 and IL-18) and decrease in anti-inflammatory cytokine (IL-10). POL and POL-NPs supplementation were significantly attenuate the above-mention results and returned the normal equilibrium between pro- and anti-inflammatory cytokines. In conclusion, POL and POL-NPs have antidiabetic effect, suppresses oxidative stress and mitigates renal inflammation through inhibition of NF-κB in diabetic kidney in early progressive DN.
Collapse
Affiliation(s)
- Abeer M Abd El-Hameed
- Chemistry Department, Faculty of Science, Biochemistry Division, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
| |
Collapse
|
12
|
Sun S, Zou Y, Hao S, Niu Z, Wu L. Polydatin inhibits LPS-induced inflammatory response in BV2 microglia by disrupting the formation of lipid rafts. Immunopharmacol Immunotoxicol 2021; 43:138-144. [PMID: 33509007 DOI: 10.1080/08923973.2020.1867999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Polydatin has been used in the treatment of various inflammatory diseases. However, its role in the regulation of neuroinflammation has not been reported. In this study, we designed to investigate the anti-inflammatory effects of polydatin in LPS-stimulated BV2 microglia cells. METHODS Inflammatory mediators TNF-α, IL-1β, NO, and PGE2 production were measured by ELISA. The protein of signaling pathways were detected by western blot analysis. RESULTS The results showed that polydatin significantly ameliorated the production of TNF-α, IL-1β, NO, and PGE2 up-regulated by LPS. Polydatin also blocked LPS-induced NF-κB activation. In addition, PI3K and AKT, the up-stream molecules of NF-κB signaling pathway, were inhibited by the treatment of polydatin. Also, we found the formation of lipid rafts was inhibited by polydatin through attenuating the cholesterol content. Finally, polydatin was found to increase the expression of ABCA1 and ABCG1. CONCLUSION In conclusion, the results of the present study suggested that polydatin exhibited its anti-inflammatory effects in BV2 cells through disrupting lipid rafts, which subsequently inhibiting PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shengyu Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yourui Zou
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaocai Hao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhanfeng Niu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Liang Wu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Biswas P, Dellanoce C, Vezzoli A, Mrakic-Sposta S, Malnati M, Beretta A, Accinni R. Antioxidant Activity with Increased Endogenous Levels of Vitamin C, E and A Following Dietary Supplementation with a Combination of Glutathione and Resveratrol Precursors. Nutrients 2020; 12:nu12113224. [PMID: 33105552 PMCID: PMC7690269 DOI: 10.3390/nu12113224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
The effects of two different dietary supplements on the redox status of healthy human participants were evaluated. The first supplement (GluS, Glutathione Synthesis) contains the precursors for the endogenous synthesis of glutathione and the second (GluReS, Glutathione and Resveratrol Synthesis) contains in addition polydatin, a precursor of resveratrol. To assess the influence of GluS and GluReS on the redox status, ten thiol species and three vitamins were measured before (t0) and after 8 weeks (t1) of dietary supplementation. An inflammatory marker, neopterin, was also assessed at the same time points. Both supplements were highly effective in improving the redox status by significantly increasing the reduced-glutathione (GSH) content and other reduced thiol species while significantly decreasing the oxidized species. The positive outcome of the redox status was most significant in the GluRes treatment group which also experienced a significant reduction in neopterin levels. Of note, the endogenous levels of vitamins C, E and A were significantly increased in both treatment groups, with best results in the GluReS group. While both dietary supplements significantly contributed to recognized antioxidant and anti-inflammatory outcomes, the effects of GluReS, the combination of glutathione and resveratrol precursors, were more pronounced. Thus, dietary supplementation with GluReS may represent a valuable strategy for maintaining a competent immune status and a healthy lifespan.
Collapse
Affiliation(s)
- Priscilla Biswas
- SoLongevity Research, 20121 Milan, Italy; (A.B.); (R.A.)
- Correspondence: ; Tel.: +39-02-26434903
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Mauro Malnati
- Unit of Viral Evolution and Transmission, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | | | | |
Collapse
|
14
|
Shi J, Wang H, Liu J, Zhang Y, Luo J, Li Y, Yang C, Jiang J. Ganoderic acid B attenuates LPS-induced lung injury. Int Immunopharmacol 2020; 88:106990. [PMID: 33182051 DOI: 10.1016/j.intimp.2020.106990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a serious respiratory disease, the mechanism is unclear. This paper revealed the mechanism of ganoderic acid B (BB) on lipopolysaccharide-induced pneumonia in mice. Pneumonia model was induced by LPS in mice and A549 cells. Lung dry/wet weight (W/D) and myeloperoxidase (MPO) activity in lung were examined. Lung histopathological changes was observed by HE staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in mice and A549 cells were detected. Rho/NF-κB pathway in mice and A549 cells were examined by Western Blot. BB significantly reduced W/D and MPO activity, restored lung histopathological changes. BB also increased SOD, decreased MDA, TNF-α, IL-1β and IL-6 in mice and A549 cells. In addition, BB inhibited Rho/NF-κB pathway in mice and A549 cells. BB has protective effect on LPS-induced pneumonia in mice, and its mechanism is related to the regulation of Rho/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Huan Wang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Jumin Liu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Yang Zhang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Junfang Luo
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Yan Li
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| | - Chao Yang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China
| | - Junguang Jiang
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, No.1 jianshe East Road, Zhengzhou, Henan 450052, China.
| |
Collapse
|
15
|
Wu M, Li X, Wang S, Yang S, Zhao R, Xing Y, Liu L. Polydatin for treating atherosclerotic diseases: A functional and mechanistic overview. Biomed Pharmacother 2020; 128:110308. [PMID: 32480216 DOI: 10.1016/j.biopha.2020.110308] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
With the advancement of science and technology, the living standards of human beings have continuously improved, but the incidence and mortality from atherosclerosis worldwide have also increased by year. Although interventional surgery and the continuous development of new drugs have significant therapeutic effects, their side effects cannot be ignored. Polydatin, an active ingredient isolated from the natural medicine Polygonum cuspidatum, has been shown to have a prominent role in the treatment of cardiovascular diseases. Polydatin treats atherosclerosis mainly from three aspects: anti-inflammatory, regulating lipid metabolism and anti-oxidative stress. This article will review the pharmacological mechanism of polydatin in anti-atherosclerosis, the biological characteristics of Polygonum cuspidatum, the toxicology and pharmacokinetics of polydatin and will provide ideas for further research.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Songzi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Protective effects of polydatin on LPS-induced endometritis in mice. Microb Pathog 2019; 137:103720. [PMID: 31494302 DOI: 10.1016/j.micpath.2019.103720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
Abstract
Endometritis, a common inflammation of the uterus, often causes severe damage to human and animal reproductive health. Polydatin is a polyphenol extracted from the rhizome of Polygonum cuspidatum that has anti-inflammatory and anti-oxidative effects. The purpose of this study was to investigate the underlying protective effects and mechanisms of polydatin against lipopolysaccharide (LPS)-induced endometritis in mice. The mouse model of endometritis was established by injection of LPS through the vagina. The uterine tissues of each group were gathered to analyze histopathological changes, inflammatory cytokine production, and the degree of activation of the NF-κB and Nrf2 signaling pathways. The myeloperoxidase (MPO) activity assay indicated that polydatin treatment significantly alleviated inflammatory cell infiltration in LPS-induced endometritis mice. Furthermore, polydatin treatment remarkably impeded the expression of TNF-α, IL-1β, and IL-6 by ELISA assay. Hematoxylin-eosin staining (H&E) showed that polydatin significantly decreased impairment of the uterus. In addition, polydatin was also found to suppress LPS-induced NF-κB activation in a dose-dependent manner. The expression of Nrf2 and HO-1 was enhanced by polydatin treatment. All the results suggest that polydatin helpfully alleviates LPS-induced endometritis by suppressing the NF-ĸB signaling pathway and activating the Nrf2 signaling pathway.
Collapse
|
17
|
Polydatin prevents LPS-induced acute kidney injury through inhibiting inflammatory and oxidative responses. Microb Pathog 2019; 137:103688. [PMID: 31445125 DOI: 10.1016/j.micpath.2019.103688] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022]
Abstract
The anti-inflammatory property of polydatin, a natural active ingredient found in the rhizome of Polygonum cuspidatum, has been verified. Although a variety of physiological functions have been uncovered, the protective effects and mechanism of polydatin on LPS-induced acute kidney injury remain unclear. Kidney histological change, MDA content, MPO activity, TNF-α, IL-1β, and IL-6 production were measured in this study. Furthermore, NF-κB and Nrf2 were tested by western blotting. In this study, polydatin not only significantly attenuated serum creatinine and BUN levels, but also remarkably inhibited TNF-α, IL-1β, and IL-6 production, MPO activity, and MDA content. Polydatin significantly inhibited LPS-induced NF-κB activation. Also, polydatin significantly increased Nrf2 and HO-1 expression. Taken together, all the above results indicate that polydatin had protective effects against LPS-induced AKI by blocking inflammatory and oxidative responses.
Collapse
|
18
|
Cai X, Zhao S, Cai D, Zheng J, Zhu Z, Wei D, Zheng Z, Zhu H, Chen Y. Synthesis and evaluation of novel D-ring substituted steroidal pyrazolines as potential anti-inflammatory agents. Steroids 2019; 146:70-78. [PMID: 30951758 DOI: 10.1016/j.steroids.2019.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 02/05/2023]
Abstract
To identify new potential anti-inflammatory agents, a number of novel steroidal derivatives with nitrogen heterocyclic side chains 4a-4l were synthesized and evaluated for their anti-inflammatory effects in activated RAW 264.7 macrophage cells. The synthesis scheme involves two steps, Claisen-Schmidt condensation with the corresponding pregnenolone and aromatic aldehydes as the first step followed by nucleophilic addition of thiosemicarbazide across an α, β-unsaturated carbonyl as a later step. Compound structures were confirmed by 1H NMR, 13C NMR, HRMS, and IR. The compounds were assayed to test their anti-inflammatory effects in activated RAW 264.7 cells. Compound 4g, 3β-hydroxy-pregn-5-en-17β-yl-5'-(m-fluorophenyl)-4', 5'-dihydro-1'-carbothioic acid amido pyrazole, was identified as the most potent anti-inflammatory agent of the analysed compounds, with an IC50 value of 0.86 µM on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells for 24 h compared to dexamethasone (IC50 = 0.62 µM) and low cytotoxicity against RAW 264.7 cells. Compound 4g significantly inhibited NO produced by LPS-induced RAW 264.7 cells. Further studies showed that compound 4g markedly inhibited the expression of pro-inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 cells. These results indicate that derivatives bearing pyrazoline structure might be considered for further research and scaffold optimization in designing anti-inflammatory drugs and compound 4g might be a promising therapeutic anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shulin Zhao
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - De Cai
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jinhong Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiwei Zheng
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Tumor Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
19
|
Evodiamine alleviates kidney ischemia reperfusion injury in rats: A biochemical and histopathological study. J Cell Biochem 2019; 120:17159-17166. [DOI: 10.1002/jcb.28976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
|
20
|
Luan F, Li M, Han K, Ma Q, Wang J, Qiu Y, Yu L, He X, Liu D, Lv H. Phenylethanoid glycosides of Phlomis younghusbandii Mukerjee ameliorate acute hypobaric hypoxia-induced brain impairment in rats. Mol Immunol 2019; 108:81-88. [DOI: 10.1016/j.molimm.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 12/29/2022]
|
21
|
Hou Y, Zhang G, Li M, Li B, Chen L, Tian Y, Liu S, Li B, Dong J. Antioxidant and anti-inflammatory constituents from Flos populi. Nat Prod Res 2019; 35:570-578. [PMID: 30931624 DOI: 10.1080/14786419.2019.1586702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Investigation of the n-butanol extract of Flos populi led to the isolation of one new phenolic glycoside, 4'-hydroxybenzyl-2-hydroxybenzoate-1'-O-β-D-glucopyranoside (1), together with twelve known compounds, which have been determined on the basis of spectroscopic analysis including UV, IR, HR-ESI-MS and 1D/2D NMR. The antioxidant capacity of all compounds were evaluated by ABTS radical-scavenging test and ferric reducing antioxidant power (FRAP) assay. And during a screening procedure for the anti-inflammatory activities among most compounds on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, compound 13 exhibited remarkable inhibitory effects on nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β, suggesting that it might be a promising candidate as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Yong Hou
- Anhui Medical University, Hefei, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Min Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Bowen Li
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Li Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Tian
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shijun Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Bin Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junxing Dong
- Anhui Medical University, Hefei, China.,Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
22
|
Ruan W, Li J, Xu Y, Wang Y, Zhao F, Yang X, Jiang H, Zhang L, Saavedra JM, Shi L, Pang T. MALAT1 Up-Regulator Polydatin Protects Brain Microvascular Integrity and Ameliorates Stroke Through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ Pathway. Cell Mol Neurobiol 2019; 39:265-286. [PMID: 30607811 DOI: 10.1007/s10571-018-00646-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA contributing to protect the blood-brain barrier (BBB) after stroke. We searched for small molecules that may up-regulate MALAT1 and focused on polydatin (PD), a natural product, as a possible candidate. PD enhanced MALAT1 gene expression in rat brain microvascular endothelial cells, reducing cell toxicity and apoptosis after oxygen and glucose deprivation (OGD). These effects correlated with reduction of inflammatory factors and enhancement of expression of BBB markers. We found opposite changes after MALAT1 silencing. We determined that C/EBPβ is a key transcription factor for PD-mediated MALAT1 expression. PPARγ activity is involved in MALAT1 protective effects through its coactivator PGC-1α and the transcription factor CREB. This suggests that PD activates the MALAT1/CREB/PGC-1α/PPARγ signaling pathway to protect endothelial cells against ischemia. PD administration to rats subjected to brain ischemia by transient middle cerebral artery occlusion (tMCAO) reduced cerebral infarct volume and brain inflammation, protected cerebrovascular endothelial cells and BBB integrity. These effects correlated with increased expression of MALAT1, C/EBPβ, and PGC-1α. Our results strongly suggest that the beneficial effects of PD involve the C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway, which may provide a novel therapeutic strategy for brain ischemic stroke.
Collapse
Affiliation(s)
- Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Jingwei Li
- Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yunjie Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xu Yang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
- Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
23
|
Basta-Kaim A, Ślusarczyk J, Szczepanowicz K, Warszyński P, Leśkiewicz M, Regulska M, Trojan E, Lasoń W. Protective effects of polydatin in free and nanocapsulated form on changes caused by lipopolysaccharide in hippocampal organotypic cultures. Pharmacol Rep 2019; 71:603-613. [PMID: 31176102 DOI: 10.1016/j.pharep.2019.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Polydatin (PD) is a compound, originally isolated from the root and rhizome of the Chinese herb Polygonum cuspidatum. To date, various biological properties of this compound, such as analgesic, anti-pyretic or diuretic effects, have been shown. Recently, anti-oxidant and anti-inflammatory properties have been widely postulated, yet PD instability and low bioavailability limit its beneficial actions. Therefore, it has been suggested that an encapsulation process may be a promising strategy for overcoming these limitations and increasing the therapeutic efficacy of PD. METHODS We examined the effects of PD in two forms, including free and in PD-loaded polymeric nanocapsules, on lipopolysaccharide (LPS)-induced changes in hippocampal organotypic cultures. RESULTS Our results indicated that free and encapsulated PD diminished cell death processes and attenuated the secretion of pro-inflammatory cytokines induced by LPS administration. Additionally, PD in both forms strongly inhibited the production of nitric oxide and down-regulated the level of iNOS enzyme in LPS-stimulated hippocampal cultures. CONCLUSION Taken together, our study showed that PD exerts anti-inflammatory and anti-oxidant properties in LPS-treated hippocampal organotypic cultures. Furthermore, we show that the encapsulation procedure preserved the features of the free form of this compound, and therefore, the polymeric nanocapsules containing PD may be used as a novel and promising delivery system in therapeutic strategies.
Collapse
Affiliation(s)
- Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Joanna Ślusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Regulska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
24
|
Yang C, Song HW, Liu W, Dong XS, Liu Z. Protective Effects of Chymostatin on Paraquat-Induced Acute Lung Injury in Mice. Inflammation 2018; 41:122-133. [PMID: 28940034 DOI: 10.1007/s10753-017-0670-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aims to evaluate the role of chymostatin in paraquat-induced acute lung injury. Institute of Cancer Research mice were randomly distributed into the NS, DMSO, chymostatin, paraquat or chymostatin treatment groups. Six mice from each group were intraperitoneally injected with chloral hydrate at 0, 1, 2, 4, 8, 12, 24 and 48 h after treatment administration. Blood samples were collected through cardiac puncture. Lung tissues were stained with haematoxylin and eosin for the observation of lung histology. The degree of pulmonary oedema was determined on the basis of lung wet-to-dry ratio (W/D). The serum activity of cathepsin G was determined through substrate fluorescence assay. The serum levels of endothelial cell-specific molecule-1 (endocan), tumour necrosis factor-a (TNF-a), interleukin-1β (IL-1β), IL-6 and high-mobility group box protein 1 (HMGB1) were determined through enzyme-linked immunosorbent assay. The expression levels of endocan and nuclear NF-κBp65 in the lung were quantified through Western blot. Chymostatin alleviated the pathological changes associated with acute alveolitis in mice; decreased the lung W/D ratio, the activity of cathepsin G and the serum concentrations of TNF-a, IL-1β, IL-6 and HMGB1; and increased the serum concentration of endocan. Western blot results revealed that chymostatin up-regulated endocan expression and down-regulated nuclear NF-κBp65 expression in the lung. Chymostatin reversed the inflammatory effects of paraquat-induced lung injury by inhibiting cathepsin G activity to up-regulate endocan expression and indirectly inhibit NF-κBp65 activity.
Collapse
Affiliation(s)
- Chen Yang
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Hong-Wei Song
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Wei Liu
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Xue-Song Dong
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China
| | - Zhi Liu
- Department of Emergency, the First Affiliated Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, P. R. China.
| |
Collapse
|
25
|
Yang YQ, Yan XT, Wang K, Tian RM, Lu ZY, Wu LL, Xu HT, Wu YS, Liu XS, Mao W, Xu P, Liu B. Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways. Front Pharmacol 2018; 9:999. [PMID: 30210350 PMCID: PMC6124152 DOI: 10.3389/fphar.2018.00999] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1β). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1β), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1β production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical.
Collapse
Affiliation(s)
- Yi-Qi Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Teng Yan
- Affiliated Huai'an Hospital, Xuzhou Medical University, Huai'an, China
| | - Kai Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Min Tian
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhao-Yu Lu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Li-Lan Wu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Hong-Tao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yun-Shan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xu-Sheng Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei Mao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Peng Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
26
|
Abstract
The present study was designed to investigate the effects of pilose antler peptide (PAP) on lipopolysaccharide (LPS)-induced lung injury. BalB/c mice intraperitoneally received PAP (10 and 20 mg/kg) or dexamethasone (2 mg/kg) 1 h prior to intratracheal instillation of LPS. PAP significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and restored LPS-induced lung histopathological changes. PAP also increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content and levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that PAP inhibited Rho/NF-κB pathway in LPS-induced mice. Our experimental results indicated that the protective mechanism of PAP might be attributed partly to the inhibition of Rho/NF-κB pathway.
Collapse
|
27
|
Qu C, Xu Q, Lu M, Wang F, Liu Z, Liu D, Yang W, Yi Q, Wang L, Song L. The involvement of suppressor of cytokine signaling 6 (SOCS6) in immune response of Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:502-509. [PMID: 29155031 DOI: 10.1016/j.fsi.2017.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Suppressor of cytokine signaling (SOCS) is a family of cytokine-inducible negative regulators of cytokine signaling and it plays a crucial role in various physiological processes. In the present study, the full-length cDNA of a SOCS (designated as EsSOCS6) was cloned from Chinese mitten crab Eriocheir sinensis. The open reading frame of EsSOCS6 cDNA was of 1266 bp, which encoded a polypeptide of 421 amino acid residues. There were two typically conserved SOCS family domains in EsSOCS6, including a central Src homology 2 (SH2) domain and a C-terminal SOCS box. The deduced amino acid sequence of EsSOCS6 shared 72-76% similarity with those of other SOCS6 family members. EsSOCS6 mRNA was constitutively expressed in all the examined tissues with higher expression levels in the immune-related tissues, such as hepatopancreas, hemocytes and gill. The mRNA expression levels of the EsSOCS6 in hemocytes were significantly up-regulated after the stimulations with lipopolysaccharide (LPS), Aeromonas hydrophila and polyinosinic-polycytidylic acid (poly (I:C)). The mRNA expressions of threonine/serine protein kinase (EsAkt) and EsRelish were dramatically declined after EsSOCS6 was interfered by dsRNA. Collectively, these results demonstrated that EsSOCS6 might regulate the activation of the NF-κB signaling pathway and play an important role in the innate immune responses of E. sinensis.
Collapse
Affiliation(s)
- Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Dongyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
28
|
Sun D, Yan Q, Xu X, Shen W, Xu C, Tan J, Zhang H, Li L, Cheng H. LC-MS/MS analysis and evaluation of the anti-inflammatory activity of components from BushenHuoxue decoction. PHARMACEUTICAL BIOLOGY 2017; 55:937-945. [PMID: 28164729 PMCID: PMC6130660 DOI: 10.1080/13880209.2017.1285327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT BushenHuoxue decoction (BSHXD) is a Chinese medicine prescription, which is composed of nine Chinese medical materials, used to treat osteoarthritis (OA). OBJECTIVE This study develops sensitive and convenient LC-MS/MS methods to analyze chemical components from BSHXD, and assess the anti-inflammatory activities thereof. MATERIALS AND METHODS The chemical composition from BSHXD water extract was qualitative analyzed by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS). Twelve reference compounds were analyzed by UPLC-ESI-MS/MS. Anti-inflammatory activities of target components were assessed by ELISA at 20 and 100 μg/mL. RESULTS It is the first time that 88 compounds were qualitatively identified from BSHXD, of which 12 with potential in treating OA according to the literature were quantified. Within BSHXD the contents of quercetin, isopsoralen, icarisideII, osthole, and isoimperatorin increased remarkably compared with those in single herb which make up BSHXD, the contents were 0.1999, 0.4634, 0.0928, 0.5364, and 0.1487 mg/g. ELISA data displayed that BSHXD and the five compounds mentioned inhibited the expressions of TNF-α, IL-6 and NO released from LPS-stimulated RAW264.7 cell, with maximum inhibition rates of 104.05% (osthole, 100 μg/mL), 100.03% (osthole, 100 μg/mL), and 93.46% (isopsoralen, 20 μg/mL), respectively. DISCUSSION AND CONCLUSION Content changes of 12 compounds in BSHXD and single herbs which comprise the prescription were measured and analyzed. Contents of five compounds increased may be explained by solubilization between drugs and chemical reaction. ELISA results reported that the increased contents of the five compounds could inhibit expression of the inflammatory factors.
Collapse
Affiliation(s)
- Dongdong Sun
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Qiuying Yan
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Xiaofang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Weixing Shen
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Changliang Xu
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Jiani Tan
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Famous Doctors' Proved Recipe Evaluation and Transformation of State Administration of Traditional Chinese Medicine, Nanjing, China
| | - Haibin Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Liu Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Haibo Cheng
- Translational Medicine Center of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
29
|
Tanyeli A, Eraslan E, Polat E, Bal T. Protective effect of salusin-α and salusin-β against ethanol-induced gastric ulcer in rats. J Basic Clin Physiol Pharmacol 2017; 28:623-630. [PMID: 28917082 DOI: 10.1515/jbcpp-2016-0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Alcohol consumption has been found to be associated with gastric ulcers, including gastric mucosal lesions. Salusin-α and salusin-β are bioactive peptides having 28 and 20 amino acids, respectively. Salusin-α and salusin-β immunoreactivity has been detected in the stomach and in the intestines. It has been reported that the salusins regulate the cytokine levels and decrease the infarct area in the heart tissue after ischemia. In this study, we investigated the effects of the salusins in the gastric injury formed with ethanol. METHODS Thirty-two sprague Dawley male rats were randomly divided into four groups, including eight rats in each group as follows: Group 1: control; Group 2: ethanol 5 mL/kg; Group 3: ethanol 5 mL/kg+5 nmol/kg salusin-α; Group 4: ethanol 5 mL/kg+5 nmol/kg salusin-β. RESULTS The salusin-α level increased at a significant level in the ulcer group formed with ethanol (p<0.001); the change in the salusin-β level is not significant. As for malondialdehyde (p<0.05) and myeloperoxidase (p<0.001), when compared with the control group, tumor necrosis factor-α (p<0.05) levels increased in the group to which ethanol was applied and decreased significantly with the application of salusins. Levels of GSH and IL-1β did not change at a significant level. In addition, histopathologic analysis demonstrated that, in salusin-administered groups, mucosal injury and caspase-3 expressions were reduced. CONCLUSIONS The suppression of salusin-α and salusin-β on caspase-3 expression by means of their effects on oxidative injury and TNF-α levels shows that these two hormones could serve as anti-ulcerative agents.
Collapse
|
30
|
Supplementation of lycopene in maturation media improves bovine embryo quality in vitro. Theriogenology 2017; 103:173-184. [DOI: 10.1016/j.theriogenology.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
|
31
|
Chen L, Liu P, Feng X, Ma C. Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med 2017; 21:3178-3189. [PMID: 28905500 PMCID: PMC5706507 DOI: 10.1111/jcmm.12871] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/12/2016] [Indexed: 01/12/2023] Open
Abstract
The purpose of the present study was to investigate the effect of salidroside (Sal) on myocardial injury in lipopolysaccharide (LPS)‐induced endotoxemic in vitro and in vivo. SD rats were randomly divided into five groups: control group, LPS group (15 mg/kg), LPS plus dexamethasone (2 mg/kg), LPS plus Sal groups with different Sal doses (20, 40 mg/kg). Hemodynamic measurement and haematoxylin and eosin staining were performed. Serum levels of creatine kinase (CK), lactate dehydrogenase, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH‐px), glutathione, tumour necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) were measured after the rats were killed. iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway proteins were detected by Western blot. In vitro, we evaluated the protective effect of Sal on rat embryonic heart‐derived myogenic cell line H9c2 induced by LPS. Reactive oxygen species (ROS) in H9c2 cells was measured by flow cytometry, and the activities of the antioxidant enzymes CAT, SOD, GSH‐px, glutathione‐S‐transferase, TNF‐α, IL‐6 and IL‐1β in cellular supernatant were measured. PI3K/Akt/mTOR signalling was examined by Western blot. As a result, Sal significantly attenuated the above indices. In addition, Sal exerts pronounced cardioprotective effect in rats subjected to LPS possibly through inhibiting the iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway in vivo. Furthermore, the pharmacological effect of Sal associated with the ROS‐mediated PI3K/Akt/mTOR pathway was proved by the use of ROS scavenger, N‐acetyl‐l‐cysteine, in LPS‐stimulated H9C2 cells. Our results indicated that Sal could be a potential therapeutic agent for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Lvyi Chen
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Peng Liu
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Xin Feng
- Institute of Tibetan Medicine, China Tibetology Research Center, Beijing, China
| | - Chunhua Ma
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Chen XY, Dou YX, Luo DD, Zhang ZB, Li CL, Zeng HF, Su ZR, Xie JH, Lai XP, Li YC. β-Patchoulene from patchouli oil protects against LPS-induced acute lung injury via suppressing NF-κB and activating Nrf2 pathways. Int Immunopharmacol 2017; 50:270-278. [DOI: 10.1016/j.intimp.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/21/2017] [Accepted: 07/02/2017] [Indexed: 01/20/2023]
|
33
|
Xue L, Wu K, Qiu H, Huang B, Chen R, Xie W, Jiang Q. Polydatin exhibits the hepatoprotective effects through PPAR-α/-β signaling pathway in Streptozocin-induced diabetic mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
34
|
Zhang C, Song Y, Wang C, Zhao L, Kang H, Ma X, Wang J, Zhang T, Shumin W, Ma C. The effects of chrysophanol on ovalbumin (OVA)-induced chronic lung toxicology by inhibiting Th17 response. Toxicol Mech Methods 2017; 27:327-334. [PMID: 28399782 DOI: 10.3109/15376516.2015.1053653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chrysophanol (CH), extracted from plants of Rheum genus, possesses various pharmacological effects including anti-inflammatory activity. The purpose of the present study was to evaluate the protective effects and the underlying mechanisms of CH on ovalbumin (OVA)-induced asthma in mice. Fifty mice were randomly assigned to five experimental groups: control group, model group, dexamethasone (2 mg/kg) group and CH (5 and 10 mg/kg) groups. The number of eosinophil cells and the production of interleukin-6 (IL-6), IL-1β, IL-17 A and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF) were measured. In addition, pulmonary histopathology, airway resistance (Raw), T-helper17 (Th17) cells frequency and RORγt expression were evaluated. Our study demonstrated that CH effectively decreased eosinophil count and inflammatory cytokines production in BALF. In addition, treatment with CH significantly inhibited the Raw, Th17 percentage and RORγt expression in OVA-induced animals compared with those in model group. Histological studies also demonstrated that CH significantly suppressed OVA-induced eosinophilia in lung tissue compared with model group. Our findings supported that CH can prevent allergic asthma in the mouse model.
Collapse
Affiliation(s)
- Chunyan Zhang
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Yafan Song
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Congxia Wang
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Ling Zhao
- a Department of Cardiology , the Second Affiliated Hospital, Medical School of Xi?an Jiaotong University , Xi'an , P.R. China
| | - Huafeng Kang
- b Department of Oncology, the Second Affiliated Hospital , Medical School of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Xiaobin Ma
- b Department of Oncology, the Second Affiliated Hospital , Medical School of Xi'an Jiaotong University , Xi'an , P.R. China
| | - Jing Wang
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| | - Tianzhu Zhang
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| | - Wang Shumin
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| | - Chunhua Ma
- c Changchun University of Chinese Medicine , Changchun , P.R. China
| |
Collapse
|
35
|
|
36
|
Jiang KF, Zhao G, Deng GZ, Wu HC, Yin NN, Chen XY, Qiu CW, Peng XL. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway. Acta Pharmacol Sin 2017; 38:211-222. [PMID: 27890916 DOI: 10.1038/aps.2016.123] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023] Open
Abstract
Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway.
Collapse
|
37
|
Khan I, Kim SW, Lee KL, Song SH, Mesalam A, Chowdhury MMR, Uddin Z, Park KH, Kong IK. Polydatin improves the developmental competence of bovine embryos in vitro via induction of sirtuin 1 (Sirt1). Reprod Fertil Dev 2017; 29:2011-2020. [DOI: 10.1071/rd16302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the beneficial effect of polydatin (PD), the glycoside form of resveratrol, on embryo development in vitro. Oocytes were aspirated from ovaries of Korean Hanwoo cows and cultured until Day 8 in a humidified atmosphere of 5% CO2 in air at 38.5°C. Protein and gene expression levels were determined through confocal microscopy and reverse transcription–polymerase chain reaction respectively, whereas the number of total and apoptotic cells in Day 8 blastocysts was determined using Hoechst 33342 staining and terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling. Of the different concentrations of PD (0.5, 1.0 and 2.0 µM) added to the IVM medium, only 1.0 µM PD significantly improved blastocyst development. Immunofluorescence analysis confirmed that protein levels of sirtuin 1 (Sirt1) increased significantly (P < 0.05) after PD treatment, whereas levels of reactive oxygen species (ROS) were significantly (P < 0.05) decreased, as evidenced by reductions in 8-oxoguanine immunoreactivity. Similarly, protein levels of nuclear factor (NF)-κB and cyclo-oxygenase (COX)-2 were significantly (P < 0.05) lower in the PD-treated group than in the control group. Treatment with 1.0 µM PD reduced gene expression of BCL2-associated X protein, inducible nitric oxide synthase, COX2 and Nfkb, but increased the expression of Sirt1, supporting the immunofluorescence data. PD possesses antioxidant activity and is useful for embryo development in vitro. We conclude that supplementation of IVM medium with PD improves embryo developmental competence via Sirt1.
Collapse
|
38
|
Hui S, Fangyu W. Protective effects of bilobalide against ethanol-induced gastric ulcer in vivo/vitro. Biomed Pharmacother 2017; 85:592-600. [DOI: 10.1016/j.biopha.2016.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 01/25/2023] Open
|
39
|
Chen T, Wang R, Jiang W, Wang H, Xu A, Lu G, Ren Y, Xu Y, Song Y, Yong S, Ji H, Ma Z. Protective Effect of Astragaloside IV Against Paraquat-Induced Lung Injury in Mice by Suppressing Rho Signaling. Inflammation 2016; 39:483-492. [PMID: 26452991 DOI: 10.1007/s10753-015-0272-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of the present study was to evaluate the protective effects of astragaloside IV (AS IV) against paraquat (PQ)-induced pulmonary injury in vivo. Fifty BALB/C mice were randomized into five groups: (1) control, (2) PQ, (3) PQ + dexamethasone (Dex, 5 mg/kg), (4) PQ + AS IV (50 mg/kg), and (5) PQ + AS IV (100 mg/kg). A single dose of PQ (50 mg/kg, i.p.) was intraperitoneally given to induced acute lung injury. Then, mice were treated with AS IV (50 and 100 mg/kg/day, orally) for 5 days. At the end of the experiment, animals were euthanized; then, the bronchoalveolar lavage fluid (BALF) and lung tissues were collected for histological observation, biochemical assay, and Western blot analysis. Malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in lung tissues, and interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α) levels in BALF were determined. Histological examination indicated that AS IV attenuated lung damage caused by PQ. Biochemical results showed that AS IV treatment significantly reduced the levels of MDA, MPO, and inflammatory cytokines while increased the levels of SOD, CAT, and GSH-Px compared with those in PQ group. Western blot results revealed that AS IV attenuated the Txnip/Trx expressions and inhibited Rho/ROCK/nuclear factor kappaB (NF-κB) signaling pathway in PQ-challenged mice. These findings suggested the protective effect of AS IV as a natural product on PQ-induced pulmonary injury.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruoning Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenjiao Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Huimin Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ang Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guo Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Ren
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yangmei Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yangyang Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Shoulei Yong
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhanqiang Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
40
|
Li B, Wang XL. Effective treatment of polydatin weakens the symptoms of collagen-induced arthritis in mice through its anti-oxidative and anti-inflammatory effects and the activation of MMP-9. Mol Med Rep 2016; 14:5357-5362. [PMID: 27840936 DOI: 10.3892/mmr.2016.5903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/18/2016] [Indexed: 11/06/2022] Open
Abstract
Polydatin is a natural extract used in traditional Chinese medicine, which leads to a marked improvement in the microcirculation perfusion and enhances the animal myocardial contraction force. The present study aimed to determine whether an effective treatment of polydatin ameliorates the symptoms of collagen‑induced arthritis (CIA), and also to explore the potential mechanism. Male DBA/1J mice were induced into CIA model mice. The administration of polydatin effectively suppressed CIA in mice. The serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor‑α (TNF‑α) and interleukin 1β (IL‑1β) were effectively increased following the induction of CIA in the model mice compared with the control group. The elevated serum levels of MDA, SOD, TNF‑α and IL‑1β were markedly suppressed by the effective treatment of polydatin in CIA mice, compared with the CIA model group. However, an increase in the level of matrix metalloproteinase‑9 (MMP‑9) was markedly induced in the CIA mice compared with the control group. As compared with the CIA group, the expression of MMP‑9 was substantially reduced by the effective treatment of polydatin. Taken together, the effective treatment of polydatin ameliorated the symptoms of CIA through an exertion of its antioxidative and anti‑inflammatory effects, and also via activation of the expression of matrix metalloproteinase-9 (MMP-9) in mice.
Collapse
Affiliation(s)
- Bo Li
- Pediatric Surgery of Second People's Hospital of Liaocheng City, Linqing, Shandong 252600, P.R. China
| | - Xiao-Li Wang
- Pediatric Surgery of Second People's Hospital of Liaocheng City, Linqing, Shandong 252600, P.R. China
| |
Collapse
|
41
|
Chen T, Guo Q, Wang H, Zhang H, Wang C, Zhang P, Meng S, Li Y, Ji H, Yan T. Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/Rho Kinase/NF-кB pathways in vivo and in vitro. Free Radic Res 2016; 49:1459-68. [PMID: 26514440 DOI: 10.3109/10715762.2015.1087643] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of the present study was to investigate the protective effect of esculetin (ES) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the lung epithelial A549 cells. Mice were intragastrically administered with ES (20 and 40 mg/kg) 1 h prior to LPS challenge. ES pretreatment at doses of 20 and 40 mg/kg effectively attenuated LPS-induced lung histopathological change, myeloperoxidase or MPO activity, inflammatory cells infiltration, pulmonary wet-to-dry weight ratio, and the generation of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vivo and in vitro. Furthermore, we demonstrated that ES blocked the activation of NF-кB and RhoA/Rho kinase pathways in LPS-induced mice and A549 cells. The results suggested that ES exhibited protective effect on ALI and might attribute partly to the inhibition of NF-кB and RhoA/Rho kinase pathways in vivo and in vitro.
Collapse
Affiliation(s)
- Tong Chen
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province , PR China
| | - Qianqian Guo
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province , PR China.,b Department of Physiology and Pharmacology , China Pharmaceutical University , Nanjing 210009 , China
| | - Huimin Wang
- c School of Pharmacy, China Pharmaceutical University , Nanjing 210009 , China
| | - Huixin Zhang
- c School of Pharmacy, China Pharmaceutical University , Nanjing 210009 , China
| | - Ciman Wang
- c School of Pharmacy, China Pharmaceutical University , Nanjing 210009 , China
| | - Ping Zhang
- c School of Pharmacy, China Pharmaceutical University , Nanjing 210009 , China
| | - Shanshan Meng
- d Department of Respiratory Medicine , The Second Hospital of Jilin University , Changchun, 130041 , China
| | - Yunman Li
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province , PR China.,b Department of Physiology and Pharmacology , China Pharmaceutical University , Nanjing 210009 , China
| | - Hui Ji
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province , PR China
| | - Tianhua Yan
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu Province , PR China.,b Department of Physiology and Pharmacology , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
42
|
Zhou QL, Qin RZ, Yang YX, Huang KB, Yang XW. Polydatin possesses notable anti‑osteoporotic activity via regulation of OPG, RANKL and β‑catenin. Mol Med Rep 2016; 14:1865-9. [PMID: 27357904 DOI: 10.3892/mmr.2016.5432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 06/06/2016] [Indexed: 11/05/2022] Open
Abstract
This study was designed to investigate the anti‑osteoporotic activity of polydatin and its possible underlying mechanism. Osteoporosis was induced in mice by ovariectomy (OVX) and the mice were divided into 5 groups: An OVX only group, polydatin groups (10, 20 and 40 mg/kg) and a sham group (n=10/group). After 12 weeks of treatment, body weight, uterine index and the dry weight of thigh‑bones were recorded. In addition, the serum calcium, serum phosphorus, alkaline phosphatase (ALP) and osteoprotegerin (OPG) levels were also determined. Western blot analysis was then conducted to investigate the possible mechanism underlying the effect of polydatin via determining the expression of OPG, receptor activators of nuclear factor‑κB ligand (RANKL) and β‑catenin in the ST2 cell line. The results indicated that intraperitoneal injection of polydatin (10, 20 and 40 mg/kg/day) decreased body weight, and increased uterine index and dry weights of thigh‑bones of ovariectomized mice (P<0.05), and polydatin also significantly increased the serum calcium, phosphorus, ALP and OPG of ovariectomized mice (P<0.05). Results of western blot analysis showed that polydatin upregulated the ratio of OPG/RANKL (P<0.05) and β‑catenin protein in ST2 cells. In conclusion, the results demonstrated that polydatin exhibits anti‑osteoporotic activity via regulating osteoprotegerin, RANKL and β‑catenin.
Collapse
Affiliation(s)
- Qi-Lin Zhou
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Ru-Zi Qin
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Yan-Xin Yang
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Kun-Bing Huang
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| | - Xian-Wen Yang
- Department of Internal Medicine, Guangdong Province Corps Hospital, Chinese People's Armed Police Forces, Guangzhou, Guangdong 510507, P.R. China
| |
Collapse
|
43
|
Im K, Lee JY, Byeon H, Hwang KW, Kang W, Whang WK, Min H. In Vitroantioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena)stalks in macrophage RAW 264.7 cells. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1150427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Ferulic Acid against Cyclophosphamide-Induced Heart Toxicity in Mice by Inhibiting NF-κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1261270. [PMID: 26881001 PMCID: PMC4736310 DOI: 10.1155/2016/1261270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/17/2015] [Indexed: 02/05/2023]
Abstract
The purpose of the present study was to elucidate the protective effects of ferulic acid (FA) against cyclophosphamide- (CTX-) induced changes in mice. Forty-eight male ICR mice were divided into four groups. Control group was intraperitoneally (i.p.) injected with 200 μL of phosphate buffer saline (PBS). Model group was intraperitoneally injected with a single dose of CTX (200 mg/kg). FA (50 mg/kg) and FA (100 mg/kg) groups were intraperitoneally injected with a single dose of CTX (200 mg/kg) followed by the intragastric treatment with FA (50, 100 mg/kg) for 7 consecutive days. After 12 d, the mice were sacrificed to analyze the hematological, biochemical, histological parameters and mechanism research. The results indicated that FA significantly decreased the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) in CTX-injected mice. In addition, FA effectively reduced the total numbers of white blood cells (WBCs), red blood cells, platelets, and hemoglobin content. FA also obviously attenuated the histological changes of the heart tissues caused by CTX. Moreover, Western blot demonstrated that FA inhibited the phosphorylations of NF-κB signaling pathway in CTX-stimulated cardiac tissues. In conclusion, FA might be considered as an effective agent in the amelioration of the heart toxicity resulting from CTX treatment.
Collapse
|
45
|
Weiwei T, Ting Z, Chunhua M, Hongyan L. Suppressing receptor-interacting protein 140: a new sight for esculetin to treat myocardial ischemia/reperfusion injury. RSC Adv 2016. [DOI: 10.1039/c6ra06315b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present study was to evaluate the cardioprotective effect of esculetin (ES) on myocardial ischemia/reperfusion (I/R) damage in rats and investigate the potential mechanism.
Collapse
Affiliation(s)
- Tao Weiwei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Zuo Ting
- Department of Pharmacy
- Henan University of Chinese Medicine
- Zheng Zhou
- China
| | - Ma Chunhua
- Central Laboratory
- Nanjing Municipal Hospital of T.C.M
- The Third Affiliated Hospital of Nanjing University of T.C.M
- Nanjing 210001
- China
| | - Long Hongyan
- Central Laboratory
- Nanjing Municipal Hospital of T.C.M
- The Third Affiliated Hospital of Nanjing University of T.C.M
- Nanjing 210001
- China
| |
Collapse
|
46
|
Tiao He Yi Wei Granule, a Traditional Chinese Medicine, against Ethanol-Induced Gastric Ulcer in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:647283. [PMID: 26779276 PMCID: PMC4686723 DOI: 10.1155/2015/647283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 12/04/2022]
Abstract
Tiao He Yi Wei granule (DHYW), a traditional Chinese medicine, has been used for the treatment of gastric ulcer in clinical setting. The purpose of the present study was to investigate the possible effect of DHYW and explore the underlying mechanism against ethanol-induced gastric ulcer in mice. The model of ethanol-induced gastric ulcer in mice was induced by ethanol (0.2 mL/kg). Administration of DHYW at the doses of 250, 500 mg/kg body weight prior to the ethanol ingestion could effectively protect the stomach from ulceration. The gastric lesions were significantly ameliorated in the DHYW group compared with that in the model group. Treatment with DHYW markedly decreased the levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). In addition, DHYW treatment elevated myeloperoxidase (MPO) level in stomach, increased superoxide dismutase (SOD) activity, and decreased malonaldehyde (MDA) content in serum and stomach compared with those in the model group. DHYW significantly inhibited NF-κB pathway expressions in the gastric mucosa ulcer group. Taken together, DHYW exerted a gastroprotective effect against gastric ulceration and the underlying mechanism might be associated with NF-κB pathway.
Collapse
|
47
|
High yield ultrasonication extraction method for Undaria pinnatifida sporophyll and its anti-inflammatory properties associated with AP-1 pathway suppression. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.07.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-κB pathway. Int Immunopharmacol 2015; 29:370-376. [PMID: 26507165 DOI: 10.1016/j.intimp.2015.10.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to investigate the protective effect of PD against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its potential mechanism. In vivo, PD and dexamethasone were intraperitoneally administered 1h before LPS stimulation. Then, mice were sacrificed at 6h post-LPS stimulation. Neutrophil number, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF) were determined, as well as lung wet to dry ratio (W/D) and polymorphonuclear (MPO) activity. The protein expressions of Toll like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), IL-1R-associated kinases 1 (IRAK1), IRAK4, inhibitor of nuclear factor kappa-B kinase (IKK)α, p-IKKα, IKKβ, p-IKKβ, inhibitor of NF-κB (IκBα), p-IκBα and NF-κB in lung tissues were assessed. Besides, we detected the IL-6, IL-1β, IL-8, TNF-α levels and TLR4, MyD88, NF-κB protein expressions in LPS-induced BEAS-2B cells. Consequently, PD significantly inhibited the levels of W/D, MPO, neutrophils number, TNF-α, IL-6, IL-1β and reversed TLR4-MyD88-NF-κB signaling pathway in lung tissues. In vitro assays, PD effectively negatively mediated the inflammatory cytokines and ameliorated the high expressions of TLR4, MyD88, NF-κB caused by LPS simulation in Human bronchial epithelial BEAS-2B cells. This study indicated that PD played a protective role in LPS-induced ALI and BEAS-2B cells. The results supported further study of PD as potential candidate for acute lung injury.
Collapse
|
49
|
Jiang W, Luo F, Lu Q, Liu J, Li P, Wang X, Fu Y, Hao K, Yan T, Ding X. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chem Biol Interact 2015; 243:127-34. [PMID: 26363199 DOI: 10.1016/j.cbi.2015.09.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/16/2022]
Abstract
Inflammation response and oxidative stress have been reported to be involved in the pathogenesis of acute lung injury (ALI). Accordingly, anti-inflammatory treatment is proposed to be a possible efficient therapeutic strategy for ALI. The purpose of our present study was to evaluate the anti-inflammatory efficacy of trillin (Tr) on ALI induced by lipopolysaccharide (LPS) in mice and explore the underlying mechanism. BALB/c mice received Tr (50, 100 mg/kg) intraperitoneally 1 h prior to the intratracheal instillation of lipopolysaccharide (LPS) challenge. Pretreatment with Tr at the dose of 50, 100 mg/kg markedly ameliorated lung wet-to-dry weight (W/D) ratio, myeloperoxidase (MPO) activity and pulmonary histopathological conditions. In addition, the protective efficacy of Tr might be attributed to the down-regulations of neutrophil infiltration, malondialdehyde (MDA), inflammatory cytokines and the up-regulations of super-oxide dismutase (SOD), catalase(CAT), glutathione(GSH), Glutathione Peroxidase(GSH-Px) in bronchoalveolar lavage fluid (BALF). Meanwhile, our study revealed some correlations between (NF-E2-related factor 2) Nrf2/heme oxygenase (HO)-1/nuclear factor-kappa B (NF-κB) pathways and the beneficial effect of Tr, as evidenced by the significant up-regulations of HO-1 and Nrf2 protein expressions as well as the down-regulations of p-NF-κB and p-inhibitor of NF-κB (IκB) in lung tissues. Taken together, our results indicated that Tr exhibited protective effect on LPS-induced ALI by the regulations of related inflammatory events via the activations of Nrf2, HO-1 and NF-κB pathway. The current study indicated that Tr could be a potentially effective candidate medicine for the treatment of ALI.
Collapse
Affiliation(s)
- Wenjiao Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fen Luo
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - Qianfeng Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jingyan Liu
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China
| | - Peijin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeliu Fu
- The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Kun Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tianhua Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, China.
| | - Xuansheng Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
50
|
Hua K, Sheng X, Li TT, Wang LN, Zhang YH, Huang ZJ, Ji H. The edaravone and 3-n-butylphthalide ring-opening derivative 10b effectively attenuates cerebral ischemia injury in rats. Acta Pharmacol Sin 2015; 36:917-27. [PMID: 26073328 DOI: 10.1038/aps.2015.31] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/19/2015] [Indexed: 12/18/2022] Open
Abstract
AIM Compound 10b is a hybrid molecule of edaravone and a ring-opening derivative of 3-n-butylphthalide (NBP). The aim of this study was to examine the effects of compound 10b on brain damage in rats after focal cerebral ischemia. METHODS SD rats were subjected to 2-h-middle cerebral artery occlusion (MCAO). At the onset of reperfusion, the rats were orally treated with NBP (60 mg/kg), edaravone (3 mg/kg), NBP (60 mg/kg)+edaravone (3 mg/kg), or compound 10b (70, 140 mg/kg). The infarct volume, motor behavior deficits, brain water content, histopathological alterations, and activity of GSH, SOD, and MDA were analyzed 24 h after reperfusion. The levels of relevant proteins in the ipsilateral striatum were examined using immunoblotting. RESULTS Administration of compound 10b (70 or 140 mg/kg) significantly reduced the infarct volume and neurological deficits in MCAO rats. The neuroprotective effects of compound 10b were more pronounced compared to NBP, edaravone or NBP+edaravone. Furthermore, compound 10b significantly upregulated the protein levels of the cytoprotective molecules Bcl-2, HO-1, Nrf2, Trx, P-NF-κB p65, and IκB-α, while decreasing the expression of Bax, caspase 3, caspase 9, Txnip, NF-κB p65, and P-IκB-α. CONCLUSION Oral administration of compound 10b effectively attenuates rat cerebral ischemia injury.
Collapse
|