1
|
Dai W, Yin S, Wang F, Kuang T, Xiao H, Kang W, Yun C, Wang F, Luo L, Ao S, Zhou J, Yang X, Fan C, Li W, He D, Jin H, Tang W, Liu L, Wang R, Liang H, Zhu J. Punicalagin as a novel selective aryl hydrocarbon receptor (AhR) modulator upregulates AhR expression through the PDK1/p90RSK/AP-1 pathway to promote the anti-inflammatory response and bactericidal activity of macrophages. Cell Commun Signal 2024; 22:473. [PMID: 39363344 PMCID: PMC11448010 DOI: 10.1186/s12964-024-01847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) plays an important role in inflammation and immunity as a new therapeutic target for infectious disease and sepsis. Punicalagin (PUN) is a Chinese herbal monomer extract of pomegranate peel that has beneficial anti-inflammatory, antioxidant and anti-infective effects. However, whether PUN is a ligand of AhR, its effect on AhR expression, and its signaling pathway remain poorly understood. In this study, we found that PUN was a unique polyphenolic compound that upregulated AhR expression at the transcriptional level, and regulated the AhR nongenomic pathway. AhR expression in lipopolysaccharide-induced macrophages was upregulated by PUN in vitro and in vivo in a time- and dose-dependent manner. Using specific inhibitors and siRNA, induction of AhR by PUN depended on sequential phosphorylation of 90-kDa ribosomal S6 kinase (p90RSK), which was activated by the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-dependent protein kinase (PDK)1 pathways. PUN promoted p90RSK-mediated activator protein-1 (AP-1) activation. AhR knockout or inhibitors reversed suppression of interleukin (IL)-6 and IL-1β expression by PUN. PUN decreased Listeria load and increased macrophage survival via AhR upregulation. In conclusion, we identified PUN as a novel selective AhR modulator involved in AhR expression via the MEK/ERK and PDK1 pathways targeting p90RSK/AP-1 in inflammatory macrophages, which inhibited macrophage inflammation and promoted bactericidal activity.
Collapse
Affiliation(s)
- Weihong Dai
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Shuangqin Yin
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fangjie Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tianyin Kuang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongyan Xiao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Caihong Yun
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Fei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Li Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shengxiang Ao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xue Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chao Fan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Li
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dongmei He
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - He Jin
- Department of Cardiothoracic Surgery, 926th Hospital of Joint Logistics Support Force of PLA, Kaiyuan, 661600, China
| | - Wanqi Tang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lizhu Liu
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Rixing Wang
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China.
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Junyu Zhu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Wang W, Long P, He M, Luo T, Li Y, Yang L, Zhang Y, Wen X. Pomegranate polyphenol punicalagin as a nutraceutical for mitigating mild cognitive impairment: An overview of beneficial properties. Eur J Pharmacol 2024; 977:176750. [PMID: 38897439 DOI: 10.1016/j.ejphar.2024.176750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Dementia treatment has become a global research priority, driven by the increase in the aging population. Punicalagin, the primary polyphenol found in pomegranate fruit, exhibits a variety of benefits. Today, a growing body of research is showing that punicalagin is a nutraceutical for the prevention of mild cognitive impairment (MCI). However, a comprehensive review is still lacking. The aim of this paper is to provide a comprehensive review of the physicochemical properties, origin and pharmacokinetics of punicalagin, while emphasizing the significance and mechanisms of its potential role in the prevention and treatment of MCI. Preclinical and clinical studies have demonstrated that Punicalagin possesses the potential to effectively target and enhance the treatment of MCI. Potential mechanisms by which punicalagin alleviates MCI include antioxidative damage, anti-neuroinflammation, promotion of neurogenesis, and modulation of neurotransmitter interactions. Overall, punicalagin is safer and shows potential as a therapeutic compound for the prevention and treatment of MCI, although more rigorous randomized controlled trials involving large populations are required.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yubo Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610059, China.
| |
Collapse
|
3
|
Loying R, Sharmah B, Barman H, Borah A, Bora HK, Kalita J, Manna P. Anti-inflammatory potential of Piper betleoides C. DC., a promising Piper species of Northeast India: in vitro and in vivo evidence and mechanistic insight. Inflammopharmacology 2024:10.1007/s10787-024-01539-3. [PMID: 39126574 DOI: 10.1007/s10787-024-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
The present study aims to investigate the anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides C. DC., also known as "Jangli Paan" in Northeast India, using lipopolysaccharide (LPS)-treated both cell culture (RAW264.7, macrophage cells) and animal (albino rat) model of inflammation. Treatment with leaf hydroalcoholic extract of Piper betleoides (PBtE) dose-dependently (5, 10, and 20 µg/mL) decreased the secretion of pro-inflammatory (TNF-α, IL-6, and MCP-1) and increased anti-inflammatory (IL-4 and IL-10) cytokines in LPS-treated macrophages. Similarly, treatment with PBtE also prevented the alternation in mRNA expression of inflammatory markers (TNF-α, CCL-2, IL-6, and IL-10) in LPS-treated macrophages. Dose-dependent supplementation with PBtE further reduced the production of intracellular ROS and increased the phagocytosis efficacies in LPS-treated cells. Further in vivo studies demonstrated that treatment with PBtE dose-dependently (50, 100, and 200 mg/kg body weight) prevented the dysregulation of the secretion of inflammatory cytokines (TNF-α, IL-4, IL-6, and IL-10) and reduced the circulatory levels of prostaglandin (PGE2) and nitric oxide products (nitrite) in LPS-treated animals. In addition, alternation of blood cell profiling and the liver as well as kidney dysfunctions were also prevented by the treatment with PBtE in LPS-treated rats. The anti-inflammatory potential of PBtE was comparable to those seen in sodium diclofenac (positive control) treated group. LC-MS analyses showed piperine, piperlongumine, piperolactam-A, and dehydropipernonaline and GC-MS analyses demonstrated phytol, caryophyllene, and falcarinol as the phytochemicals present in Piper betleoides, which might play an important role in preventing inflammation and associated pathophysiology. Different treatments didn't cause any toxicity in cell culture and animal models. This study for the first time demonstrated the promising anti-inflammatory potential of the leaf hydroalcoholic extract of Piper betleoides.
Collapse
Affiliation(s)
- Rikraj Loying
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Bhaben Sharmah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Hiranmoy Barman
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Anupriya Borah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Himangsu Kousik Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
| |
Collapse
|
4
|
Ashrafizadeh M, Aref AR, Sethi G, Ertas YN, Wang L. Natural product/diet-based regulation of macrophage polarization: Implications in treatment of inflammatory-related diseases and cancer. J Nutr Biochem 2024; 130:109647. [PMID: 38604457 DOI: 10.1016/j.jnutbio.2024.109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Macrophages are phagocytic cells with important physiological functions, including the digestion of cellular debris, foreign substances, and microbes, as well as tissue development and homeostasis. The tumor microenvironment (TME) shapes the aggressiveness of cancer, and the biological and cellular interactions in this complicated space can determine carcinogenesis. TME can determine the progression, biological behavior, and therapy resistance of human cancers. The macrophages are among the most abundant cells in the TME, and their functions and secretions can determine tumor progression. The education of macrophages to M2 polarization can accelerate cancer progression, and therefore, the re-education and reprogramming of these cells is promising. Moreover, macrophages can cause inflammation in aggravating pathological events, including cardiovascular diseases, diabetes, and neurological disorders. The natural products are pleiotropic and broad-spectrum functional compounds that have been deployed as ideal alternatives to conventional drugs in the treatment of cancer. The biological and cellular interactions in the TME can be regulated by natural products, and for this purpose, they enhance the M1 polarization of macrophages, and in addition to inhibiting proliferation and invasion, they impair the chemoresistance. Moreover, since macrophages and changes in the molecular pathways in these cells can cause inflammation, the natural products impair the pro-inflammatory function of macrophages to prevent the pathogenesis and progression of diseases. Even a reduction in macrophage-mediated inflammation can prevent organ fibrosis. Therefore, natural product-mediated macrophage targeting can alleviate both cancerous and non-cancerous diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, Massachusetts, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye.
| | - Lu Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
5
|
Yin S, Dai W, Kuang T, Zhou J, Luo L, Ao S, Yang X, Xiao H, Qiao L, Wang R, Wang F, Yun C, Cheng S, Zhu J, Liang H. Punicalagin promotes mincle-mediated phagocytosis of macrophages via the NF-κB and MAPK signaling pathways. Eur J Pharmacol 2024; 970:176435. [PMID: 38428663 DOI: 10.1016/j.ejphar.2024.176435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Punicalagin (PUN) is a polyphenol derived from the pomegranate peel. It has been reported to have many beneficial effects, including anti-inflammatory, anti-oxidant, and anti-proliferation. However, the role of PUN in macrophage phagocytosis is currently unknown. In this study, we found that pre-treatment with PUN significantly enhanced phagocytosis by macrophages in a time- and dose-dependent manner in vitro. Moreover, KEGG enrichment analysis by RNA-sequencing showed that differentially expressed genes following PUN treatment were significantly enriched in phagocyte-related receptors, such as the C-type lectin receptor signaling pathway. Among the C-type lectin receptor family, Mincle (Clec4e) significantly increased at the mRNA and protein level after PUN treatment, as shown by qRT-PCR and western blotting. Small interfering RNA (siRNA) mediated knockdown of Mincle in macrophages resulted in down regulation of phagocytosis. Furthermore, western blotting showed that PUN treatment enhanced the phosphorylation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) in macrophages at the early stage. Mincle-mediated phagocytosis by PUN was inhibited by PDTC (a NF-κB inhibitor) and SB203580 (a p38 MAPK inhibitor). In addition, PUN pre-treatment enhanced phagocytosis by peritoneal and alveolar macrophages in vivo. After intraperitoneal injection of Escherichia coli (E.coli), the bacterial load of peritoneal lavage fluid and peripheral blood in PUN pre-treated mice decreased significantly. Similarly, the number of bacteria in the lung tissue significantly reduced after intranasal administration of Pseudomonas aeruginosa (PAO1). Taken together, our results reveal that PUN enhances bacterial clearance in mice by activating the NF-κB and MAPK pathways and upregulating C-type lectin receptor expression to enhance phagocytosis by macrophages.
Collapse
Affiliation(s)
- Shuangqin Yin
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Weihong Dai
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Emergency Department of the Second Affiliated Hospital of Hainan Medical University, The Emergency and Critical Care Clinical Medicine Research Center of Hainan, Haikou, Hainan, China
| | - Tianyin Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Shengxiang Ao
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Xue Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongyan Xiao
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Qiao
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Rixing Wang
- Emergency Department of the Second Affiliated Hospital of Hainan Medical University, The Emergency and Critical Care Clinical Medicine Research Center of Hainan, Haikou, Hainan, China
| | - Fei Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Emergency Department of the Second Affiliated Hospital of Hainan Medical University, The Emergency and Critical Care Clinical Medicine Research Center of Hainan, Haikou, Hainan, China
| | - Caihong Yun
- Emergency Department of the Second Affiliated Hospital of Hainan Medical University, The Emergency and Critical Care Clinical Medicine Research Center of Hainan, Haikou, Hainan, China
| | - Shaowen Cheng
- Department of Wound Repair, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Junyu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Mir RH, Mohi-Ud-Din R, Al-Keridis LA, Ahmad B, Alshammari N, Patel M, Adnan M, Masoodi MH. Phytochemical profiling, antioxidant, cytotoxic, and anti-inflammatory activities of Plectranthus rugosus extract and fractions: in vitro, in vivo, and in silico approaches. Inflammopharmacology 2024; 32:1593-1606. [PMID: 38308794 DOI: 10.1007/s10787-023-01419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Inflammation is a key biological reaction that comprises a complex network of signals that both initiate and stop the inflammation process. PURPOSE This study targets to evaluate the anti-inflammatory potential of the leaves of the Plectranthus rugosus (P. rugosus) plant involving both in vitro and in vivo measures. The current available drugs exhibit serious side effects. Traditional medicines impart an essential role in drug development. P. rugosus is a plant used in traditional medicine of Tropical Africa, China, and Australia to treat various diseases. METHODS Lipopolysaccharide (LPS), an endotoxin, kindles macrophages to discharge huge quantities of pro-inflammatory cytokines like TNF-α and IL-6. So, clampdown of macrophage stimulation may have a beneficial potential to treat various inflammatory disorders. The leaves of the P. rugosus are used for swelling purpose by local population; however, its use as an anti-inflammatory agent and associated disorders has no scientific evidence. RESULTS The extracts of the plant Plectranthus rugosus ethanolic extract (PREE), Plectranthus rugosus ethyl acetate extract (PREAF), and the compound isolated (oleanolic acid) suppress the pro-inflammatory cytokines (IL-6 and TNF-α) and nitric oxide (NO), confirming its importance in traditional medicine. CONCLUSION The pro-inflammatory cytokines are inhibited by P. rugosus extracts, as well as an isolated compound oleanolic acid without compromising cell viability.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Jammu and Kashmir, Srinagar, 190001, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Bilal Ahmad
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar-190006, Hazratbal, Kashmir, India.
| |
Collapse
|
7
|
Huang L, Sun Q, Li Q, Li X. Screening and characterization of an anti-inflammatory pectic polysaccharide from Cucurbita moschata Duch. Int J Biol Macromol 2024; 264:130510. [PMID: 38447847 DOI: 10.1016/j.ijbiomac.2024.130510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 → and →4)-α-D-GalpA-(1 → 2,4)-α-L-Rhap-(1 → as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.
Collapse
Affiliation(s)
- Linlin Huang
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China
| | - Qi Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Li
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
8
|
Elder SH, Ross MK, Nicaise AJ, Miller IN, Breland AN, Hood ARS. Development of in situ forming implants for controlled delivery of punicalagin. Int J Pharm 2024; 652:123842. [PMID: 38266943 PMCID: PMC10922986 DOI: 10.1016/j.ijpharm.2024.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Due to efficient drainage of the joint, the development of intra-articular depots for long-lasting drug release is a difficult challenge. Moreover, a disease-modifying osteoarthritis drug (DMOAD) that can effectively manage osteoarthritis has yet to be identified. The current study was undertaken to explore the potential of injectable, in situ forming implants to create depots that support the sustained release of punicalagin, a promising DMOAD. In vitro experiments demonstrated punicalagin's ability to suppress production of interleukin-1β and prostaglandin E2, confirming its chondroprotective properties. Regarding the entrapment of punicalagin, it was demonstrated by LC-MS/MS to be stable within PLGA in situ forming implants for several weeks and capable of inhibiting collagenase upon release. In vitro punicalagin release kinetics were tunable through variation of solvent, PLGA lactide:glycolide ratio, and polymer concentration, and an optimized formulation supported release for approximately 90 days. The injection force of this formulation steadily increased with plunger advancement and higher rates of advancement were associated with greater forces. Although the optimal formulation was highly cytotoxic to primary chondrocytes if cells were exposed immediately or shortly after implant formation, upwards of 70 % survival was achieved when the implants were first allowed to undergo a 24-72 h period of phase inversion prior to cell exposure. This study demonstrates a PLGA-based in situ forming implant for the controlled release of punicalagin. With modification to address cytotoxicity, such an implant may be suitable as an intra-articular therapy for OA.
Collapse
Affiliation(s)
- Steven H Elder
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States.
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Mississippi State University, Starkville MS, United States
| | - Ashleigh J Nicaise
- College of Veterinary Medicine, Mississippi State University, Starkville MS, United States
| | - Isaac N Miller
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| | - Austen N Breland
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| | - Ariory R S Hood
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| |
Collapse
|
9
|
Umar T, Yin B, He L, Feng W, Yuan Y, Umer S, Feng H, Huang Z, Umar Z, Liu W, Ganzhen D. 6-Gingerol via overexpression of miR-322-5p impede lipopolysaccharide-caused inflammatory response in RAW264.7 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3797-3807. [PMID: 37347266 DOI: 10.1007/s00210-023-02543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Acute lung injury (ALI) and sepsis are complicated syndromes that are often left untreated in critically ill patients. 6-Gingerol is a phenolic phytochemical compound that is found in fresh ginger, has pharmacological effects against inflammation. This study explored the roles of 6-gingerol in a mouse model of acute lung injury caused by lipopolysaccharide (LPS) and RAW-264.7 cells inflammation. The LPS-induced animal model underwent histopathological examinations, and RAW-264.7 cells viability was determined by Cell counting Kit-8 (CCk-8) assay. Additionally, qRT-PCR, Immunofluorescence, Western blot, and ELISA were used in vivo and in vitro to identify inflammatory factors and proteins associated with NF-κB and MAPK signaling pathways. In a histological examination 6-gingerol exhibited protective effects. Moreover, 6-gingerol elevated cell viability and downregulated inflammatory factors Interlukin-1β (IL-1β), Interlukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α) in LPS-treated RAW-264.7 cells. Furthermore, 6-gingerol decreased phosphorylation of P65, P38 and the level of JNK in NF-κB and MAPK pathways. Importantly, 6-gingerol increased transcript abundance of miR-322-5p which suppressed by LPS and miR-322-5p downregulation negated the protective functions of 6-gingerol. The protective activity of 6-gingerol was mediated by miR-322-5p up-regulation.
Collapse
Affiliation(s)
- Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lixin He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wen Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yongjie Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Saqib Umer
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Huili Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhi Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zaima Umar
- Department of Anatomy, The University of Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Wenjing Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deng Ganzhen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Jghef MM, Boukholda K, Chtourou Y, Fiebich BL, Kebieche M, Soulimani R, Chigr F, Fetoui H. Punicalagin attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats: Biochemical, immunohistochemical, and in silico molecular docking studies. Chem Biol Interact 2023; 385:110745. [PMID: 37806379 DOI: 10.1016/j.cbi.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Punicalagin (PU), the major ellagitannin found in pomegranates, is characterized by multiple antioxidant activities. The aim of this study is to assess the protective effects of PU against isoproterenol (ISO)-induced acute myocardial damage and to investigate its underlying vascular mechanisms using rat model. METHODS: Rats were randomly divided into five groups and were treated orally (p.o.) with PU (25 and 50 mg/kg) for 14 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 15th and 16th days to induce Myocardial infarction. Cardiac markers, oxidative stress markers, and inflammatory cytokines levels were determined in the heart tissue. Immunohistochemistry analysis was performed to determine the protein expression pathways of inflammation, apoptosis and oxidative stress (Nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (HO-1) in all the groups. In silico study was carried out to evaluate the molecular interaction of PU with some molecular targets. RESULTS: Our results showed that ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), associated with several histopathological changes. ISO also induced an increase of MDA, PCO, NO, and 8-hydroxy-2-deoxyguanosine (8-OHdG), along with a decrease of antioxidant enzyme activities in the myocardial tissues. In addition, an increase of TNF-α, NF-κB, IL-6, IL-1β, iNOS, Nrf2 and (HO-1) was observed. Pre-treatment with PU reduced myocardial infract area, ameliorated histopathological alterations in myocardium, and decreased activities of myocardial injury marker enzymes in ISO-induced rats. In addition, PU remarkably restored ISO-induced elevation of lipid peroxidation and decrease of antioxidants, significantly reduced myocardial pro-inflammatory cytokines concentrations in this animal model. Molecular docking analysis of PU with protein targets showed potent interactions with negative binding energies. In conclusion, PU can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants.
Collapse
Affiliation(s)
- Muthana M Jghef
- Department of Radiology, Medical Technical College, Alkitab University, Alton Kubri, Kirkuk, Iraq; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| | - Mohammed Kebieche
- Faculty of Natural and Life Sciences, LMAGECA and BMBP Research Laboratories, University of Batna2, Route de Constantine, 05078, Fesdis, Batna2, Algeria.
| | - Rachid Soulimani
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000, Metz, France.
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
11
|
Gu T, Zhang Z, Liu J, Chen L, Tian Y, Xu W, Zeng T, Wu W, Lu L. Chlorogenic Acid Alleviates LPS-Induced Inflammation and Oxidative Stress by Modulating CD36/AMPK/PGC-1α in RAW264.7 Macrophages. Int J Mol Sci 2023; 24:13516. [PMID: 37686324 PMCID: PMC10487601 DOI: 10.3390/ijms241713516] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Chlorogenic acid (CGA) is a bioactive substance with anti-inflammatory activities. Clusters of CD36 have been suggested to be widely involved in inflammatory damage. However, the mechanism of CGA protecting against LPS-induced inflammation involving the CD36 regulation is unclear. Here, we demonstrated that CGA protected against LPS-induced cell death and decreased the production of ROS. Moreover, the SOD, CAT, and GSH-Px activities were also upregulated in CGA-treated cells during LPS stimulation. CGA reduced COX-2 and iNOS expression and IL-1β, IL-6, and TNF-α secretion in LPS-stimulated RAW264.7 macrophages. In addition, CGA treatment widely involved in immune-related signaling pathways, including NF-κB signaling, NOD-like receptor signaling, and IL-17 signaling using transcriptomic analysis and CD36 also markedly reduced during CGA pretreatment in LPS-induced RAW264.7 cells. Furthermore, the CD36 inhibitor SSO attenuated inflammation and oxidative stress by enabling activation of the AMPK/PGC-1α cascade. These results indicate that CGA might provide benefits for the regulation of inflammatory diseases by modulating CD36/AMPK/PGC-1α to alleviate oxidative stress.
Collapse
Affiliation(s)
- Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Zhiguo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jinyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (T.G.); (J.L.); (L.C.); (Y.T.); (W.X.); (T.Z.)
| |
Collapse
|
12
|
Huang L, Lu S, Bian M, Wang J, Yu J, Ge J, Zhang J, Xu Q. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway. Exp Cell Res 2023:113717. [PMID: 37429372 DOI: 10.1016/j.yexcr.2023.113717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Oxidative stress is one of the most important factors in changing bone homeostasis. Redox homeostasis plays a key role in the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and the angiogenesis ability of human umbilical vein endothelial cells (HUVECs) for bone regeneration. Currently, this study assessed the effects of punicalagin (PUN) on BMSCs and HUVECs. Cell viability was determined by CCK-8 assay. A flow cytometry analysis was adopted to detect macrophage polarization. The production of reactive oxygen stress (ROS), glutathione (GSH), malonaldehyde (MDA) and superoxide dismutase (SOD) activities were evaluated by using commercially-available kits. Osteogenic capacity of BMSCs was evaluated by ALP activity, ALP staining and ARS staining. The expression of osteogenic-related proteins (OCN, Runx-2, OPN) and Nrf/HO-1 levles were evaluated by Western blotting. Osteogenic-related genes (Osterix, COL-1, BMP-4, ALP) were evaluated by RT-PCR. Migration ability and invasion ability of HUVECs were evaluated by wound healing assay and Transwell assay. Angiogenic ability was detected by tube formation assay and the expression of angiogenic-related genes (VEGF, vWF, CD31) were evaluated by RT-PCR. Results showed that PUN alleviated oxidative stress by TNF-α, enhanced osteogenic differentiation in BMSCs and angiogenesis in HUVECs. Moreover, PUN regulate immune microenvironment by promoting the polarization of M2 macrophages and reduce the oxidative stress related products by activating Nrf2/HO-1 pathway. Altogether, these results suggested that PUN can promote osteogenic capacity of BMSCs, angiogenesis of HUVECs, alleviate oxidative stress via Nrf2/HO-1 pathway, offering PUN as a novel antioxidant agent for treating bone loss diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qintong Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Tian M, Xie D, Yang Y, Tian Y, Jia X, Wang Q, Deng G, Zhou Y. Hedychium flavum flower essential oil: Chemical composition, anti-inflammatory activities and related mechanisms in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115846. [PMID: 36280015 DOI: 10.1016/j.jep.2022.115846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedychium flavum, an ornamental, edible, and medicinal plant, is extensively cultivated as a source of aromatic essential oils (EO). Its flower is a traditional Chinese medicine for treating inflammation-related diseases like indigestion, diarrhea, and stomach pain. In particular, H. flavum flower EO has been used in cosmetics and as an aromatic stomachic to treat chronic gastritis in China. AIM OF THE STUDY This research aimed to analyze H. flavum flower EO's chemical composition and explore its anti-inflammatory activities and related mechanisms in vitro and in vivo. MATERIALS AND METHODS EO's chemical composition was determined by GC-FID/MS analysis. For in vitro test, the anti-inflammatory activity of EO was demonstrated by measuring the LPS-induced release of NO, PGE2, IL-1β, TNF-α, and IL-6 in RAW264.7 macrophages, and then its related mechanisms were explored using qRT-PCR, western blot, and immunofluorescent staining analysis. Next, EO's in vivo anti-inflammatory potential was further evaluated using a xylene-induced ear edema model, in which ear swelling and TNF-α, IL-6, and IL-1β levels in serum and tissue were examined. RESULTS The main components of EO were β-pinene (20.2%), α-pinene (9.3%), α-phellandrene (8.3%), 1,8-cineole (7.1%), E-nerolidol (5.4%), limonene (4.4%), borneol (4.1%), and β-caryophyllene (3.7%). For the anti-inflammatory activities in vitro, EO dramatically reduced the LPS-stimulated NO and PGE2 release by suppressing the mRNA and protein expression of iNOS and COX-2. Meanwhile, it remarkably decreased IL-6, TNF-α, and IL-1β production by inhibiting their mRNA levels. Related mechanism studies indicated that it not only inhibited IκBα phosphorylation and degradation, leading to blockade of NF-κB nuclear transfer but also suppressed MAPKs (ERK, p38, and JNK) phosphorylation in LPS-stimulated RAW264.7 cells. Further in vivo assay showed that EO ameliorated xylene-induced ear edema in mice and reduced TNF-α, IL-6, and IL-1β levels in serum and tissue. CONCLUSIONS H. flavum EO exerted significant anti-inflammatory activity in vivo and in vitro, and its mechanism of action is related to the inhibition of MAPK and NF-κB activation. Thus, H. flavum EO could be considered a novel and promising anti-inflammatory agent and possess high potential for utilization in the pharmaceutical field.
Collapse
Affiliation(s)
- Minyi Tian
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China; Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Dan Xie
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Yao Yang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Yufeng Tian
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Xiaoyan Jia
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Qinqin Wang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Guodong Deng
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Ying Zhou
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China; College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
14
|
Hosseini A, Razavi BM, Hosseinzadeh H. Protective effects of pomegranate (Punica granatum) and its main components against natural and chemical toxic agents: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154581. [PMID: 36610118 DOI: 10.1016/j.phymed.2022.154581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Different chemical toxicants or natural toxins can damage human health through various routes such as air, water, fruits, foods, and vegetables. PURPOSE Herbal medicines may be safe and selective for the prevention of toxic agents due to their active ingredients and various pharmacological properties. According to the beneficial properties of pomegranate, this paper summarized the protective effects of this plant against toxic substances. STUDY DESIGN In this review, we focused on the findings of in vivo and in vitro studies of the protective effects of pomegranate (Punica granatum) and its active components including ellagic acid and punicalagin, against natural and chemical toxic agents. METHODS We collected articles from the following databases or search engines such as Web of Sciences, Google Scholar, Pubmed and Scopus without a time limit until the end of September 2022. RESULTS P. granatum and its constituents have shown protective effects against natural toxins such as aflatoxins, and endotoxins as well as chemical toxicants for instance arsenic, diazinon, and carbon tetrachloride. The protective effects of these compounds are related to different mechanisms such as the prevention of oxidative stress, and reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2(COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis, mitogen-activated protein kinase (MAPK) signaling pathways and improvement of liver or cardiac function via regulation of enzymes. CONCLUSION In this review, different in vitro and in vivo studies have shown that P. granatum and its active constituents have protective effects against natural and chemical toxic agents via different mechanisms. There are no clinical trials on the protective effects of P. granatum against toxic agents.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Lo J, Liu CC, Li YS, Lee PY, Liu PL, Wu PC, Lin TC, Chen CS, Chiu CC, Lai YH, Chang YC, Wu HE, Chen YR, Huang YK, Huang SP, Wang SC, Li CY. Punicalagin Attenuates LPS-Induced Inflammation and ROS Production in Microglia by Inhibiting the MAPK/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. J Inflamm Res 2022; 15:5347-5359. [PMID: 36131784 PMCID: PMC9484772 DOI: 10.2147/jir.s372773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the production of ROS using murine microglia BV2 cells. Methods BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with LPS and then treated with ATP or nigericin. The secretion of IL-1β was measured by ELISA. The expressions of NLRP3 inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and mitochondrial ROS was analyzed by flow cytometry. Results Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines including iNOS, COX-2, IL-1β, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells. Conclusion Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yueh-Shan Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Chang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tzu-Chieh Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.,Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| |
Collapse
|
16
|
Yang Z, Lin S, Feng W, Liu Y, Song Z, Pan G, Zhang Y, Dai X, Ding X, Chen L, Wang Y. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol 2022; 13:999179. [PMID: 36147340 PMCID: PMC9486102 DOI: 10.3389/fphar.2022.999179] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal macrophages are the main participants of intestinal immune homeostasis and intestinal inflammation. Under different environmental stimuli, intestinal macrophages can be polarized into classical activated pro-inflammatory phenotype (M1) and alternative activated anti-inflammatory phenotype (M2). Its different polarization state is the “guide” to promoting the development and regression of inflammation. Under normal circumstances, intestinal macrophages can protect the intestine from inflammatory damage. However, under the influence of some genetic and environmental factors, the polarization imbalance of intestinal M1/M2 macrophages will lead to the imbalance in the regulation of intestinal inflammation and transform the physiological inflammatory response into pathological intestinal injury. In UC patients, the disorder of intestinal inflammation is closely related to the imbalance of intestinal M1/M2 macrophage polarization. Therefore, restoring the balance of M1/M2 macrophage polarization may be a potentially valuable therapeutic strategy for UC. Evidence has shown that traditional Chinese medicine (TCM) has positive therapeutic effects on UC by restoring the balance of M1/M2 macrophage polarization. This review summarizes the clinical evidence of TCM for UC, the vital role of macrophage polarization in the pathophysiology of UC, and the potential mechanism of TCM regulating macrophage polarization in the treatment of UC. We hope this review may provide some new enlightenment for the clinical treatment, fundamental research, and research and development of new Chinese medicine of UC.
Collapse
Affiliation(s)
- Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinya Ding
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| |
Collapse
|
17
|
Xiong W, Jia L, Liang J, Cai Y, Chen Y, Nie Y, Jin J, Zhu J. Investigation into the anti-airway inflammatory role of the PI3Kγ inhibitor JN-PK1: An in vitro and in vivo study. Int Immunopharmacol 2022; 111:109102. [PMID: 35964410 DOI: 10.1016/j.intimp.2022.109102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase gamma (PI3Kγ) has been proven to be a potential target for the treatment of inflammatory diseases of the airway; however, there are few reports of selective PI3Kγ inhibitors being used in the field of airway inflammation thus far. Herein, a study employing in vitro and in vivo methodologies was carried out to assess the anti-airway inflammatory effects of JN-PK1, a selective PI3Kγ inhibitor. In RAW264.7 macrophages, JN-PK1 inhibited PI3Kγ-dependent, cellular C5a-induced AKT Ser473 phosphorylation in a concentration- and time-dependent manner and had no significant effect on cell viability.Furthermore, JN-PK1 significantly suppressed LPS-induced, proinflammatory cytokine expression and nitric oxide production through inhibition of the PI3K signaling pathway in RAW264.7 cells. Then, a murine asthma model was established to evaluate the anti-airway inflammation effect of JN-PK1. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to develop an inflammatory response, fibrosis formation, and other airway changes similar to the symptomatology of asthma in humans. Oral administration of JN-PK1 remarkably attenuated OVA-induced asthma in association with the inhibition of the PI3K signaling pathway. That is to say, the oral administration significantly inhibited increases in inflammatory cell counts and reduced T-helper type 2 cytokine production in bronchoalveolar lavage fluid. Pulmonary histological studies showed that oral administration of JN-PK1 not only reduced the infiltration of inflammatory cells but also retarded airway inflammation and fibration. Taken together, JN-PK1 could be developed as a promising candidate for inflammation therapy, and our findings support some potential for therapeutic inhibition of PI3Kγ to treat inflammatory airway diseases.
Collapse
Affiliation(s)
- Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junjie Liang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Gritsenko A, Díaz-Pino R, López-Castejón G. NLRP3 inflammasome triggers interleukin-37 release from human monocytes. Eur J Immunol 2022; 52:1141-1157. [PMID: 35429346 PMCID: PMC9540663 DOI: 10.1002/eji.202149724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023]
Abstract
IL-37 is an anti-inflammatory member of the IL-1 family that dampens inflammation associated with many noncommunicable diseases. However, mechanisms of IL-37 regulation remain understudied. We aimed to investigate the enzymatic cleavage of IL-37 that potentiates extracellular signalling, as well as pathways of IL-37 secretion. In human monocytes, mature IL-37 (mIL-37) was released following canonical NLRP3 inflammasome activation. The release of IL-37 was blocked by inhibiting plasma membrane permeability and in gasdermin-D-deficient THP-1 cells. While the cleavage of IL-37 was found to be constitutive, the release of mIL-37 was blocked in NLRP3-deficient THP-1 cells and by NLRP3 inhibitor MCC950 in THP-1s and primary human monocytes. IL-37 secretion also occurred after 18-h exposure to LPS, independently of the alternative NLRP3 inflammasome. This LPS-dependent IL-37 secretion required plasma membrane permeability, but not conventional protein secretion apparatus. Mutagenesis of the suggested caspase-1 cleavage site (D20) or the proposed alternative cleavage site (V46) did not completely block IL-37 processing. Therefore, we propose a novel pathway in which IL-37 is cleaved by caspase-1-independent mechanisms and released following canonical and alternative NLRP3 inflammasome triggers by differential pathways.
Collapse
Affiliation(s)
- Anna Gritsenko
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rodrigo Díaz-Pino
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gloria López-Castejón
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
19
|
Galli C, Sala R, Colangelo MT, Guizzardi S. Tamquam alter idem: formal similarities in a subset of reports on anti-inflammatory compounds in the years 2008–2019. Scientometrics 2022. [DOI: 10.1007/s11192-022-04434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractA literature search on the in vitro testing of anti-inflammatory compounds of natural origin revealed a considerable number of studies adopting a similar template for data reporting in the years up to 2019. Sixty-five such reports appear to have been published between the years 2008 and 2019. Interestingly, this format template was clearly recognizable by a few hallmarks, such as a precise way of plotting cell viability data, extremely consistent endpoints, and the way these were graphically represented. In some instances the similarities extended to some textual features, such as in the case of figure legends. The similarity was so high that chance can be excluded and these studies can be safely assumed to have intentionally followed a template. By 2020, however, no new reports following this format have been published. Although a consistent and reproducible formatting for data reporting may improve report readability, this phenomenon should also be closely scrutinized to assess the rationale why it occurred, the validity of the endpoints that were chosen and why it was then abandoned. The present report reviewed the mean features of this format, traced its origin and its evolution over time, while discussing the limitations of this model.
Collapse
|
20
|
Al-Qubaisi MS, Al-Abboodi AS, Alhassan FH, Hussein-Al-Ali S, Flaifel MH, Eid EE, Alshwyeh HA, Hussein MZ, Alnasser SM, Saeed MI, Rasedee A, Ibrahim WN. Preparation, characterization, in vitro drug release and anti-inflammatory of thymoquinone-loaded chitosan nanocomposite. Saudi Pharm J 2022; 30:347-358. [PMID: 35527823 PMCID: PMC9068746 DOI: 10.1016/j.jsps.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1β. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.
Collapse
Affiliation(s)
| | | | - Fatah H. Alhassan
- Department of Applied Chemistry and Technology, College of Science and Arts, Alkamel University of Jeddah, Jeddah 21589, Saudi Arabia
| | | | - Moayad Husein Flaifel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Eltayeb E.M. Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohd Zobir Hussein
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Mohammed Ibrahim Saeed
- Faculty of Medical Laboratory Sciences, National Ribat University, Khartoum 11111, Sudan
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Yu L, Li J. Punicalagin Alleviates Aged Bronchial Asthma by Inhibiting Th2 Differentiation through IL-4/STAT6 and Jagged1/Notch Pathways. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1184677. [PMID: 35140898 PMCID: PMC8818422 DOI: 10.1155/2022/1184677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the therapeutic effect and mechanism of punicalagin on bronchial asthma in the elderly. METHODS Peripheral venous blood was collected from healthy people and elderly patients with bronchial asthma. Peripheral blood mononuclear cells (PBMCs) were isolated and cultured. PBMCs in the patient group were treated with different concentrations (0, 50, 100, and 200 mg/L) of punicalagin (PUN). MTT assay was used to detect cell activity, ELISA was used to detect the levels of IFN-γ, IL-2, IL-4, and IL-5, and Western blotting was used to detect the protein levels of p-STAT6, Jagged1, and GATA3. RESULT MTT results showed that 50-200 mg/L PUN had no cytotoxicity to PBMCs within 24 h. ELISA results showed that the levels of IFN-γ and IL-2 in the serum of the patients were significantly lower than those of healthy people, and the levels of IL-4 and IL-5 were significantly higher than those of the healthy people. PUN treatment significantly increased the levels of IFN-γ and IL-2 in the supernatant of PBMCs culture, while significantly decreased the levels of IL-4 and IL-5, and the change was proportional to the concentration of PUN. Western blotting results showed that the levels of p-STAT6, Jagged1, and GATA3 protein in PBMCs of patients were significantly higher than those of the healthy people. PUN treatment could significantly reduce the expression of p-STAT6, Jagged1, and GATA3 protein in PBMCs of patients, and the reduction level was proportional to PUN concentration. CONCLUSION PUN can inhibit Th2 differentiation and regulate Th1/Th2 balance by regulating IL-4/STAT6 and Jagged1/Notch pathways to alleviate the progress of bronchial asthma in the elderly.
Collapse
Affiliation(s)
- Li Yu
- The Division of General Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jianying Li
- The Division of General Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Bao M, Liang M, Sun X, Mohyuddin SG, Chen S, Wen J, Yong Y, Ma X, Yu Z, Ju X, Liu X. Baicalin Alleviates LPS-Induced Oxidative Stress via NF-κB and Nrf2–HO1 Signaling Pathways in IPEC-J2 Cells. Front Vet Sci 2022; 8:808233. [PMID: 35146015 PMCID: PMC8822581 DOI: 10.3389/fvets.2021.808233] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Baicalin is a natural plant extract with anti-inflammatory and anti-oxidant activities. However, the molecular mechanism of baicalin on oxidative stress in IPEC-J2 cells exposed to LPS remains to be unclear. In this study, LPS stimulation significantly increased Toll-like receptor 4, tumor necrosis factor-α, and interleukins (IL-6 and IL-1β) expression in IPEC-J2 cells, and it activated the nuclear factor (NF-κB) expression. While, baicalin exerted anti-inflammatory effects by inhibiting NF-κB signaling pathway. LPS stimulation significantly increased the levels of the oxidative stress marker MDA, inhibited the anti-oxidant enzymes catalase and superoxide dismutase, which were all reversed by baicalin pre-treatment. It was found that baicalin treatment activated the nuclear import of nuclear factor-erythroid 2 related factor 2 (Nrf2) protein, and significantly increased the mRNA and protein expression of its downstream anti-oxidant factors such as heme oxygenase-1 and quinone oxidoreductase-1, which suggested that baicalin exerted anti-oxidant effects by activating the Nrf2-HO1 signaling pathway. Thus, pretreatment with baicalin inhibited LPS - induced oxidative stress and protected the normal physiological function of IPEC-J2 cells via NF-κB and Nrf2–HO1 signaling pathways.
Collapse
|
23
|
SHI J, LI H, LIANG S, EVIVIE SE, HUO G, LI B, LIU F. Selected lactobacilli strains inhibit inflammation in LPS-induced RAW264.7 macrophages by suppressing the TLR4-mediated NF-κB and MAPKs activation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.107621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jialu SHI
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Huizhen LI
- Northeast Agricultural University, China; Northeast Agricultural University, China; Jiangnan University, China
| | - Shengnan LIANG
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Smith Etareri EVIVIE
- Northeast Agricultural University, China; Northeast Agricultural University, China; University of Benin, Nigeria; University of Benin, Nigeria
| | - Guicheng HUO
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Bailiang LI
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Fei LIU
- Northeast Agricultural University, China; Northeast Agricultural University, China
| |
Collapse
|
24
|
Zhang H, Jiang Z, Shen C, Zou H, Zhang Z, Wang K, Bai R, Kang Y, Ye XY, Xie T. 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Front Cell Dev Biol 2021; 9:782427. [PMID: 34966742 PMCID: PMC8711100 DOI: 10.3389/fcell.2021.782427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) is a common reaction product during heat processing and the preparation of many types of foods and Traditional Chinese Medicine formulations. The aim of this study was to evaluate the protective effect of 5-HMF on endotoxin-induced acute lung injury (ALI) and the underlying mechanisms. Our findings indicate that 5-HMF attenuated lipopolysaccharide (LPS)-induced ALI in mice by mitigating alveolar destruction, neutrophil infiltration and the release of inflammatory cytokines. Furthermore, the activation of macrophages and human monocytes in response to LPS was remarkably suppressed by 5-HMF in vitro through inhibiting the NF-κB signaling pathway, NLRP3 inflammasome activation and endoplasmic reticulum (ER) stress. The inhibitory effect of 5-HMF on NLRP3 inflammasome was reversed by overexpressing ATF4 or CHOP, indicating the involvement of ER stress in the negative regulation of 5-HMF on NLRP3 inflammasome-mediated inflammation. Consistent with this, the ameliorative effect of 5-HMF on in vivo pulmonary dysfunction were reversed by the ER stress inducer tunicamycin. In conclusion, our findings elucidate the anti-inflammatory and protective efficacy of 5-HMF in LPS-induced acute lung injury, and also demonstrate the key mechanism of its action against NLRP3 inflammasome-related inflammatory disorders via the inhibition of ER stress.
Collapse
Affiliation(s)
- Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zheyi Jiang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuanbin Shen
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Han Zou
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Zhiping Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Kaitao Wang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Kang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
25
|
Lin H, Wang Q, Niu Y, Gu L, Hu L, Li C, Zhao G. Antifungal and Anti-inflammatory Effect of Punicalagin on Murine Aspergillus fumigatus Keratitis. Curr Eye Res 2021; 47:517-524. [PMID: 34797193 DOI: 10.1080/02713683.2021.2008982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE This study aimed to investigate the anti-inflammatory effect and antifungal effect of punicalagin in murine fungal keratitis. METHODS We used in vitro and in vivo protocols to assess the anti-inflammatory effect and antifungal effect of punicalagin. In vitro, time kill and mycelial stain were done. In vivo, murine fungal keratitis was established and treated with PBS or PUN. Clinical scores were taken on days 1, 3, and 5 post infection. The mRNA and protein levels of inflammatory factors were detected by RT-PCR and Western blot, and the number and location of macrophages were analyzed by flow cytometry and immunofluorescence. Also, fungal plate counting was used to assess the antifungal effect. The DCFH-DA fluorescence probe detected the ROS level. RESULTS In vitro, PUN showed activity against A.fumigatus. (A.F.), with MIC90 values of 250 μg/ml, and significantly reduced A.F. biofilm formation (p < .001). In vivo, the mouse fungal keratitis model after punicalagin treatment exhibited less disease, lower clinical scores (p < .05), lower reduced macrophage infiltrate (p < .001), and fungal load (p < .001) than those treated with PBS. Treatment with punicalagin also reduced the mRNA expression and protein level of pro-inflammatory factors. At the cellular level, PUN significantly reduced the mRNA expression of inflammatory factors and ROS production caused by the stimulation of mycelia in RAW264.7 (p < .001). CONCLUSIONS The results show that punicalagin is beneficial in the treatment of murine fungal keratitis. The mechanism of its anti-inflammatory effect was synthetical, including antifungal activity, an inhibitory effect of proinflammatory factor and macrophages, and anti-oxidation.
Collapse
Affiliation(s)
- Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Liu W, Ou Y, Yang Y, Zhang X, Huang L, Wang X, Wu B, Huang M. Inhibitory Effect of Punicalagin on Inflammatory and Angiogenic Activation of Human Umbilical Vein Endothelial Cells. Front Pharmacol 2021; 12:727920. [PMID: 34867335 PMCID: PMC8636678 DOI: 10.3389/fphar.2021.727920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Punicalagin, a major ellagitannin isolated from pomegranate, is proved to have various pharmacological activities with an undefined therapy mechanism. The objective of this research was to demonstrate the effect of punicalagin on anti-inflammatory and angiogenic activation in human umbilical vein endothelial cells (HUVECs) and their potential mechanisms. Endothelial-leukocyte adhesion assay was applied to evaluate primary cultures of HUVECs activation following tumor necrosis factor alpha (TNF-α) treatment. The endothelial cell proliferation, migration, permeability and tube formation were assessed by EdU assay, wound migration assay, trans-endothelial electrical resistances (TEER) assay, and capillary-like tube formation assay, respectively. In addition, the expression of relevant proteins was assessed using Western blot analysis. We confirmed that punicalagin could reduce the adhesion of human monocyte cells to HUVECs in vitro and in vivo. Further, punicalagin decreased the expression of mRNA and proteins of ICAM-1 and VCAM-1 in HUVECs. Moreover, punicalagin inhibited permeability, proliferation, migration, and tube formation in VEGF-induced HUVECs, suppressed IKK-mediated activation of NF-κB signaling in TNF-α-induced endothelial cells, and inhibited vascular endothelial growth factor receptor 2 (VEGFR2) activation and downstream p-PAK1. Our findings indicated that punicalagin might have a protective effect on HUVECs activation, which suggested that punicalagin functions through an endothelial mediated mechanism for treating various disorders such as, cancer, rheumatoid arthritis, and cardiovascular disease.
Collapse
Affiliation(s)
- Wei Liu
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Yanghui Ou
- Department of Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yumeng Yang
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xuemei Zhang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liqi Huang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
27
|
Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Bacterial Cellulose as a Potential Bio-Scaffold for Effective Re-Epithelialization Therapy. Pharmaceutics 2021; 13:pharmaceutics13101592. [PMID: 34683885 PMCID: PMC8540158 DOI: 10.3390/pharmaceutics13101592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Currently, there are several therapeutic approaches available for wound injury management. However, a better understanding of the underlying mechanisms of how biomaterials affect cell behavior is needed to develop potential repair strategies. Bacterial cellulose (BC) is a bacteria-produced biopolymer with several advantageous qualities for skin tissue engineering. The aim here was to investigate BC-based scaffold on epithelial regeneration and wound healing by examining its effects on the expression of scavenger receptor-A (SR-A) and underlying macrophage behavior. Full-thickness skin wounds were generated on Sprague-Dawley rats and the healing of these wounds, with and without BC scaffolds, was examined over 14 days using Masson’s trichome staining. BC scaffolds displayed excellent in vitro biocompatibility, maintained the stemness function of cells and promoted keratinocyte differentiation of cells, which are vital in maintaining and restoring the injured epidermis. BC scaffolds also exhibited positive in vivo effects on the wound microenvironment, including improved skin extracellular matrix deposition and controlled excessive inflammation by reduction of SR-A expression. Furthermore, BC scaffold significantly enhanced epithelialization by stimulating the balance of M1/M2 macrophage re-programming for beneficial tissue repair relative to that of collagen material. These findings suggest that BC-based materials are promising products for skin injury repair.
Collapse
|
29
|
Mersal KI, Abdel-Maksoud MS, Ali EMH, Ammar UM, Zaraei SO, Kim JM, Kim SY, Lee KT, Lee KH, Kim SW, Park HM, Ji MJ, Oh CH. Design, synthesis, in vitro determination and molecular docking studies of 4-(1-(tert-butyl)-3-phenyl-1H-pyrazol-4-yl) pyridine derivatives with terminal sulfonamide derivatives in LPS-induced RAW264.7 macrophage cells. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Lippai R, Veres-Székely A, Sziksz E, Iwakura Y, Pap D, Rokonay R, Szebeni B, Lotz G, Béres NJ, Cseh Á, Szabó AJ, Vannay Á. Immunomodulatory role of Parkinson's disease 7 in inflammatory bowel disease. Sci Rep 2021; 11:14582. [PMID: 34272410 PMCID: PMC8285373 DOI: 10.1038/s41598-021-93671-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
Recently the role of Parkinson’s disease 7 (PARK7) was studied in gastrointestinal diseases, however, the complex role of PARK7 in the intestinal inflammation is still not completely clear. Expression and localization of PARK7 were determined in the colon biopsies of children with inflammatory bowel disease (IBD), in the colon of dextran sodium sulphate (DSS) treated mice and in HT-29 colonic epithelial cells treated with interleukin (IL)-17, hydrogen peroxide (H2O2), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β or lipopolysaccharide (LPS). Effect of PARK7 on the synthesis of IBD related cytokines was determined using PARK7 gene silenced HT-29 cells and 3,4,5-trimethoxy-N-(4-(8-methylimidazo(1,2-a)pyridine-2-yl)phenyl)benzamide (Comp23)—compound increasing PARK7 activity—treated mice with DSS-colitis. PARK7 expression was higher in the mucosa of children with Crohn’s disease compared to that of controls. While H2O2 and IL-17 treatment increased, LPS, TNF-α or TGF-β treatment decreased the PARK7 synthesis of HT-29 cells. PARK7 gene silencing influenced the synthesis of IL1B, IL6, TNFA and TGFB1 in vitro. Comp23 treatment attenuated the ex vivo permeability of colonic sacs, the clinical symptoms, and mucosal expression of Tgfb1, Il1b, Il6 and Il10 of DSS-treated mice. Our study revealed the role of PARK7 in the regulation of IBD-related inflammation in vitro and in vivo, suggesting its importance as a future therapeutic target.
Collapse
Affiliation(s)
- Rita Lippai
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary.,ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Erna Sziksz
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences and Center for Animal Disease Models, Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Domonkos Pap
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Réka Rokonay
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Beáta Szebeni
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Nóra J Béres
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Áron Cseh
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary.,ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 54, Bókay Street, Budapest, 1083, Hungary. .,ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary.
| |
Collapse
|
31
|
Venusova E, Kolesarova A, Horky P, Slama P. Physiological and Immune Functions of Punicalagin. Nutrients 2021; 13:nu13072150. [PMID: 34201484 PMCID: PMC8308219 DOI: 10.3390/nu13072150] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/01/2023] Open
Abstract
The aim of this publication is to compile a summary of the findings regarding punicalagin in various tissues described thus far in the literature, with an emphasis on the effect of this substance on immune reactions. Punicalagin (PUN) is an ellagitannin found in the peel of pomegranate (Punica granatum). It is a polyphenol with proven antioxidant, hepatoprotective, anti-atherosclerotic and chemopreventive activities, antiproliferative activity against tumor cells; it inhibits inflammatory pathways and the action of toxic substances, and is highly tolerated. This work describes the source, metabolism, functions and effects of punicalagin, its derivatives and metabolites. Furthermore, its anti-inflammatory and antioxidant effects are described.
Collapse
Affiliation(s)
- Eva Venusova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
- Correspondence: ; Tel.: +420-545133146
| |
Collapse
|
32
|
Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. SCIENCE CHINA-LIFE SCIENCES 2021; 65:588-603. [PMID: 34125371 DOI: 10.1007/s11427-020-1939-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that eventually leads to disability. Inflammatory cell infiltration, severe joint breaking and systemic bone loss are the main clinical symptoms. In this study, we established a collagen-induced arthritis (CIA) model and found a large number of M1 macrophages and pyroptosis, which are important sources of proinflammatory cytokines. Punicalagin (PUN) is an active substance extracted from pomegranate peel. We found that it inhibited joint inflammation, cartilage damage and systemic bone destruction in CIA mice. PUN effectively alleviated the high expression of inflammatory cytokines in synovial tissue in vivo. PUN treatment shifted macrophages from the M1 phenotype to the M2 phenotype after stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ. The expression of inducible nitric oxide synthase (iNOS) and other proinflammatory cytokines released by M1 macrophages was decreased in the PUN treatment group. However, simultaneously, the expression of markers of anti-inflammatory M2 macrophages, such as arginase (Arg)-1 and interleukin (IL)-10, was increased. In addition, PUN treatment attenuated pyroptosis by downregulating the expression of NLRP3 and caspase-1, thereby preventing inflammatory cell death resulting from the release of IL-1β and IL-18. Mechanistically, PUN inhibited the activation of receptor activators of the nuclear factor-κB (NF-κB) signaling pathway, which contributes to M1 polarization and pyroptosis of macrophages. We concluded that PUN ameliorated pathological inflammation by inhibiting M1 phenotype polarization and pyroptosis and has great potential as a therapeutic treatment for human RA.
Collapse
|
33
|
Huang M, Wu K, Zeng S, Liu W, Cui T, Chen Z, Lin L, Chen D, Ouyang H. Punicalagin Inhibited Inflammation and Migration of Fibroblast-Like Synoviocytes Through NF-κB Pathway in the Experimental Study of Rheumatoid Arthritis. J Inflamm Res 2021; 14:1901-1913. [PMID: 34012288 PMCID: PMC8126973 DOI: 10.2147/jir.s302929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
Background The aggressive phenotype of fibroblast-like synoviocytes (FLSs) is essential in the synovitis and bone destruction in rheumatoid arthritis (RA). Punicalagin is a natural polyphenol extracted in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumor properties suggesting it may be a potent drug for RA therapy. However, there is paucity of information on its effect in RA. Objective To investigate the effects of punicalagin on synovial inflammation and bone destruction in RA. Methods FLSs were isolated from synovial tissue of RA patients. The mRNA levels were evaluated by quantitative real-time PCR. Western blot was used for protein level measurements. The secretion of pro-inflammatory cytokines and metalloproteinases (MMPs) was detected by ELISA assays. Edu staining assays were carried out to investigate the proliferation of FLSs. Cell migration was assessed by Boyden chambers, wound scratch assays and F-actin staining in vitro. The intracellular translocation of nuclear factor kappa B (NF-κB) was investigated using immunofluorescence. The effects of punicalagin in vivo were measured by using collagen-induced arthritis (CIA) mice. Results Punicalagin treatments significantly reduced the TNF-α induced expressions of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and IL-17A) and MMPs (MMP-1 and MMP-13) of RA FLSs. Punicalagin also suppressed the proliferation and migration of RA FLSs. Moreover, punicalagin (50mg/kg/d) alleviated arthritis severity and bone destruction, and decreased serum IL-6 and TNF-α in CIA mice. Further mechanism studies indicated that punicalagin blocked NF-κB activation via suppressing phosphorylation of IKK and IkBα, and preventing the translocation of 65. Conclusion Our findings suggested that punicalagin might be one of natural therapeutic compounds for relieving RA progress via suppressing FLSs inflammation and migration through modulating NF-κB pathways.
Collapse
Affiliation(s)
- Mingcheng Huang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, People's Republic of China
| | - Keping Wu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, People's Republic of China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guandong, People's Republic of China
| | - Wenfen Liu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, People's Republic of China
| | - Tianjiao Cui
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, People's Republic of China
| | - Zhiqing Chen
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, People's Republic of China
| | - Lian Lin
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, People's Republic of China
| | - Dongying Chen
- Department of Rheumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guandong, People's Republic of China
| | - Hui Ouyang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, People's Republic of China
| |
Collapse
|
34
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
GSTP1 Inhibits LPS-Induced Inflammatory Response Through Regulating Autophagy in THP-1 Cells. Inflammation 2021; 43:1157-1169. [PMID: 32128658 DOI: 10.1007/s10753-020-01202-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutathione S-transferase Pi (GSTP1) was originally identified as one of the cytosolic phase II detoxification enzymes and was also considered to function via its non-catalytic, ligand-binding activity. Autophagy is a self-protective mechanism of the cell to remove unnecessary or dysfunctional components, which plays a crucial role in balancing the beneficial and detrimental effects of immunity and inflammation. However, little is known about whether and how GSTP1 mediates autophagy via inhibiting LPS-induced inflammatory response. Here, we show that LPS-induced autophagy and autophagic flux blockade in THP-1 cells in a concentration- and time-dependent manner. Further, we found that the autophagy activation inhibited the activation of inflammatory signaling pathway and the release of inflammatory factors. However, inhibition of autophagy by 3-methyladenine or chloroquine significantly reduced the anti-inflammatory effect of GSTP1. In addition, our findings provide evidence that GSTP1 regulates autophagy through PI3K-Akt-mTOR pathway and inhibits LPS-induced inflammation. Overall, the current study provides an important reference for future applications of GSTP1 in the treatment of inflammatory diseases.
Collapse
|
36
|
Aghaei F, Moradi MT, Karimi A. Punicalagin inhibits pro-inflammatory cytokines induced by influenza A virus. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Hassan Mir R, Godavari G, Siddiqui NA, Ahmad B, Mothana RA, Ullah R, Almarfadi OM, Jachak SM, Masoodi MH. Design, Synthesis, Molecular Modelling, and Biological Evaluation of Oleanolic Acid-Arylidene Derivatives as Potential Anti-Inflammatory Agents. Drug Des Devel Ther 2021; 15:385-397. [PMID: 33574657 PMCID: PMC7871991 DOI: 10.2147/dddt.s291784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Oleanolic acid, a pentacyclic triterpenic acid, is widely distributed in medicinal plants and is the most commonly studied triterpene for various biological activities, including anti-allergic, anti-cancer, and anti-inflammatory. METHODS The present study was carried out to synthesize arylidene derivatives of oleanolic acid at the C-2 position by Claisen Schmidt condensation to develop more effective anti-inflammatory agents. The derivatives were screened for anti-inflammatory activity by scrutinizing NO production inhibition in RAW 264.7 cells induced by LPS and their cytotoxicity. The potential candidates were further screened for inhibition of LPS-induced interleukin (IL-6) and tumour necrosis factor-alpha (TNF-α) production in RAW 264.7 cells. RESULTS The results of in vitro studies revealed that derivatives 3d, 3e, 3L, and 3o are comparable to that of the oleanolic acid on the inhibition of TNF-α and IL-6 release. However, derivative 3L was identified as the most potent inhibitor of IL-6 (77.2%) and TNF-α (75.4%) when compared to parent compound, and compounds 3a (77.18%), 3d (71.5%), and 3e (68.8%) showed potent inhibition of NO than oleanolic acid (65.22%) at 10µM. Besides, from docking score and Cyscore analysis analogs (3e, 3L, 3n) showed greater affinity towards TNF-α and IL-1β than dexamethasone. CONCLUSION Herein, we report a series of 15 new arylidene derivatives of oleanolic acid by Claisen Schmidt condensation reaction. All the compounds synthesized were screened for their anti-inflammatory activity against NO, TNF-α and IL-6. From the data, it was evident that most of the compounds exhibited better anti-inflammatory activity.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Goutami Godavari
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, India
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
38
|
Chen X, Liu L, Chen W, Qin F, Zhou F, Yang H. Ziyuglycoside II Inhibits Rotavirus Induced Diarrhea Possibly via TLR4/NF-κB Pathways. Biol Pharm Bull 2021; 43:932-937. [PMID: 32475915 DOI: 10.1248/bpb.b19-00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rotavirus (RV) induced diarrhea has been a major reason affecting children healthy under 5 years old especially in developing countries. Although specific vaccines have preventive effects, antiviral therapy is essential for the diarrhea patients. Ziyuglycoside II is a traditional Chinese herb which has been proven to possess anti-virus effects. This study aimed to investigate the roles of Ziyuglycoside II in rotavirus-induced diarrhea and the underlying molecular mechanism. We found that normal MA104 cells treated with RV became swollen and gather together. However, Ziyuglycoside II treatment inhibited cell growth in a dose- and time dependent manner and suppressed RV replication. Moreover, Ziyuglycoside II reversed RV-induced downregulation of anti-inflammatory cytokine interleukin (IL)-10 and upregulation of pro-inflammatory factors, such as interferon-γ (IFN-γ), IL-1β, IL-6, and tumor necrosis factor (TNF-α). Moreover, Ziyuglycoside II administration and ribavirin blocked toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway both in mRNA and protein level, which was paralleled with immunohistochemical assay. Additionally, Ziyuglycoside II administration improved diarrhea symptoms and decreased diarrhea scores. Ziyuglycoside II and ribavirin inhibited the apoptosis of small intestine epithelial cells induced by RV. Taken together, RV treatment induced diarrhea. Ziyuglycoside II administration inhibited TLR4/NF-κB pathway and inflammatory response and improved RV-induced diarrhea. The inhibitory effects of Ziyuglycoside II on RV-induced diarrhea predicted Ziyuglycoside II may be a promising drug for diarrhea.
Collapse
Affiliation(s)
- Xiaolan Chen
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Li Liu
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Wei Chen
- College of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College
| | - Feng Qin
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Fang Zhou
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| | - Haifeng Yang
- College of Veterinary Pharmaceutical, Jiangsu Agri-animal Husbandry Vocational College
| |
Collapse
|
39
|
Cao J, Li Q, Shen X, Yao Y, Li L, Ma H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses via activation of Nrf2 in RAW264.7 macrophages. Mol Immunol 2021; 131:97-111. [PMID: 33461765 DOI: 10.1016/j.molimm.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the major steroid hormone in humans and animals, which can regulate the body's inflammatory responses. However, the detail mechanism of this beneficial function is still poorly understood. The present study aimed to explore the anti-inflammation effect of DHEA and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The findings showed that DHEA significantly inhibited the inflammation-related mediators production and pro-inflammatory cytokines expression level. Further research found that DHEA obviously blocked the LPS-stimulated PI3K/AKT, MAPK and NF-κB activation in RAW 264.7 cells. Meanwhile, DHEA enhanced the autophagy-dependent Keap1 protein degradation, subsequently activated the Nrf2 pathway to alleviate the redox imbalance and inflammatory responses. In conclusion, our data demonstrated that DHEA suppresses inflammatory responses through the activation of Nrf2 and inhibition of NF-κB in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Zhang H, Guo Q, Liang Z, Wang M, Wang B, Sun-Waterhouse D, Waterhouse GI, Wang J, Ma C, Kang W. Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7 cells: Achieved via the MAPK and NF-κB signaling pathways. Food Chem Toxicol 2021; 147:111915. [DOI: 10.1016/j.fct.2020.111915] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 01/21/2023]
|
41
|
Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Mol Cell Biochem 2020; 476:1179-1193. [PMID: 33200379 PMCID: PMC7668668 DOI: 10.1007/s11010-020-03981-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023]
Abstract
The search for effective coronavirus disease (COVID-19) therapy has attracted a great deal of scientific interest due to its unprecedented health care system overload worldwide. We have carried out a study to investigate the in silico effects of the most abundant pomegranate peel extract constituents on the multi-step process of serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) internalization in the host cells. Binding affinities and interactions of ellagic acid, gallic acid, punicalagin and punicalin were studied on four selected protein targets with a significant and confirmed role in the process of the entry of virus into a host cell. The protein targets used in this study were: SARS-CoV-2 spike glycoprotein, angiotensin-converting enzyme 2, furin and transmembrane serine protease 2. The results showed that the constituents of pomegranate peel extracts, namely punicalagin and punicalin had very promising potential for significant interactions with the selected protein targets and were therefore deemed good candidates for further in vitro and in vivo evaluation.
Collapse
|
42
|
MiR-5787 Attenuates Macrophages-Mediated Inflammation by Targeting TLR4/NF-κB in Ischemic Cerebral Infarction. Neuromolecular Med 2020; 23:363-370. [DOI: 10.1007/s12017-020-08628-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/28/2020] [Indexed: 01/26/2023]
|
43
|
Zhou W, Hu M, Zang X, Liu Q, Du J, Hu J, Zhang L, Du Z, Xiang Z. Luteolin attenuates imiquimod–induced psoriasis-like skin lesions in BALB/c mice via suppression of inflammation response. Biomed Pharmacother 2020; 131:110696. [DOI: 10.1016/j.biopha.2020.110696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
|
44
|
Arya VS, Kanthlal SK, Linda G. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions. J Food Biochem 2020; 44:e13369. [PMID: 32885438 DOI: 10.1111/jfbc.13369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is one of the major complications of the gastrointestinal tract, characterized by chronic inflammation, which disturbs the quality of life of the affected individuals. Genetic predisposition, immune, inflammatory, and enzyme-mediated signaling cascades are the primary mechanisms involved in the pathogenesis of the disease. Currently, the treatment strategy involves the maintenance of remission and induction of inflammation by anti-inflammatory agents and immune suppressants. Polyphenol-containing diets, including fruits and vegetables of regular use, possess anti-inflammatory, and antioxidant potential through the inhibition of major contributing pathways to IBD. This review discusses the role of these dietary polyphenols in downregulating the major signaling cascades in IBD. Our review encourages the development of nutritional strategies to improve the efficiency of current therapies for IBD and reduce the risks of side effects associated with conventional therapy. PRACTICAL APPLICATIONS: At present, almost every third person in society is under stress and having chronic disorders like diabetes, arthritis, allergy, cardiovascular disease, IBD, etc. This insists on the direct/indirect role of changes in the lifestyle for such deterioration in society. This review would emphasize the medicinal value of polyphenols present in fruits and vegetables for chronic inflammatory disorders. This concept portrays the food components which have the potential to promote health, improve general well-being, and reduce the risk of IBD. We propose to add fruits with bioactive polyphenols in the regular diet to help in preventing the immune-mediated intestinal chronic inflammatory syndrome and reduce the risks of colorectal cancer development.
Collapse
Affiliation(s)
- V S Arya
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - S K Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Geevarghese Linda
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
45
|
Jang M, Hwang I, Hwang B, Kim G. Anti-inflammatory effect of Antirrhinum majus extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Sci Nutr 2020; 8:5063-5070. [PMID: 32994966 PMCID: PMC7500786 DOI: 10.1002/fsn3.1805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Antirrhinum majus (AM) has attracted attention as a rich source of phytochemicals, which are beneficial for human health. However, the anti-inflammatory effects of AM have not been studied scientifically. Therefore, we investigated the antioxidative properties and anti-inflammatory effects of AM extract (AME) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. AME showed high radical-scavenging ability. Viability of RAW 264.7 cells was not significantly altered by AME at the concentrations of 0-300 µg/ml. LPS-induced nitric oxide (NO) production was decreased by treatment with 0-300 µg/ml AME in a concentration-dependent manner. AME pretreatment significantly inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner. AME also considerably inhibited the mRNA and protein expression of inflammatory cytokines, such as tumor necrosis factor-a (TNF-α), interleukin-1 β (IL-1β), and interleukin-6 (IL-6). These findings provide a foundation for further studies and use of AM in nutraceuticals.
Collapse
Affiliation(s)
- Mi Jang
- National Academy of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Inguk Hwang
- National Academy of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Byungsoon Hwang
- National Academy of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Gichang Kim
- National Academy of Agricultural ScienceRural Development AdministrationJeonjuKorea
| |
Collapse
|
46
|
Lee BW, Ha JH, Shin HG, Jeong SH, Kim JH, Lee J, Park JY, Kwon HJ, Jung K, Lee WS, Ryu YB, Jeong JH, Lee IC. Lindera obtusiloba Attenuates Oxidative Stress and Airway Inflammation in a Murine Model of Ovalbumin-Challenged Asthma. Antioxidants (Basel) 2020; 9:antiox9070563. [PMID: 32605045 PMCID: PMC7402094 DOI: 10.3390/antiox9070563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Lindera obtusiloba is widespread in northeast Asia and used for treatment of improvement of blood circulation and anti-inflammation. In this study, we investigated anti-inflammatory and anti-oxidant effects of the methanolic extract of L. obtusiloba leaves (LOL) in an ovalbumin (OVA)-challenged allergic asthma model and tumor necrosis factor (TNF)-α-stimulated NCI-H292 cell. Female BALB/c mice were sensitized with OVA by intraperitoneal injection on days 0 and 14, and airway-challenged with OVA from days 21 to 23. Mice were administered 50 and 100 mg/kg of LOL by oral gavage 1 h before the challenge. LOL treatment effectively decreased airway hyper-responsiveness and inhibited inflammatory cell recruitment, Th2 cytokines, mucin 5AC (MUC5AC) in bronchoalveolar lavage fluid in OVA-challenged mice, which were accompanied by marked suppression of airway inflammation and mucus production in the lung tissue. LOL pretreatment inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) with suppression of activator protein (AP)-1 and MUC5AC in the lung tissue. LOL also down-regulated expression of inflammatory cytokines, and inhibited the activation of NF-κB in TNF-α-stimulated NCI-H292 cells. LOL elevated the translocation of nuclear factor-erythroid 2-related factor (Nrf-2) into nucleus concurrent with increase of heme oxyngenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1). Moreover, LOL treatment exhibited a marked increase in the anti-oxidant enzymes activities, whereas effectively suppressed the production of reactive oxygen species and nitric oxide, as well as lipid peroxidation in lung tissue of OVA-challenged mice and TNF-α-stimulated NCI-H292 cells. These findings suggest that LOL might serve as a therapeutic agent for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Han-Gyo Shin
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Jihye Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Kyungsook Jung
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Woo-Song Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61186, Korea
- Correspondence: (J.-H.J.); (I.-C.L.); Tel.: +82-61-379-2747 (J.-H.J.); +82-63-570-5241 (I.-C.L.); Fax: +82-62-232-9708 (J.-H.J.); +82-63-570-5239 (I.-C.L.)
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Correspondence: (J.-H.J.); (I.-C.L.); Tel.: +82-61-379-2747 (J.-H.J.); +82-63-570-5241 (I.-C.L.); Fax: +82-62-232-9708 (J.-H.J.); +82-63-570-5239 (I.-C.L.)
| |
Collapse
|
47
|
Wang X, Yang Z, Xu X, Jiang H, Cai C, Yu G. Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice. Carbohydr Polym 2020; 240:116261. [PMID: 32475553 DOI: 10.1016/j.carbpol.2020.116261] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Agaro- and neoagaro-oligosaccharides with even-numbered sugar units possess a variety of biological activities. However, the effects of the odd-numbered oligosaccharides from Gracilaria agarose (OGAOs) on type 2 diabetes mellitus (T2DM) have not been reported. In this study, we aimed to evaluate the effects of OGAOs on anti-T2DM from different aspects. We found that OGAOs treatment could alleviate oxidative stress, inflammation, and the related hyperglycemia, insulin resistance, lipid accumulation, and obesity in high-fat diet (HFD) induced T2DM. Investigation of the underlying mechanism showed that colitis and colonic microbiota dysbiosis in T2DM mice were ameliorated after OGAOs treatment. First, OGAOs increased the expression of ZO-1, occludin, and AMPK, and suppressed the TLR4/MAPK/NF-κB pathway in colon indicating that OGAOs enhance intestinal integrity and conduct the anti-apoptosis effects to prevent the invasion of toxins and harmful microorganisms. Moreover, the relative abundance of Akkermansia was significantly upregulated in the gut microbiome of T2DM mice associated with a dramatic decrease of the relative abundance of Helicobacter, which are both beneficial for alleviating colitis and T2DM. In addition, Spearman's correlation analysis indicated that changes in the colonic microbiota could regulate oxidative stress, inflammation, and hyperlipidemia. In summary, the underlying mechanism of OGAOs on alleviating colitis and colonic microbiota dysbiosis in T2DM has been intensively studied, illustrating that OGAOs could be further developed as a potential pharmaceutical agent for T2DM.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zimei Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Xu Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
48
|
Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, Zhang T, Wang J, Zhang F. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol 2020; 32:101500. [PMID: 32193146 PMCID: PMC7078552 DOI: 10.1016/j.redox.2020.101500] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
Thrombosis is a principle cause of cardiovascular disease, the leading cause of morbidity and mortality worldwide; however, the conventional anti-thrombotic approach often leads to bleeding complications despite extensive clinical management and monitoring. In view of the intense crosstalk between inflammation and coagulation, plus the contributing role of ROS to both inflammation and coagulation, it is highly desirable to develop safer anti-thrombotic agent with preserved anti-inflammatory and anti-oxidative stress activities. Nattokinase (NK) possesses many beneficial effects on cardiovascular system due to its strong thrombolytic and anticoagulant activities. Herein, we demonstrated that NK not only effectively prevented xylene-induced ear oedema in mice, but also remarkably protected against LPS-induced acute kidney injury in mice through restraining inflammation and oxidative stress, a central player in the initiation and progression of inflammation. Fascinatingly, in line with our in vivo data, NK elicited prominent anti-inflammatory activity in RAW264.7 macrophages via suppressing the LPS-induced TLR4 and NOX2 activation, thereby repressing the corresponding ROS production, MAPKs activation, and NF-κB translocation from the cytoplasm to the nucleus, where it mediates the expression of pro-inflammatory mediators, such as TNF-α, IL-6, NO, and PAI-1 in activated macrophage cells. In particular, consistent with the macrophage studies, NK markedly inhibited serum PAI-1 levels induced by LPS, thereby blocking the deposition of fibrin in the glomeruli of endotoxin-treated animals. In summary, we extended the anti-thrombus mechanism of NK by demonstrating the anti-inflammatory and anti-oxidative stress effects of NK in ameliorating LPS-activated macrophage signaling and protecting against LPS-stimulated AKI as well as glomeruler thrombus in mice, opening a comprehensive anti-thrombus strategy by breaking the vicious cycle between inflammation, oxidative stress and thrombosis. NK protects against LPS-induced AKI via inhibiting inflammation and oxidative stress. NK inhibits LPS-induced TRL4 and NOX2 activation in macrophages. NK inhibits inflammation and oxidative stress both in vitro and in vivo. NK inhibits LPS-induced PAI-I levels, thereby blocking glomerular thrombus in mice. NK may break the vicious loop between inflammation, oxidative stress and coagulation.
Collapse
Affiliation(s)
- Hao Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yupeng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Feng Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jiepeng Chen
- Sungen Biotech Co., Ltd, Shantou, 515000, PR China
| | - Lili Duan
- Sungen Biotech Co., Ltd, Shantou, 515000, PR China
| | - Tingting Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
49
|
Cao Y, Chen J, Ren G, Zhang Y, Tan X, Yang L. Punicalagin Prevents Inflammation in LPS-Induced RAW264.7 Macrophages by Inhibiting FoxO3a/Autophagy Signaling Pathway. Nutrients 2019; 11:nu11112794. [PMID: 31731808 PMCID: PMC6893462 DOI: 10.3390/nu11112794] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Yang
- Correspondence: ; Tel.: +86-0731-8480-5464
| |
Collapse
|
50
|
Yin P, Zhang Z, Li J, Shi Y, Jin N, Zou W, Gao Q, Wang W, Liu F. Ferulic acid inhibits bovine endometrial epithelial cells against LPS-induced inflammation via suppressing NK-κB and MAPK pathway. Res Vet Sci 2019; 126:164-169. [DOI: 10.1016/j.rvsc.2019.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
|