1
|
Kosuru R, Romito O, Sharma GP, Ferraresso F, Ghadrdoost Nakhchi B, Yang K, Mammoto T, Mammoto A, Kastrup CJ, Zhang DX, Goldspink PH, Trebak M, Chrzanowska M. Rap1A Modulates Store-Operated Calcium Entry in the Lung Endothelium: A Novel Mechanism Controlling NFAT-Mediated Vascular Inflammation and Permeability. Arterioscler Thromb Vasc Biol 2024; 44:2271-2287. [PMID: 39324266 PMCID: PMC11495542 DOI: 10.1161/atvbaha.124.321458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Store-operated calcium entry mediated by STIM (stromal interaction molecule)-1-Orai1 (calcium release-activated calcium modulator 1) is essential in endothelial cell (EC) functions, affecting signaling, NFAT (nuclear factor for activated T cells)-induced transcription, and metabolic programs. While the small GTPase Rap1 (Ras-proximate-1) isoforms, including the predominant Rap1B, are known for their role in cadherin-mediated adhesion, EC deletion of Rap1A after birth uniquely disrupts lung endothelial barrier function. Here, we elucidate the specific mechanisms by which Rap1A modulates lung vascular integrity and inflammation. METHODS The role of EC Rap1A in lung inflammation and permeability was examined using in vitro and in vivo approaches. RESULTS We explored Ca2+ signaling in human ECs following siRNA-mediated knockdown of Rap1A or Rap1B. Rap1A knockdown, unlike Rap1B, significantly increased store-operated calcium entry in response to a GPCR (G-protein-coupled receptor) agonist, ATP (500 µmol/L), or thapsigargin (250 nmol/L). This enhancement was attenuated by Orai1 channel blockers 10 μmol/L BTP2 (N-[4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide), 10 μmol/L GSK-7975A, and 5 μmol/L Gd3+. Whole-cell patch clamp measurements revealed enhanced Ca2+ release-activated Ca2+ current density in siRap1A ECs. Rap1A depletion in ECs led to increased NFAT1 nuclear translocation and activity and elevated levels of proinflammatory cytokines (CXCL1 [C-X-C motif chemokine ligand 1], CXCL11 [C-X-C motif chemokine 11], CCL5 [chemokine (C-C motif) ligand 5], and IL-6 [interleukin-6]). Notably, reducing Orai1 expression in siRap1A ECs normalized store-operated calcium entry, NFAT activity, and endothelial hyperpermeability in vitro. EC-specific Rap1A knockout (Rap1AiΔEC) mice displayed an inflammatory lung phenotype with increased lung permeability and inflammation markers, along with higher Orai1 expression. Delivery of siRNA against Orai1 to lung endothelium using lipid nanoparticles effectively normalized Orai1 levels in lung ECs, consequently reducing hyperpermeability and inflammation in Rap1AiΔEC mice. CONCLUSIONS Our findings uncover a novel role of Rap1A in regulating Orai1-mediated Ca2+ entry and expression, crucial for NFAT-mediated transcription and endothelial inflammation. This study distinguishes the unique function of Rap1A from that of the predominant Rap1B isoform and highlights the importance of normalizing Orai1 expression in maintaining lung vascular integrity and modulating endothelial functions.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - Olivier Romito
- Department of Pharmacology and Chemical Biology (O.R., M.T.), University of Pittsburgh School of Medicine, PA
| | - Guru Prasad Sharma
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | | | - Kai Yang
- Data Science Institute (K.Y.), Medical College of Wisconsin, Milwaukee
| | - Tadanori Mammoto
- Department of Pediatrics (T.M., A.M.), Medical College of Wisconsin, Milwaukee
| | - Akiko Mammoto
- Department of Pediatrics (T.M., A.M.), Medical College of Wisconsin, Milwaukee
| | - Christian J. Kastrup
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - David X. Zhang
- Department of Medicine (D.X.Z.), Medical College of Wisconsin, Milwaukee
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, University of Illinois Chicago (P.H.G.)
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology (O.R., M.T.), University of Pittsburgh School of Medicine, PA
- Vascular Medicine Institute (M.T.), University of Pittsburgh School of Medicine, PA
- UPMC Hillman Cancer Center (M.T.), University of Pittsburgh School of Medicine, PA
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
- Department of Pharmacology and Toxicology (M.C.), Medical College of Wisconsin, Milwaukee
- Cardiovascular Center (M.C.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
2
|
Wang GY, Shang D, Zhang GX, Song HY, Jiang N, Liu HH, Chen HL. Qingyi decoction attenuates intestinal epithelial cell injury via the calcineurin/nuclear factor of activated T-cells pathway. World J Gastroenterol 2022; 28:3825-3837. [PMID: 36157544 PMCID: PMC9367229 DOI: 10.3748/wjg.v28.i29.3825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/15/2021] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that dysfunction of the intestinal barrier is a significant contributing factor to the development of severe acute pancreatitis (SAP). A stable intestinal mucosa barrier functions as a major anatomic and functional barrier, owing to the balance between intestinal epithelial cell (IEC) proliferation and apoptosis. There is some evidence that calcium overload may trigger IEC apoptosis and that calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) signaling might play an important role in calcium-mediated apoptosis.
AIM To investigate the potential mechanisms underlying the therapeutic effect of Qingyi decoction (QYD) in SAP.
METHODS A rat model of SAP was created via retrograde infusion of sodium deoxycholate. Serum levels of amylase, tumor necrosis factor (TNF-α), interleukin (IL)-6, D-lactic acid, and diamine oxidase (DAO); histological changes; and apoptosis of IECs were examined in rats with or without QYD treatment. The expression of the two subunits of CaN and NFAT in intestinal tissue was measured via quantitative real-time polymerase chain reaction and western blotting. For in vitro studies, Caco-2 cells were treated with lipopolysaccharide (LPS) and QYD serum, and then cell viability and intracellular calcium levels were detected.
RESULTS Retrograde infusion of sodium deoxycholate increased the severity of pancreatic and intestinal pathology and the levels of serum amylase, TNF-α, and IL-6. Both the indicators of intestinal mucosa damage (D-lactic acid and DAO) and the levels of IEC apoptosis were elevated in the SAP group. QYD treatment reduced the serum levels of amylase, TNF-α, IL-6, D-lactic acid, and DAO and attenuated the histological findings. IEC apoptosis associated with SAP was ameliorated under QYD treatment. In addition, the protein expression levels of the two subunits of CaN were remarkably elevated in the SAP group, and the NFATc3 gene was significantly upregulated at both the transcript and protein levels in the SAP group compared with the control group. QYD significantly restrained CaN and NFATc3 gene expression in the intestine, which was upregulated in the SAP group. Furthermore, QYD serum significantly decreased the LPS-induced elevation in intracellular free Ca2+ levels and inhibited cell death.
CONCLUSION QYD can exert protective effects against intestinal mucosa damage caused by SAP and the protective effects are mediated, at least partially, by restraining IEC apoptosis via the CaN/NFATc3 pathway.
Collapse
Affiliation(s)
- Guan-Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hui-Yi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Nan Jiang
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Huan-Huan Liu
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hai-Long Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
3
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
4
|
Zhang Q, Wang Z, Zhu J, Peng Z, Tang C. Ferulic acid regulates miR-17/PTEN axis to inhibit LPS-induced pulmonary microvascular endothelial cells apoptosis through activation of PI3K/Akt pathway. J Toxicol Sci 2022; 47:61-69. [PMID: 35110471 DOI: 10.2131/jts.47.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Qinqin Zhang
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Zhilan Wang
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Jinfei Zhu
- Department of pneumology, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Zhili Peng
- Department of Critical Care Medicine, Rugao Hospital of Traditional Chinese Medicine, China
| | - Cheng Tang
- Department of Critical Care Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, China
| |
Collapse
|
5
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
6
|
Miller J, Bruen C, Schnaus M, Zhang J, Ali S, Lind A, Stoecker Z, Stauderman K, Hebbar S. Auxora versus standard of care for the treatment of severe or critical COVID-19 pneumonia: results from a randomized controlled trial. Crit Care 2020; 24:502. [PMID: 32795330 PMCID: PMC7427272 DOI: 10.1186/s13054-020-03220-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Calcium release-activated calcium (CRAC) channel inhibitors stabilize the pulmonary endothelium and block proinflammatory cytokine release, potentially mitigating respiratory complications observed in patients with COVID-19. This study aimed to investigate the safety and efficacy of Auxora, a novel, intravenously administered CRAC channel inhibitor, in adults with severe or critical COVID-19 pneumonia. METHODS A randomized, controlled, open-label study of Auxora was conducted in adults with severe or critical COVID-19 pneumonia. Patients were randomized 2:1 to receive three doses of once-daily Auxora versus standard of care (SOC) alone. The primary objective was to assess the safety and tolerability of Auxora. Following FDA guidance, study enrollment was halted early to allow for transition to a randomized, blinded, placebo-controlled study. RESULTS In total, 17 patients with severe and three with critical COVID-19 pneumonia were randomized to Auxora and nine with severe and one with critical COVID-19 pneumonia to SOC. Similar proportions of patients receiving Auxora and SOC experienced ≥ 1 adverse event (75% versus 80%, respectively). Fewer patients receiving Auxora experienced serious adverse events versus SOC (30% versus 50%, respectively). Two patients (10%) receiving Auxora and two (20%) receiving SOC died during the 30 days after randomization. Among patients with severe COVID-19 pneumonia, the median time to recovery with Auxora was 5 days versus 12 days with SOC; the recovery rate ratio was 1.87 (95% CI, 0.72, 4.89). Invasive mechanical ventilation was needed in 18% of patients with severe COVID-19 pneumonia receiving Auxora versus 50% receiving SOC (absolute risk reduction = 32%; 95% CI, - 0.07, 0.71). Outcomes measured by an 8-point ordinal scale were significantly improved for patients receiving Auxora, especially for patients with a baseline PaO2/FiO2 = 101-200. CONCLUSIONS Auxora demonstrated a favorable safety profile in patients with severe or critical COVID-19 pneumonia and improved outcomes in patients with severe COVID-19 pneumonia. These results, however, are limited by the open-label study design and small patient population resulting from the early cessation of enrollment in response to regulatory guidance. The impact of Auxora on respiratory complications in patients with severe COVID-19 pneumonia will be further assessed in a planned randomized, blinded, placebo-controlled study. TRIAL REGISTRATION ClinicalTrials.gov, NCT04345614 . Submitted on 7 April 2020.
Collapse
Affiliation(s)
| | - Charles Bruen
- Regions Hospital, Health Partners, St. Paul, MN, USA
| | - Michael Schnaus
- Regions Hospital, Health Partners, St. Paul, MN, USA
- Methodist Hospital, Park Nicollet, St. Louis Park, MN, USA
- University of Minnesota, Minneapolis, MN, USA
| | | | - Sadia Ali
- Methodist Hospital, Park Nicollet, St. Louis Park, MN, USA
| | - April Lind
- Methodist Hospital, Park Nicollet, St. Louis Park, MN, USA
| | | | - Kenneth Stauderman
- CalciMedica, Inc., 505 Coast Blvd. South Suite 202, La Jolla, CA, 92037, USA
| | - Sudarshan Hebbar
- CalciMedica, Inc., 505 Coast Blvd. South Suite 202, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Wan L, Wu W, Jiang S, Wan S, Meng D, Wang Z, Zhang J, Wei L, Yu P. Mibefradil and Flunarizine, Two T-Type Calcium Channel Inhibitors, Protect Mice against Lipopolysaccharide-Induced Acute Lung Injury. Mediators Inflamm 2020; 2020:3691701. [PMID: 33223955 PMCID: PMC7671802 DOI: 10.1155/2020/3691701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.
Collapse
Affiliation(s)
- Limei Wan
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weibin Wu
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing 526020, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhipeng Wang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
8
|
Zhou X, Cao X, Tu H, Zhang ZR, Deng L. Inflammation-Targeted Delivery of Celastrol via Neutrophil Membrane-Coated Nanoparticles in the Management of Acute Pancreatitis. Mol Pharm 2019; 16:1397-1405. [PMID: 30753778 DOI: 10.1021/acs.molpharmaceut.8b01342] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Celastrol (CLT)-loaded PEG-PLGA nanoparticles (NPs/CLT) coated with neutrophil membranes (NNPs/CLT) were explored for the management of acute pancreatitis (AP). PEG-PLGA nanoparticles sized around 150 nm were proven to selectively accumulate in the pancreas in rats with AP. NNPs were found to overcome the blood-pancreas barrier and specifically distributed to the pancreatic tissues. Moreover, NNPs showed more selective accumulation in the pancreas than nanoparticles without any membrane coating in AP rats. Compared to CLT solution and the NPs/CLT group, NNPs/CLT significantly downregulated the levels of serum amylase and pancreatic myeloperoxidase in AP rats. Also, using NNPs as the delivery vehicle significantly reduced the systemic toxicity of CLT in AP rats. Together, these results suggest that NNPs/CLT represent a highly promising delivery vehicle for the targeted therapy of AP.
Collapse
Affiliation(s)
- Xu Zhou
- Sichuan Provincial Orthopedic Hospital , Chengdu 610041 , China.,Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Xi Cao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - He Tu
- Sichuan Provincial Orthopedic Hospital , Chengdu 610041 , China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Li Deng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| |
Collapse
|
9
|
Rode B, Bailey MA, Marthan R, Beech DJ, Guibert C. ORAI Channels as Potential Therapeutic Targets in Pulmonary Hypertension. Physiology (Bethesda) 2019; 33:261-268. [PMID: 29897302 DOI: 10.1152/physiol.00016.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension is a complex and fatal disease that lacks treatments. Its pathophysiology involves pulmonary artery hyperreactivity, endothelial dysfunction, wall remodelling, inflammation, and thrombosis, which could all depend on ORAI Ca2+ channels. We review the knowledge about ORAI channels in pulmonary artery and discuss the interest to target them in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Baptiste Rode
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,CHU de Bordeaux, Pôle Cardio-Thoracique, Bordeaux , France
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France
| |
Collapse
|
10
|
Zhang W, Qi Z, Wang Y. BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats. Inflammation 2018; 40:778-787. [PMID: 28168659 DOI: 10.1007/s10753-017-0522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung ischemia-reperfusion (I/R) injury is a critical complication following a lung transplant, cardiopulmonary bypass, pulmonary embolism, and trauma. Immune cells and their effector functions are involved in the lung I/R injury. Store-operated calcium channels (SOCC) are highly Ca2+-selective cation channels and have crucial effects on the immune system. It has been indicated that BTP2, a potent SOCC blocker, could inhibit pro-inflammatory cytokine production from immune cells both in vitro and in vivo. Therefore, this study was conducted to investigate the beneficial effects of BTP2 on lung I/R injury in Sprague-Dawley (SD) rats. The left lungs of male SD rats underwent ischemia for 60 min and reperfusion for 2 h. Treated animals received BTP2 4 mg/kg or 10 mg/kg intraperitoneally 30 min before the ischemia. The results revealed that pretreatment with BTP2 markedly attenuated I/R injury-induced pulmonary edema, microvascular protein leakage, neutrophil infiltration, adhesion molecules, cytokine production (e.g., ICAM-1, TNF-α, IL-1β, and IL-2), and the transcription factor nuclear factor of activated T cells c1 nuclear translocation in the lung tissue. These findings indicate that BTP2 can be a potential therapeutic drug for lung I/R injury and suggest that SOCC may play a critical role in lung I/R injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyou Qi
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Parthasarathi K. The Pulmonary Vascular Barrier: Insights into Structure, Function, and Regulatory Mechanisms. MOLECULAR AND FUNCTIONAL INSIGHTS INTO THE PULMONARY VASCULATURE 2018; 228:41-61. [DOI: 10.1007/978-3-319-68483-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Cui H, Li S, Xu C, Zhang J, Sun Z, Chen H. Emodin alleviates severe acute pancreatitis-associated acute lung injury by decreasing pre-B-cell colony-enhancing factor expression and promoting polymorphonuclear neutrophil apoptosis. Mol Med Rep 2017; 16:5121-5128. [PMID: 28849044 PMCID: PMC5647045 DOI: 10.3892/mmr.2017.7259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to evaluate the protective effects of emodin on severe acute pancreatitis (SAP)‑associated acute lung injury (ALI), and investigated the possible mechanism involved. SAP was induced in Sprague‑Dawley rats by retrograde infusion of 5% sodium taurocholate (1 ml/kg), after which, rats were divided into various groups and were administered emodin, FK866 [a competitive inhibitor of pre‑B‑cell colony‑enhancing factor (PBEF)] or dexamethasone (DEX). DEX was used as a positive control. Subsequently, PBEF expression was detected in polymorphonuclear neutrophils (PMNs) isolated from rat peripheral blood by reverse transcription‑quantitative polymerase chain reaction and western blotting. In addition, histological alterations, apoptosis in lung/pancreatic tissues, apoptosis of peripheral blood PMNs and alterations in the expression of apoptosis‑associated proteins were examined by hematoxylin and eosin staining, terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay, Annexin V/propidium iodide (PI) assay and western blotting, respectively. Serum amylase activity and wet/dry (W/D) weight ratios were also measured. An in vitro study was also conducted, in which PMNs were obtained from normal Sprague‑Dawley rats and were incubated with emodin, FK866 or DEX in the presence of lipopolysaccharide (LPS). Apoptosis of PMNs and the expression levels of apoptosis‑associated proteins were examined in cultured PMNs in vitro by Annexin V/PI assay and western blotting, respectively. The results demonstrated that emodin, FK866 and DEX significantly downregulated PBEF expression in peripheral blood PMNs. In addition, emodin, FK866 and DEX reduced serum amylase activity, decreased lung and pancreas W/D weight ratios, alleviated lung and pancreatic injuries, and promoted PMN apoptosis by regulating the expression of apoptosis‑associated proteins: Fas, Fas ligand, B‑cell lymphoma (Bcl)‑2‑associated X protein, cleaved caspase‑3 and Bcl‑extra‑large. In addition, the in vitro study demonstrated that emodin, FK866 and DEX significantly reversed the LPS‑induced decrease of apoptosis in PMNs by regulating the expression of apoptosis‑associated proteins. In conclusion, the present study demonstrated that emodin may protect against SAP‑associated ALI by decreasing PBEF expression, and promoting PMN apoptosis via the mitochondrial and death receptor apoptotic pathways.
Collapse
Affiliation(s)
- Hongzhang Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shu Li
- Department of Chinese Medicine, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Caiming Xu
- Department of Chinese Medicine, Dalian Obstetrics and Gynecology Hospital, Dalian, Liaoning 116083, P.R. China
| | - Jingwen Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhongwei Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|