1
|
Simmons A, Mihalek O, Bimonte Nelson HA, Sirianni RW, Stabenfeldt SE. Acute brain injury and nanomedicine: sex as a biological variable. FRONTIERS IN BIOMATERIALS SCIENCE 2024; 3:1348165. [PMID: 39450372 PMCID: PMC11500709 DOI: 10.3389/fbiom.2024.1348165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2024]
Abstract
Sex as a biological variable has been recognized for decades to be a critical aspect of the drug development process, as differences in drug pharmacology and toxicity in female versus male subjects can drive the success or failure of new therapeutics. These concepts in development of traditional drug systems have only recently begun to be applied for advancing nanomedicine systems that are designed for drug delivery or imaging in the central nervous system (CNS). This review provides a comprehensive overview of the current state of two fields of research - nanomedicine and acute brain injury-centering on sex as a biological variable. We highlight areas of each field that provide foundational understanding of sex as a biological variable in nanomedicine, brain development, immune response, and pathophysiology of traumatic brain injury and stroke. We describe current knowledge on female versus male physiology as well as a growing number of empirical reports that directly address sex as a biological variable in these contexts. In sum, the data make clear two key observations. First, the manner in which sex affects nanomedicine distribution, toxicity, or efficacy is important, complex, and depends on the specific nanoparticle system under considerations; second, although field knowledge is accumulating to enable us to understand sex as a biological variable in the fields of nanomedicine and acute brain injury, there are critical gaps in knowledge that will need to be addressed. We anticipate that understanding sex as a biological variable in the development of nanomedicine systems to treat acute CNS injury will be an important determinant of their success.
Collapse
Affiliation(s)
- Amberlyn Simmons
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Olivia Mihalek
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | | | - Rachael W. Sirianni
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Department of Neurological Surgery, UMass Chan Medical School, Worcester, MA, United States
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Hammond ME, Zollinger C, Vidic A, Snow GL, Stehlik J, Alharethi RA, Kfoury AG, Drakos S, Hammond MEH. Donor Age, Sex, and Cause of Death and Their Relationship to Heart Transplant Recipient Cardiac Death. J Clin Med 2023; 12:7629. [PMID: 38137698 PMCID: PMC10744178 DOI: 10.3390/jcm12247629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Recent studies indicate that donor innate immune responses participate in initiating and accelerating innate responses and allorecognition in the recipient. These immune responses negatively affect recipient outcomes and predispose recipients to cardiovascular death (CV death). We hypothesized that a donor cause of death (COD) associated with higher levels of innate immune response would predispose recipients to more adverse outcomes post-transplant, including CV death. METHODS We performed a single-institution retrospective analysis comparing donor characteristics and COD to recipient adverse cardiovascular outcomes. We analyzed the medical records of local adult donors (age 18-64) in a database of donors where adequate data was available. Donor age was available on 706 donors; donor sex was available on 730 donors. We linked donor characteristics (age and sex) and COD to recipient CV death. The data were analyzed using logistic regression, the log-rank test of differences, and Tukey contrast. RESULTS Donor age, female sex, and COD of intracranial hemorrhage were significantly associated with a higher incidence of recipient CV death. CONCLUSIONS In this single institution study, we found that recipients with hearts from donors over 40 years, donors who were female, or donors who died with a COD of intracranial hemorrhage had a higher frequency of CV death. Donor monitoring and potential treatment of innate immune activation may decrease subsequent recipient innate responses and allorecognition stimulated by donor-derived inflammatory signaling, which leads to adverse outcomes.
Collapse
Affiliation(s)
- Margo E. Hammond
- Department of Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Charles Zollinger
- Intermountain Donor Services, 6065 S Fashion Blvd, Murray, UT 84107, USA;
| | - Andrija Vidic
- Department of Cardiology, University of Kansas Hospital, 4000 Cambridge St., Kansas City, KS 66160, USA;
| | - Gregory L. Snow
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA;
| | - Joseph Stehlik
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
| | - Rami A. Alharethi
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| | - Abdallah G. Kfoury
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| | - Stavros Drakos
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
| | - M Elizabeth H. Hammond
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| |
Collapse
|
3
|
Averyanova M, Vishnyakova P, Yureneva S, Yakushevskaya O, Fatkhudinov T, Elchaninov A, Sukhikh G. Sex hormones and immune system: Menopausal hormone therapy in the context of COVID-19 pandemic. Front Immunol 2022; 13:928171. [PMID: 35983046 PMCID: PMC9379861 DOI: 10.3389/fimmu.2022.928171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fatal outcomes of COVID-19 are related to the high reactivity of the innate wing of immunity. Estrogens could exert anti-inflammatory effects during SARS-CoV-2 infection at different stages: from increasing the antiviral resistance of individual cells to counteracting the pro-inflammatory cytokine production. A complex relationship between sex hormones and immune system implies that menopausal hormone therapy (MHT) has pleiotropic effects on immunity in peri- and postmenopausal patients. The definite immunological benefits of perimenopausal MHT confirm the important role of estrogens in regulation of immune functionalities. In this review, we attempt to explore how sex hormones and MHT affect immunological parameters of the organism at different level (in vitro, in vivo) and what mechanisms are involved in their protective response to the new coronavirus infection. The correlation of sex steroid levels with severity and lethality of the disease indicates the potential of using hormone therapy to modulate the immune response and increase the resilience to adverse outcomes. The overall success of MHT is based on decades of experience in clinical trials. According to the current standards, MHT should not be discontinued in COVID-19 with the exception of critical cases.
Collapse
Affiliation(s)
- Marina Averyanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- *Correspondence: Polina Vishnyakova,
| | - Svetlana Yureneva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Oksana Yakushevskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, Laboratory of Growth and Development, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G. Sex-Associated Differences in Neurovascular Dysfunction During Ischemic Stroke. Front Mol Neurosci 2022; 15:860959. [PMID: 35431804 PMCID: PMC9012443 DOI: 10.3389/fnmol.2022.860959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Ultrasonography, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Shenglong Cao,
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Gao Chen,
| |
Collapse
|
5
|
Lipoldová M, Demant P. Gene-Specific Sex Effects on Susceptibility to Infectious Diseases. Front Immunol 2021; 12:712688. [PMID: 34721380 PMCID: PMC8553003 DOI: 10.3389/fimmu.2021.712688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an integral part of defense against most infectious diseases. These pathogen-induced immune responses are in very many instances strongly influenced by host’s sex. As a consequence, sexual dimorphisms were observed in susceptibility to many infectious diseases. They are pathogen dose-dependent, and their outcomes depend on pathogen and even on its species or subspecies. Sex may differentially affect pathology of various organs and its influence is modified by interaction of host’s hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes. In this Mini Review we summarize the major influences of sex in human infections and subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the response to infectious diseases in mouse models. These genes have been observed to influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-dependent genes/loci affect susceptibility only in females or only in males, affect both sexes, but have stronger effect in one sex; still other genes were shown to affect the disease in both sexes, but with opposite direction of effect in females and males. The understanding of mechanisms of sex-dependent differences in the course of infectious diseases may be relevant for their personalized management.
Collapse
Affiliation(s)
- Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
6
|
Souza CLSE, Barbosa CD, Coelho HILN, Santos Júnior MN, Barbosa EN, Queiroz ÉC, Teles MF, Dos Santos DC, Bittencourt RS, Soares TDJ, Oliveira MV, Timenetsky J, Campos GB, Marques LM. Effects of 17β-Estradiol on Monocyte/Macrophage Response to Staphylococcus aureus: An In Vitro Study. Front Cell Infect Microbiol 2021; 11:701391. [PMID: 34336722 PMCID: PMC8317603 DOI: 10.3389/fcimb.2021.701391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023] Open
Abstract
To describe how 17β-estradiol (E2) influence in the monocyte/macrophage response induced by S. aureus in in vitro models of murine peritoneal macrophages (MPMs) and human peripheral blood monocytes (HPBM). MPMs (2 x 105/ml) were isolated from sham (n=3) and ovariectomized (OVX) females (n = 3) and males (n = 3) after induction by thioglycolate. The MPMs obtained from OVX females and males were treated for 24 hours with 17β-estradiol (E2) (10-7 M), and after that, inoculation with S. aureus was carried out for 6 hours. The macrophages were collected and destined to evaluate the relative gene expression of TNF-α, IL-1β, IL-6, IL-8 and TLR2. For the in vitro model of HPBMs, six men and six women of childbearing age were selected and HPBMs were isolated from samples of the volunteers’ peripheral blood. In women, blood was collected both during menstruation and in the periovulatory period. HPBMs were inoculated with S. aureus for 6 hours and the supernatant was collected for analysis of cytokines by Luminex and the HPBMs were removed for analysis of 84 genes involved in the host’s response to bacterial infections by RT-PCR array. Previous treatment with E2 decreased the gene expression and production of proinflammatory cytokines, such as TNF-α, IL-1β and IL-6 and decreased the expression of TLR2 tanto em MPMs quanto em HPBMs. The analysis of gene expression shows that E2 inhibited the NFκB pathway. It is suggested that 17β-estradiol acts as an immunoprotective in the monocyte/macrophage response induced by S. aureus.
Collapse
Affiliation(s)
- Clarissa Leal Silva E Souza
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil.,Santo Agostinho School of Health (FASA), Santo Agostinho Colleges, Afya Educational, Vitória da Conquista, Brazil
| | - Camila Dutra Barbosa
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | - Hanna I L N Coelho
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | - Manoel N Santos Júnior
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil.,University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Elaine Novaes Barbosa
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | - Éllunny Chaves Queiroz
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | - Mauro Fernandes Teles
- Santo Agostinho School of Health (FASA), Santo Agostinho Colleges, Afya Educational, Vitória da Conquista, Brazil
| | - Déborah Cruz Dos Santos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | - Rafaela Souza Bittencourt
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | - Telma de Jesus Soares
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | | | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Guilherme Barreto Campos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil
| | - Lucas Miranda Marques
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Vitória da Conquista, Brazil.,University of Santa Cruz (UESC), Ilhéus, Brazil.,Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Microglial heterogeneity in aging and Alzheimer's disease: Is sex relevant? J Pharmacol Sci 2021; 146:169-181. [PMID: 34030799 DOI: 10.1016/j.jphs.2021.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases and their associated cognitive decline are known to be more prevalent during aging. Recent evidence has uncovered the role of microglia, the immunocompetent cells of the brain, in dysfunctions linked to neurodegenerative diseases such as is Alzheimer's disease (AD). Similar to other pathologies, AD is shown to be sex-biased, with females being more at risk compared to males. While the mechanisms driving this prevalence are still unclear, emerging data suggest the sex differences present in microglia throughout life might lead to different responses of these cells in both health and disease. Furthermore, microglial cells have recently been recognized as a deeply heterogeneous population, with multiple subsets and/or phenotypes stemming from diverse parameters such as age, sex or state of health. Therefore, this review discusses microglial heterogeneity during aging in both basal conditions and AD with a focus on existing sex differences in this process.
Collapse
|
8
|
Jiang M, Ma C, Li H, Shen H, Li X, Sun Q, Chen G. Sex Dimorphisms in Ischemic Stroke: From Experimental Studies to Clinic. Front Neurol 2020; 11:504. [PMID: 32636794 PMCID: PMC7318992 DOI: 10.3389/fneur.2020.00504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Sex dimorphisms are important factors that influence the outcomes after ischemic stroke, which include basic health status, cerebrovascular anatomy, hormone levels, and unique factors such as pregnancy and menopause. It is widely recognized that male and female respond differently to stroke. Women aged 45–74 years old showed a lower risk of stroke incidence compared to age-matched man. This kind of protection is lost with aging. Hence, there is increasing requirement to get a more comprehensive understanding of sex-based factors to stroke on stroke incidence, symptoms, and treatments. This review focuses on sex-specific mechanisms in response to stroke based on experimental studies and highlights recent findings in clinical studies including sex-differential evaluation and outcomes of stroke. Sex-based personalized medicine should be promising in stroke therapies.
Collapse
Affiliation(s)
- Ming Jiang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ma
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Sun
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Stojić-Vukanić Z, Pilipović I, Bufan B, Stojanović M, Leposavić G. Age and sex determine CD4+ T cell stimulatory and polarizing capacity of rat splenic dendritic cells. Biogerontology 2019; 21:83-107. [PMID: 31646402 DOI: 10.1007/s10522-019-09845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-β production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-β production level ratio in LPS-stimulated DC cultures towards TGF-β, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
10
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|
11
|
Barry CM, Matusica D, Haberberger RV. Emerging Evidence of Macrophage Contribution to Hyperinnervation and Nociceptor Sensitization in Vulvodynia. Front Mol Neurosci 2019; 12:186. [PMID: 31447644 PMCID: PMC6691023 DOI: 10.3389/fnmol.2019.00186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Vulvodynia is an idiopathic chronic pain disorder and a leading cause of dyspareunia, or pain associated with sexual intercourse, for women. The key pathophysiological features of vulvodynia are vaginal hyperinnervation and nociceptor sensitization. These features have been described consistently by research groups over the past 30 years, but currently there is no first-line recommended treatment that targets this pathophysiology. Instead, psychological interventions, pelvic floor physiotherapy and surgery to remove painful tissue are recommended, as these are the few interventions that have shown some benefit in clinical trials. Recurrence of vulvodynia is frequent, even after vestibulectomy and questions regarding etiology remain. Vestibular biopsies from women with vulvodynia contain increased abundance of immune cells including macrophages as well as increased numbers of nerve fibers. Macrophages have multiple roles in the induction and resolution of inflammation and their function can be broadly described as pro-inflammatory or anti-inflammatory depending on their polarization state. This state is not fixed and can alter rapidly in response to the microenvironment. Essentially, M1, or classically activated macrophages, produce pro-inflammatory cytokines and promote nociceptor sensitization and mechanical allodynia, whereas M2, or alternatively activated macrophages produce anti-inflammatory cytokines and promote functions such as wound healing. Signaling between macrophages and neurons has been shown to promote axonal sprouting and nociceptor sensitization. This mini review considers emerging evidence that macrophages may play a role in nociceptor sensitization and hyperinnervation relevant to vulvodynia and considers the implications for development of new therapeutic strategies.
Collapse
Affiliation(s)
- Christine Mary Barry
- Musculoskeletal Neurobiology Laboratory, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Órama Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Órama Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
12
|
Pal S, Nath P, Biswas S, Mukherjee U, Maitra S. Nonylphenol attenuates SOCS3 expression and M1 polarization in lipopolysaccharide-treated rat splenic macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:574-583. [PMID: 30870658 DOI: 10.1016/j.ecoenv.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/15/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disruptors interfere with normal sexual and reproductive development of numerous organisms. Widely used in several chemical and manufacturing industries, nonylphenol (NP), a potent xenoestrogen, has the potential to perturb immune system. Using rat splenic macrophages (SMΦ) as the model system, NP-modulation of lipopolysaccharide (LPS)-induced inflammatory response has been investigated. Our results demonstrate that NP (0.1-10 µM) attenuates catalase activity, reactive oxygen species (ROS) generation and nitric oxide (NO) synthesis in LPS-treated SMΦ in vitro. NP inhibition of LPS-induced nuclear factor kappa B (NF-κB) activation and pro-inflammatory cytokine gene expression corroborate well with attenuation of suppressor of cytokine signalling 3 (SOCS3). Besides, elevated expression of anti-inflammatory factors reveals inverse correlation with suppression of endotoxin-induced M1 polarization in NP pre-incubated cells. While LPS promotes, NP prevents ERK1/2 (extracellular-signa1-regulated kinase 1/2) phosphorylation and MEK-inhibitor abrogates SOCS3 expression and NO production suggesting involvement of ERK1/2 in NP inhibition of SOCS3 expression. Further, translational inhibitor cycloheximide prevents LPS-induced NF-κB activation indicating functional importance of de novo synthesis of SOCS3, at least in part, in toll-like receptor 4 (TLR4)-mediated inflammatory response. Collectively, present study provides evidence favouring participation of SOCS3 in NP modulation of inflammatory response in rat SMΦ.
Collapse
Affiliation(s)
- Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Subhasri Biswas
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Urmi Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
13
|
Segovia-Mendoza M, Morales-Montor J. Immune Tumor Microenvironment in Breast Cancer and the Participation of Estrogen and Its Receptors in Cancer Physiopathology. Front Immunol 2019; 10:348. [PMID: 30881360 PMCID: PMC6407672 DOI: 10.3389/fimmu.2019.00348] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is characterized by cellular and molecular heterogeneity. Several molecular events are involved in controlling malignant cell process. In this sense, the importance of studying multiple cell alterations in this pathology is overriding. A well-identified fact on immune response is that it can vary depend on sex. Steroid hormones and their receptors may regulate different functions and the responses of several subpopulations of the immune system. Few reports are focused on the function of estrogen receptors (ERs) on immune cells and their roles in different breast cancer subtypes. Thus, the aim of this review is to investigate the immune infiltrating tumor microenvironment and prognosis conferred by it in different breast cancer subtypes, discuss the current knowledge and point out the roles of estrogens and its receptors on the infiltrating immune cells, as well as to identify how different immune subsets are modulated after anti-hormonal treatments in breast cancer patients.
Collapse
Affiliation(s)
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat Commun 2018; 9:5191. [PMID: 30518764 PMCID: PMC6281653 DOI: 10.1038/s41467-018-07666-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2018] [Accepted: 11/13/2018] [Indexed: 01/20/2023] Open
Abstract
The pace of repair declines with age and, while exposure to a young circulation can rejuvenate fracture repair, the cell types and factors responsible for rejuvenation are unknown. Here we report that young macrophage cells produce factors that promote osteoblast differentiation of old bone marrow stromal cells. Heterochronic parabiosis exploiting young mice in which macrophages can be depleted and fractionated bone marrow transplantation experiments show that young macrophages rejuvenate fracture repair, and old macrophage cells slow healing in young mice. Proteomic analysis of the secretomes identify differential proteins secreted between old and young macrophages, such as low-density lipoprotein receptor-related protein 1 (Lrp1). Lrp1 is produced by young cells, and depleting Lrp1 abrogates the ability to rejuvenate fracture repair, while treating old mice with recombinant Lrp1 improves fracture healing. Macrophages and proteins they secrete orchestrate the fracture repair process, and young cells produce proteins that rejuvenate fracture repair in mice. The rate of repair declines with age; however, exposure to young circulations can rejuvenate fracture repair, but how this is accomplished is unknown. Here, the authors identify proteins, including low-density lipoprotein receptor-related protein 1 (Lrp1), as being secreted from young macrophages and rejuvenating fracture repair in mice.
Collapse
|
15
|
Stanojević S, Ćuruvija I, Blagojević V, Petrović R, Prijić I, Vujić V. The involvement of estrogen receptors α and β in the in vitro effects of 17β-estradiol on secretory profile of peritoneal macrophages from naturally menopausal female and middle-aged male rats. Exp Gerontol 2018; 113:86-94. [PMID: 30287187 DOI: 10.1016/j.exger.2018.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
The systemic and extra- gonadal levels of 17β-estradiol (E2) change during aging, and affect the expression of estrogen receptors (ERs) in the immune cells of both females and males. The age-related cessation of ovarian function in females, as well as the tissue-specific expression of enzyme aromatase (estrogen synthase which significantly rises with the advancing age) in both males and females, both determine the concentration of E2 to which immune cells may be exposed. The present study was set up to investigate the direct influence of E2 in vitro on the secretory profile of peritoneal macrophages from young and naturally menopausal female rats, and from young and middle-aged male rats. The involvement of receptor(s) responsible for mediating the effects of E2 in vitro was examined by use of antagonists specific for ERα or ERβ. Whereas in macrophages from young female rats E2 treatment diminished interleukin (IL)-1β secretion, it increased it in young males, and the middle-aged females. The in vitro E2 treatment increased tumor necrosis factor (TNF)-α release by macrophages from young rats of both sexes, while it increased macrophage IL-6 release independently of both sex and age. At the same time, E2 decreased hydrogen peroxide (H2O2) production in macrophages from females, and increased it in male rats of both ages, whereas it diminished nitric oxide (NO) release in all experimental groups. Inspite of the sex- and age-specific effects of E2 on macrophage urea release, E2 did not affect the NO/urea ratio in macrophages from female rats, and diminished it in macrophages from both young and middle-aged male rats. Independently of the sex and age, E2 stimulated the release of inflammatory cytokines predominantly via macrophage ERα, and inhibited the IL-1β release in young females via ERβ. In contrast, E2 increased macrophage H2O2 and urea production by activating ERβ, but diminished their release via ERα. Our study may contribute to better understanding of the complex role(s) that E2 may play in innate immunity during aging, and that are dependent of sex.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | - Ivana Ćuruvija
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|