1
|
Huang J, Liu X, Wei Y, Li X, Gao S, Dong L, Rao X, Zhong J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front Immunol 2022; 13:830863. [PMID: 35309368 PMCID: PMC8931313 DOI: 10.3389/fimmu.2022.830863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl-peptidase IV (DPP4), originally identified as an aminopeptidase in 1960s, is an ubiquitously expressed protease presented as either a membrane-bound or soluble form. DPP4 cleaves dipeptide off from the N-terminal of its substrates, altering the bioactivity of its substrates. Subsequent studies reveal that DPP4 is also involved in various cellular processes by directly binding to a number of ligands, including adenosine deaminase, CD45, fibronectin, plasminogen, and caveolin-1. In recent years, many novel functions of DPP4, such as promoting fibrosis and mediating virus entry, have been discovered. Due to its implication in fibrotic response and immunoregulation, increasing studies are focusing on the potential role of DPP4 in inflammatory disorders. As a moonlighting protein, DPP4 possesses multiple functions in different types of cells, including both enzymatic and non-enzymatic functions. However, most of the review articles on the role of DPP4 in autoimmune disease were focused on the association between DPP4 enzymatic inhibitors and the risk of autoimmune disease. An updated comprehensive summary of DPP4’s immunoregulatory actions including both enzymatic dependent and independent functions is needed. In this article, we will review the recent advances of DPP4 in immune regulation and autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Jie Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Xiaoquan Rao
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| |
Collapse
|
2
|
Ritian J, Teng X, Liao M, Zhang L, Wei Z, Meng R, Liu N. Release of dipeptidyl peptidase IV inhibitory peptides from salmon (
Salmo
salar
) skin collagen based on digestion–intestinal absorption
in
vitro. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jin Ritian
- College of Food Science Northeast Agricultural University Harbin150030China
- Key Lab of Dairy Science Ministry of Education Northeast Agricultural University Harbin150030China
| | - Xiangyu Teng
- College of Food Science Northeast Agricultural University Harbin150030China
- Key Lab of Dairy Science Ministry of Education Northeast Agricultural University Harbin150030China
| | - Minhe Liao
- College of Food Science Northeast Agricultural University Harbin150030China
- Key Lab of Dairy Science Ministry of Education Northeast Agricultural University Harbin150030China
| | - Ligang Zhang
- College of Food Science Northeast Agricultural University Harbin150030China
- Key Lab of Dairy Science Ministry of Education Northeast Agricultural University Harbin150030China
| | - Zikai Wei
- College of Food Science Northeast Agricultural University Harbin150030China
- Key Lab of Dairy Science Ministry of Education Northeast Agricultural University Harbin150030China
| | - Ran Meng
- Binhai Agricultural Research Institute of Hebei Academy of Agricultural and Forestry Science/Tangshan Key Laboratory of Plant Salt‐Tolerance Research Tangshan063200China
| | - Ning Liu
- College of Food Science Northeast Agricultural University Harbin150030China
- Key Lab of Dairy Science Ministry of Education Northeast Agricultural University Harbin150030China
| |
Collapse
|
3
|
Pinheiro MM, Pinheiro FMM, Diniz SN, Fabbri A, Infante M. Combination of vitamin D and dipeptidyl peptidase-4 inhibitors (VIDPP-4i) as an immunomodulation therapy for autoimmune diabetes. Int Immunopharmacol 2021; 95:107518. [PMID: 33756226 DOI: 10.1016/j.intimp.2021.107518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) represent the most common types of autoimmune diabetes and are characterized by different age of onset, degrees of immune-mediated destruction of pancreatic beta cells and rates of disease progression towards insulin dependence. Several immunotherapies aimed to counteract autoimmune responses against beta cells and preserve beta-cell function are currently being investigated, particularly in T1D. Preliminary findings suggest a potential role of combination therapy with vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors (VIDPP-4i) in preserving beta-cell function in autoimmune diabetes. This manuscript aims to provide a comprehensive overview of the immunomodulatory properties of vitamin D and DPP-4 inhibitors, as well as the rationale for investigation of their combined use as an immunomodulation therapy for autoimmune diabetes.
Collapse
Affiliation(s)
- Marcelo Maia Pinheiro
- UNIVAG, University Center, Dom Orlando Chaves Ave, 2655 - Cristo Rei, Várzea Grande, 78118-000 Mato Grosso, Brazil; Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil.
| | - Felipe Moura Maia Pinheiro
- Hospital de Base, Faculdade de Medicina de São José do Rio Preto FAMERP - SP, 5546, Brigadeiro Faria Lima Ave, Vila São Pedro, São José do Rio Preto, 15015-500 São Paulo, Brazil
| | - Susana Nogueira Diniz
- Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil
| | - Andrea Fabbri
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy
| | - Marco Infante
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via San Nemesio 21, 00145 Rome, Italy.
| |
Collapse
|
4
|
Jin R, Shang J, Teng X, Zhang L, Liao M, Kang J, Meng R, Wang D, Ren H, Liu N. Characterization of DPP-IV Inhibitory Peptides Using an In Vitro Cell Culture Model of the Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2711-2718. [PMID: 33629836 DOI: 10.1021/acs.jafc.0c05880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we characterize the activities of two depeptidyl peptidase-IV (DPP-IV) inhibitory peptides, VLATSGPG and LDKVFER, using the Caco-2 monolayer model for the intestine. VLATSGPG and LDKVFR inhibited the DPP-IV in the cells via a mixed-type inhibition mode, with in situ IC50 values of 207.3 and 148.5 μM, respectively. Furthermore, VLATSGPG and LDKVFR were transported intact across the cells, with Papp values of 2.41 ± 0.16 and 4.23 ± 0.29 × 10-7 cm/s, respectively. Fragmented peptides were identified in the basolateral side of the membrane. Two of these, GPG and VLA, exhibited high inhibitory activities of 83.6 ± 3.3 and 58.5 ± 2.5%, respectively, at 100 μM concentration. Although 3 mM VLATSGPG and LDKVFR were transported across the epithelium in a concentration-dependent manner, their transport did not damage the tight junction proteins, ZO-1 and occludin. This study demonstrates that the two peptides potentially regulate DPP-IV activity in the intestine.
Collapse
Affiliation(s)
- Ritian Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Jiaqi Shang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Xiangyu Teng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Ligang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Minhe Liao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Kang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| | - Ran Meng
- Binhai Agricultural Research Institute of Hebei Academy of Agricultural and Forestry Science/Tangshan Key Laboratory of Plant Salt-Tolerance Research, Tangshan 063200, China
| | - Dangfeng Wang
- College of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haowei Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Harbin Tengning Technology Company Ltd., Harbin 150010, China
| |
Collapse
|
5
|
Davanso MR, Crisma AR, Braga TT, Masi LN, do Amaral CL, Leal VNC, de Lima DS, Patente TA, Barbuto JA, Corrêa-Giannella ML, Lauterbach M, Kolbe CC, Latz E, Camara NOS, Pontillo A, Curi R. Macrophage inflammatory state in Type 1 diabetes: triggered by NLRP3/iNOS pathway and attenuated by docosahexaenoic acid. Clin Sci (Lond) 2021; 135:19-34. [PMID: 33399849 DOI: 10.1042/cs20201348] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic β-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1β protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1β secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.
Collapse
MESH Headings
- Adult
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cells, Cultured
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/immunology
- Docosahexaenoic Acids/pharmacology
- Female
- Humans
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/enzymology
- Inflammation/immunology
- Inflammation Mediators/metabolism
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Middle Aged
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Pregnancy
- Signal Transduction
- Streptozocin
- Mice
Collapse
Affiliation(s)
- Mariana Rodrigues Davanso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Physiology and Cell Signalling, Department of Clinical Analyses, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Tárcio Teodoro Braga
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
- Department of Basic Pathology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Laureane Nunes Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Sao Paulo, Brazil
| | - Cátia Lira do Amaral
- Campus of Exact Sciences and Technology, State University of Goias, Anapolis, Goias, Brazil
| | - Vinícius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Dhêmerson Souza de Lima
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Thiago Andrade Patente
- Laboratory of Tumour Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - José Alexandre Barbuto
- Laboratory of Tumour Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Maria L Corrêa-Giannella
- Laboratory of Carbohydrates and Radioimmunoassay, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Post-graduation Program of Medicine, UNINOVE, Sao Paulo, Brazil
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Carl Christian Kolbe
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Niels Olsen Saraiva Camara
- Laboratory of Immunology of Transplantation, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Sao Paulo, Brazil
- Butantan Institute, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Gurgel Penaforte-Saboia J, Couri CEB, Vasconcelos Albuquerque N, Lauanna Lima Silva V, Bitar da Cunha Olegario N, Oliveira Fernandes V, Montenegro Junior RM. Emerging Roles of Dipeptidyl Peptidase-4 Inhibitors in Delaying the Progression of Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:565-573. [PMID: 33603422 PMCID: PMC7882449 DOI: 10.2147/dmso.s294742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from the immune cell-mediated destruction of functional pancreatic β-cells. In the presymptomatic period, T1DM is characterized by the presence of two or more autoantibodies against the islet cells in patients without glycemic decompensation. Therapeutic strategies that can modify the autoimmune process could slow the progression of T1DM. Dipeptidyl peptidase-4 (DPP-4) or CD26, a multifunctional serine protease with a dual function (regulatory protease and binding protein), can modulate inflammation and immune cell-mediated β-cell destruction. CD26 is involved in T-cell co-stimulation, migration, memory development, thymic maturation, and emigration patterns. DPP-4 degrades the peptide hormones GLP-1 and GIP. In addition to regulating glucose metabolism, DPP-4 exerts anti-apoptotic, regenerative, and proliferative effects to promote β-cell mass expansion. GLP-1 receptor signaling may regulate murine lymphocyte proliferation and maintenance of peripheral regulatory T-cells. In patients with T1DM, the serum DPP-4 activity is upregulated. Several studies have suggested that the upregulated DPP-4 activity is correlated with T1DM pathophysiology. DPP-4, which is preferentially expressed on the Th1 surface, can promote the polarization of Th1 immunity, a prerequisite for T1DM development. CD26 inhibition can suppress T-cell proliferation and Th1 cytokine production and stimulate tumor growth factor beta-1 (TGF-β1) secretion, which plays an important role in the regulation of autoimmunity in T1DM. Studies on humans or animal models of T1DM have suggested that DPP-4 inhibitors can improve β-cell function and attenuate autoimmunity in addition to decreasing insulin dependence. This review summarizes the emerging roles of DPP-4 inhibitors in potentially delaying the progression of T1DM.
Collapse
Affiliation(s)
- Jaquellyne Gurgel Penaforte-Saboia
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos Eduardo Barra Couri
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Natasha Vasconcelos Albuquerque
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
| | | | - Natália Bitar da Cunha Olegario
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Virgínia Oliveira Fernandes
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
| | - Renan Magalhães Montenegro Junior
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
- Correspondence: Renan Magalhães Montenegro Junior Federal University of Ceará, Rua Coronel Nunes de Melo s/n, Fortaleza, 60430-270, Ceará, BrazilTel +55 8533668600Fax +55 85 3366-8619 Email
| |
Collapse
|
7
|
He X, Li W, Xie Y, Zhao Y. Long-term inhibition of dipeptidyl-peptidase 4 reduces islet infiltration and downregulates IL-1β and IL-12 in NOD mice. Int Immunopharmacol 2020; 88:106945. [PMID: 33182020 PMCID: PMC7510641 DOI: 10.1016/j.intimp.2020.106945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
DPP-4 inhibition reduced CD4+T cells infiltration and ameliorated insulitis. DPP-4 inhibition downregulated serum IL-1β and IL-12. LPS increased CD11b+ cells to infiltrate into islets.
Dipeptidyl-peptidase 4 (DPP-4) inhibitor (sitagliptin) is a novel anti-hyperglycemia drug in the treatment of type 2 diabetes. However, its potential in type 1 diabetes is still unclear. Recent studies show that increased infection, especially respiratory tract infection, is significantly associated with DPP-4 inhibitors. In this study, we aimed to explore the effects of long-term inhibition of DPP- 4 on innate immunity in type 1 diabetes. Forty mice were randomly divided into 4 groups (n = 10 in each group): control group, lipopolysaccharide (LPS) group, sitagliptin group and sitagliptin + LPS group. The concentrations of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, TNF-α and IFN-γ were measured with Mesco Scale Discovery multiplexed-assay kit. Immunohistochemistry staining of pancreases was performed and insulitis scores for each islet were determined. The results showed that DPP-4 inhibition has no effect on incident rate of diabetes and metabolic parameters in NOD mice. Long-term inhibition of DPP-4 reduced CD4+T cells to infiltrate into islets and ameliorated insulitis in NOD mice. DPP-4 inhibition downregulated serum interleukin IL-1β and IL-12 in NOD mice. However, it had no significant effect on LPS-induced IL-1β, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in NOD mice. In conclusion, Long-term inhibition of DPP-4 exists anti-inflammatory effect in type 1 diabetes probably by reducing CD4+T cells to infiltrate into islets and downregulating L-1β and IL-12 in serum.
Collapse
Affiliation(s)
- Xinran He
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China
| | - Yunliang Xie
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China
| | - Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, The East Chang-Gang Road, Guangzhou, China.
| |
Collapse
|
8
|
Klotho Ameliorates Cellular Inflammation via Suppression of Cytokine Release and Upregulation of miR-29a in the PBMCs of Diagnosed Alzheimer's Disease Patients. J Mol Neurosci 2019; 69:157-165. [PMID: 31197641 DOI: 10.1007/s12031-019-01345-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by neural inflammation and oxidative stress. In the current study, the protective effects of klotho and linagliptin treatment on human peripheral blood mononuclear cells (PBMCs) of AD patients and healthy controls (HCs) are assessed through measurement of inflammatory cytokines, signaling proteins, and miRNA expression. Sixteen diagnosed AD patients and sixteen HCs were enrolled in the study. Blood samples were obtained and PBMCs were isolated. PBMCs were treated with klotho at different concentrations (0.5, 1, and 2 nM) and linagliptin (50 μM). The concentration of interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), epsilon isoform of protein kinase C (PKCε), phosphorylated cyclic AMP response element binding (pCREB), and Wnt1 were measured by ELISA. The expression of miR-29a and miR-195 was detected by real-time PCR. The results showed that klotho significantly reduced IL-1β, IL-6, and TNF-α levels in both groups of the experiment. Linagliptin also remarkably reduced TNF-α levels in the AD group. Moreover, klotho caused the downregulation of Wnt1 in the PBMCs of both groups and the upregulation of the pCREB in HCs. Meanwhile, klotho induced miR-29a expression in the PBMCs of HCs, while miR-29a expression was induced in the AD group by klotho and linagliptin. The current findings revealed that klotho alleviates inflammation in human PBMCs, probably through the suppression of inflammatory cytokines and the upregulation of miR-29a, and part of its beneficial effect is mediated through appropriate modulation of the Wnt1/pCREB signaling cascade. In addition, linagliptin exerts protective effects by reducing TNF-α and inducing miR-29a expression in PBMCs.
Collapse
|