1
|
Mo J, Xia K, Wu C. Hedyotis diffusa Willd inhibits inflammation and oxidative stress to protect against chronic prostatitis via the NRF2/ARE signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:4221-4230. [PMID: 38738704 DOI: 10.1002/tox.24298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a common and serious disease with unclear pathogenesis and recurrent symptoms. Hedyotis diffusa Willd (HDW) has been recognized for its potential in managing various chronic inflammatory diseases. This research aimed to interrogate the mechanism of HDW in treating CP/CPPS. Complete Freund Adjuvant (CFA) and LPS were utilized to establish the rat and cell models of CP/CPPS. Results showed that HDW decreased levels of inflammation-related factors in CP rat prostate tissue and LPS-elicited RWPE-1 cell injury model. Moreover, HDW administration impaired oxidative stress in the prostate and RWPE-1 cells. In addition, HDW treatment activated the NRF2/ARE signaling in rat prostate tissue and cell models. Interestingly, NRF2/ARE pathway inhibitor ML385 reversed the inhibition effects of cell apoptosis, inflammation, and oxidative stress triggered by HDW. In summary, HDW alleviated inflammation and oxidative stress by activating NRF2/ARE signaling in CP/CPPS rat model and human prostate epithelial cell injury model.
Collapse
Affiliation(s)
- Junfu Mo
- Department of Urology, Chongqing Hospital, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Kang Xia
- Department of Urology, Chongqing Hospital, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Chaokui Wu
- Department of Urology, Chongqing Hospital, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| |
Collapse
|
2
|
Zhao A, Guo C, Wang L, Chen S, Xu Q, Cheng J, Zhang J, Jiang J, Di J, Zhang H, Chen F, Su J, Jiang L, Liu L, Liu Y, Liu A. Xiebai San alleviates acute lung injury by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating multiple metabolisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155397. [PMID: 38547623 DOI: 10.1016/j.phymed.2024.155397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Acute lung injury (ALI) often leads to serious respiratory diseases with high incidence rates and mortality. For centuries, Xiebai San (XBS) has been a classical traditional Chinese medicine (TCM) about respiratory illness such as pneumonia in children. However, the related mechanism of XBS against ALI remains indistinct. PURPOSE To reveal specific targets of XBS in lipopolysaccharide (LPS)-induced ALI mice using integrated pharmacology. STUDY DESIGN The integrated method was to expound mechanism and targets of XBS inhibited ALI. METHODS The primary components in XBS were identified by ultra high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS). The potential drug targets were established using network pharmacology. The anti-ALI effect of XBS was evaluated in mice. Additionally, therapeutic targets were screened by integrating metabolome and transcriptome and verified in lung tissue. RESULTS In total, 163 chemical components were identified in XBS, and a network of "3 drugs-18 components-86 targets" for XBS against ALI was constructed. In ALI mice, XBS alleviated lung inflammation by decreasing permeation and expression of neutrophils, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF), serum, and lung tissue. Next, the transcriptome of lung tissue was analyzed and enriched, indicating the importance of mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and others, which was consistent with network pharmacology prediction. Also, western blotting and immunohistochemistry results showed that XBS was against ALI mainly by inhibiting extracellular signal regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) phosphorylation. In addition, the metabolome of lung tissue revealed that XBS mainly regulated pathways involved in arachidonic acid, glycerophospholipid, and tryptophan metabolisms. The expression levels of leukotriene, phosphatidylcholine, kynurenine, and others were also verified. CONCLUSION XBS alleviated inflammation of ALI by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating arachidonic acid, glycerophospholipid, and tryptophan metabolisms. This study will guide clinical precision medicine and promote modernization of XBS.
Collapse
Affiliation(s)
- Anyi Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cong Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingxia Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jintang Cheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinzhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jipeng Di
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Heng Zhang
- Shandong Xianhe Pharmaceutical Co., Ltd, Dongying, Shandong 257237, China
| | - Fangfang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiangmin Su
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Jiang
- Shandong Xianhe Pharmaceutical Co., Ltd, Dongying, Shandong 257237, China
| | - Li Liu
- Shandong Xianhe Pharmaceutical Co., Ltd, Dongying, Shandong 257237, China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - An Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Zou G, Li L, Gao L, Zhou Y, Ma Z, Hu Z. Goniothalamin prevents lipopolysaccharide-induced acute lung injury and inflammation via TLR-4/NF-κB signaling pathway. J Biochem Mol Toxicol 2023; 37:e23461. [PMID: 37477137 DOI: 10.1002/jbt.23461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Goniothalamin (GTN) is a natural compound isolated from Goniothalamus species. It is a potent anti-inflammatory agent. However, there is a paucity of scientific data about its toxicity. This study investigated GTN's anti-inflammatory mechanism and lipopolysaccharide (LPS)-induced lung injury in mice. Mice were distributed into four groups and injected with GTN intraperitoneally (Dosage-50 and 100 mg/kg). We analyzed the wet/dry weight ratio, infiltrated inflammatory cell count, myeloperoxidase (MPO) activity, and histopathological changes in the lung tissues of the mice. Results revealed GTN alleviated LPS-induced inflammation in mice. Western Blot and enzyme-linked immunosorbent assay techniques were used to investigate the effect of GTN on pro-inflammatory cytokines and proteins involved in the MAPK and nuclear factor-B (NF-κB) signaling pathways. Cytokines (macrophage migration inhibitory factor, interleukin [IL]-13, IL-6, TNF-α, and IL-1β) were inhibited by GTN. However, IL-10 was upregulated. Western blot analysis indicated that GTN suppressed the phosphorylation of jun N-terminal kinase, nuclear factor NF-kappa-B p65, I-kappa-B, extracellular signal-regulated kinases, NF-κB, and p38. GTN also suppressed the expression of TLR-4 protein, thereby, inhibiting MAPK and NF-κB signaling pathways. Thus, GTN can effectively prevent and cure acute lung injury.
Collapse
Affiliation(s)
- Gongmin Zou
- Department of Pediatric, Suzhouwuzhong People's Hospital, Jiangsu, Wuzhong, China
| | - Long Li
- Department of Respiratory Disease, Chinese PLA General Hospital of Central Theater Command, Hubei, Wuhan, China
| | - LanPing Gao
- Department of Pediatric, Suzhouwuzhong People's Hospital, Jiangsu, Wuzhong, China
| | - YingHong Zhou
- Department of Pediatric, Suzhouwuzhong People's Hospital, Jiangsu, Wuzhong, China
| | - ZeNan Ma
- Department of Pediatric, Suzhouwuzhong People's Hospital, Jiangsu, Wuzhong, China
| | - Zekun Hu
- Department of Critical Care Medicine, Wuhan Fifth Hospital, Hubei Province, Hubei, Wuhan, China
| |
Collapse
|
4
|
Huang F, Pang J, Xu L, Niu W, Zhang Y, Li S, Li X. Hedyotis diffusa injection induces ferroptosis via the Bax/Bcl2/VDAC2/3 axis in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154319. [PMID: 35853302 DOI: 10.1016/j.phymed.2022.154319] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung cancer has the highest mortality rate among all cancer types. In combination with multiple chemotherapeutic options, traditional Chinese medicine has proven indispensable for the comprehensive treatment of lung cancer. PURPOSE To investigate the effects of Hedyotis diffusa on lung adenocarcinoma cell lines and a BALB/c nude mouse xenograft model, and determine whether HDI could induce ferroptosis in lung adenocarcinoma cells along with the underlying mechanism. METHODS The anti-tumor activity of HDI was determined in vitro by cell counting kit-8, clonogenic, and transwell assays. Subsequently, electron microscopy, a lipid reactive oxygen species assay, ferrous ion staining, and a malondialdehyde assay were performed to determine the effect on ferroptosis in lung adenocarcinoma cells. The mechanism was then further investigated using small molecule inhibitors, siRNA, and plasmid overexpression in vitro. Finally, the effects of HDI were assessed in tumor-bearing BALB/c nude mice, and HE staining was performed to observe tissue damage after HDI treatment. RESULTS In vitro experiments showed that HDI could inhibit the viability of lung adenocarcinoma cells and induce lung adenocarcinoma cells ferroptosis via mechanisms independent of GPX4 and PUFA-PLS pathways but closely associated with VDAC2/3. HDI regulated VDAC2/3 activity by promoting Bax via inhibiting Bcl2, thereby inducing ferroptosis in lung adenocarcinoma cells. Furthermore, in vivo experiments showed that HDI significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice with less organ damage and toxicity, and significantly increased the expression of the ferroptosis-related indicators 4HNE, TFR, and HMOX1 in tumor tissue. CONCLUSION HDI can significantly reduce the survival of lung adenocarcinoma cells in vitro, inhibit the growth of subcutaneously transplanted tumors in BALB/c nude mice in vivo, and induce ferroptosis in lung adenocarcinoma cells via Bcl2 inhibition to promote Bax regulation of VDAC2/3.
Collapse
Affiliation(s)
- Fuhao Huang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Liansong Xu
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Wenwen Niu
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Yaoshuai Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China.
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu City 233000, China.
| |
Collapse
|
5
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
6
|
Wu Z, Yin B, You F. Molecular Mechanism of Anti-Colorectal Cancer Effect of Hedyotis diffusa Willd and Its Extracts. Front Pharmacol 2022; 13:820474. [PMID: 35721163 PMCID: PMC9201484 DOI: 10.3389/fphar.2022.820474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
With the sharp change in our diet and lifestyle, the incidence of colorectal cancer (CRC) is increasing among young people and has become the second most common malignant tumor worldwide. Although the current treatment of CRC is getting updated rapidly, recurrence and metastasis are still inevitable. Therefore, new anticancer drugs are needed to break existing limitations. In recent years, Hedyotis diffusa Willd (HDW) extracts have been proved to demonstrate excellent anti-colorectal cancer effects and have been widely used in clinical practices. In this review, we aim to explore the advantages, potential signaling pathways, and representative active ingredients of HDW in the treatment of CRC from the perspective of molecular mechanism, in order to provide new ideas for the future treatment of CRC.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bei Yin
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Annam N, Karlapudi AP, Doble M, Srirama K, T.C. V. An in silico study on pulmonary fibrosis inhibitors from Tinospora cordifolia and Curcuma longa targeting TGF-β RI. J Biomol Struct Dyn 2022; 41:3145-3161. [PMID: 35068362 DOI: 10.1080/07391102.2022.2029772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pulmonary fibrosis is characterized by damage to the epithelial cells and alveolar-capillary basement membrane. The increased expression levels of transforming growth factor β (TGF-β) and TGF-β-receptor-1 induced differentiation of lung fibroblasts to myofibroblasts, an alarming sign and considered the hallmark event development of pulmonary fibrosis. In the current study, the stability of phytochemicals of Curcuma longa and Tinospora cordifolia as inhibitors of transforming growth factor β RI (TGF-β RI) were evaluated using molecular docking and molecular dynamics studies. A total of 108 Curcuma longa and 16 Tinospora cordifolia constituents were screened against TGF-β RI as the target. Further, their ADMET properties were evaluated using the pkCSM online server. The compounds tembetarine, magnoflorine from T. cordiolia, and 2-(Hydroxymethyl) anthraquinone and quercetin in C. longa showed significant binding affinities bonding interactions with the target, TGF-β RI, and the study was compared with the known inhibitors from the literature. The MD simulations study also supported that the selected compounds show a close affinity with the binding site and maintained stable behavior throughout the simulation time. The pharmacophore feature analysis of the selected compounds and inhibitors were analyzed using the pharmagist web server, and the common features like H-bond donor and aromatic ring were mapped.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nagalakshmi Annam
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Abraham Peele Karlapudi
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Mukesh Doble
- Bio Engineering and Drug Design Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Krupanidhi Srirama
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Venkateswarulu T.C.
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| |
Collapse
|
8
|
A novel indazole derivative, compound Cyy-272, attenuates LPS-induced acute lung injury by inhibiting JNK phosphorylation. Toxicol Appl Pharmacol 2021; 428:115648. [PMID: 34280409 DOI: 10.1016/j.taap.2021.115648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022]
Abstract
Acute lung injury (ALI) is a diffuse lung dysfunction disease characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Therefore, anti-inflammation may be a potential therapy strategy for ALI. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties, such as anti-cancer and anti-inflammation. In the current study, we investigated the biological effects of Cyy-272, a newly synthesized indazole compound, on LPS-induced ALI both in vivo and in vitro. Results show that Cyy-272 can inhibit the release of inflammatory cytokines in LPS-stimulated macrophage and alleviate LPS induced ALI. Further experiment revealed that Cyy-272 exhibit anti-inflammation activity by inhibiting JNK phosphorylation. Overall, our studies show that an indazole derivative, Cyy-272, is effective in suppressing LPS-induced JNK activation and inflammatory signaling.
Collapse
|
9
|
Amaral-Machado L, Oliveira WN, Rodrigues VM, Albuquerque NA, Alencar ÉN, Egito EST. Could natural products modulate early inflammatory responses, preventing acute respiratory distress syndrome in COVID-19-confirmed patients? Biomed Pharmacother 2021; 134:111143. [PMID: 33360048 PMCID: PMC7832252 DOI: 10.1016/j.biopha.2020.111143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ARDS (Acute Respiratory Distress Syndrome) is a severe respiratory syndrome that was recently associated as the main death cause in the COVID-19 pandemic outbreak. Hence, in order to prevent ARDS, the pulmonary function maintenance has been the target of several pharmacological approaches. However, there is a lack of reports regarding the use of effective pharmaceutical active natural products (PANPs) for early treatment and prevention of COVID-19-related ARDS. Therefore, the aim of this work was to conduct a systematic review regarding the PANPs that could be further studied as alternatives to prevent ARDS. Consequently, this work can pave the way to spread the use of PANPs on the prevention of ARDS in COVID-19-confirmed or -suspected patients. METHODS The search strategy included scientific studies published in English from 2015 to 2020 that promoted the elucidation of anti-inflammatory pathways targeting ARDS by in vitro and/or in vivo experiments using PANPs. Then, 74 studies regarding PANPs, able to maintain or improve the pulmonary function, were reported. CONCLUSIONS The PANPs may present different pulmonary anti-inflammatory pathways, wherein (i) reduction/attenuation of pro-inflammatory cytokines, (ii) increase of the anti-inflammatory mediators' levels, (iii) pulmonary edema inhibition and (iv) attenuation of lung injury were the most observed biological effects of such products in in vitro experiments or in clinical studies. Finally, this work highlighted the PANPs with promising potential to be used on respiratory syndromes, allowing their possible use as alternative treatment at the prevention of ARDS in COVID-19-infected or -suspected patients.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | | | | | | | - Éverton N Alencar
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | - Eryvaldo S T Egito
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil; Graduate Program in Health Sciences, UFRN, 59012-570, Natal, RN, Brazil.
| |
Collapse
|
10
|
Zhang Y, Hu H, Luo J. Diffusosides C and D, two new iridoid glucosides from Oldenlandia diffusa. Nat Prod Res 2020; 36:2300-2305. [DOI: 10.1080/14786419.2020.1830397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yongyong Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Huiping Hu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiabo Luo
- Key Laboratory of Research of TCM and New Drug, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Peng LY, Shi HT, Yuan M, Li JH, Song K, Huang JN, Yi PF, Shen HQ, Fu BD. Madecassoside Protects Against LPS-Induced Acute Lung Injury via Inhibiting TLR4/NF-κB Activation and Blood-Air Barrier Permeability. Front Pharmacol 2020; 11:807. [PMID: 32581788 PMCID: PMC7289980 DOI: 10.3389/fphar.2020.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Madecassoside (MA), a crucial ingredient of Centella asiatica, has been reported to exhibit a variety of bioactivities, including antipulmonary fibrosis, and antiinflammatory effects. Here we aimed to elucidate the protective effects and underlying mechanisms of MA on LPS-induced acute lung injury (ALI). The mice were treated with MA for one week and then received intratracheal of LPS to establish the ALI model. Then we evaluated the pathological changes by haematoxylin and eosin staining and measured the levels of proinflammatory cytokines and myeloperoxidase (MPO) by ELISA, the transcriptional level of tight junction proteins by qRT-PCR, as well as the expression of Toll-like receptor4/Nuclear factor kappa-B (TLR4/NF-κB) pathway by Western blot. The results showed that MA significantly inhibited LPS-induced pathological damages, lung edema, MPO, and proinflammatory cytokines production. Furthermore, MA obviously repaired alveolar epithelium integrity showing by reduced secretion of total proteins in the BALF and enhanced mRNA expression of tight junction as Occludin and zonula occludens-1 (ZO-1) comparing to LPS. Further research showed that LPS stimulation activated the TLR4/NF-κB signaling pathway and the activation was inhibited by MA. In conclusion, these data indicated that MA had protective effects against LPS-induced ALI. The therapeutic mechanisms may be associated with reducing the alveolar epithelium permeability and inflammatory response via repressing the activation of TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Tao Shi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Yuan
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
12
|
Kosutova P, Mikolka P, Balentova S, Adamkov M, Calkovska A, Mokra D. Effects of PDE3 Inhibitor Olprinone on the Respiratory Parameters, Inflammation, and Apoptosis in an Experimental Model of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E3382. [PMID: 32403267 PMCID: PMC7247002 DOI: 10.3390/ijms21093382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone i.v. (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung-thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO2), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO2/FiO2), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour. Post mortem, inflammatory and oxidative markers (interleukin (IL)-6, IL-1β, a receptor for advanced glycation end products (RAGE), IL-10, total antioxidant capacity (TAC), 3-nitrotyrosine (3NT), and malondialdehyde (MDA) and apoptosis (apoptotic index and caspase-3) were assessed in the lung tissue. Treatment with olprinone reduced the release of inflammatory mediators and markers of oxidative damage decreased apoptosis of epithelial cells and improved respiratory parameters. The results indicate a future potential of PDE3 inhibitors also in the therapy of ARDS.
Collapse
Affiliation(s)
- Petra Kosutova
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| | - Pavol Mikolka
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| | - Sona Balentova
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (S.B.); (M.A.)
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (S.B.); (M.A.)
| | - Andrea Calkovska
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| | - Daniela Mokra
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 036 01, Slovakia; (P.K.); (P.M.); (A.C.)
| |
Collapse
|
13
|
Peng LY, Yuan M, Shi HT, Li JH, Song K, Huang JN, Yi PF, Fu BD, Shen HQ. Protective Effect of Piceatannol Against Acute Lung Injury Through Protecting the Integrity of Air-Blood Barrier and Modulating the TLR4/NF-κB Signaling Pathway Activation. Front Pharmacol 2020; 10:1613. [PMID: 32038265 PMCID: PMC6988518 DOI: 10.3389/fphar.2019.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Acute lung injury (ALI) is a common and complex inflammatory lung syndrome with higher morbidity and mortality rate. Piceatannol (PIC) has anti-inflammation and anti-oxidant properties. The study was designed to explore the effect and the action mechanisms of PIC on lipopolysaccharide (LPS)-induced ALI. Twenty-four hours after LPS challenge, mice from different treatment groups were euthanized, and the bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected. Then the degree of pulmonary edema, lung pathological changes, myeloperoxidase (MPO) activity, and the production of pro-inflammatory cytokines were detected. Additionally, the messenger RNA (mRNA) expressions associated with cell adhesion molecules and tight junction were analyzed through quantitative real-time (qRT)-PCR, and the TLR4/NF-κB activation was examined by western blot. The results showed that PIC significantly inhibited LPS-induced lung edema, histopathological damage, MPO activity, cell infiltration, and pro-inflammatory cytokines production. Moreover, PIC notably suppressed mRNA expressions associated with inflammation and cell adhesion molecules. Furthermore, PIC also alleviated LPS-induced damage of air-blood barrier through reducing the levels of total proteins in BALF and recovering the expression of occludin and ZO-1 in the lung tissues. We also found that PIC remarkably restrained the LPS-induced TLR4/NF-κB pathway activation in lung tissues. In conclusion, PIC may be potential to treat LPS-induced acute lung injury (ALI) via regulating air-blood barrier and TLR4/NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Yuan
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Tao Shi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
14
|
He Y, Zhao Y, Feng Y, Ren A, Zhang Y, Wang Y, Li H. Therapeutic effect and mechanism study of L-cysteine derivative 5P39 on LPS-induced acute lung injury in mice. Eur J Pharmacol 2019; 869:172893. [PMID: 31883915 DOI: 10.1016/j.ejphar.2019.172893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Organosulfur compounds, such as L-cysteine, allicin and other sulfur-containing organic compounds in Allium species, have been proposed to possess many important physiological and pharmacological functions. A novel L-cysteine derivative, t-Butyl S-allylthio-L-cysteinate (5P39), was designed and synthesized by combining L-cysteine derivative and allicin pharmacophore through a disulfide bond. This study aimed to explore the effects and mechanisms of 5P39 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. At the experimental concentration (5, 10 and 20 μM), 5P39 suppressed the excessive secretion of nitric oxide (NO) and interleukin-6 (IL-6) in mice peritoneal macrophages stimulated by LPS. A mouse model of ALI was established by tracheal instillation of LPS for 2 h before 5P39 (30 and 60 mg/kg) administration. The results showed that 5P39 treatment down-regulated the wet/dry weight ratio (W/D ratio) of lungs and reduced the protein concentration, the number of total cells as well as the myeloperoxidase (MPO) activity in bronchoalveolar lavage fluid (BALF). 5P39 administration improved the histopathological changes of lungs in ALI mice with the decreased levels of pro-inflammatory cytokines in BALF. The inhibitory effects of 5P39 on the toll-like receptor 4 (TLR4) expression and macrophages accumulation in lung tissues were observed by immunohistochemistry. Additionally, 5P39 significantly attenuated the LPS-activated high expression of key proteins in TLR4/MyD88 signaling pathway. Taken together, the present study showed that 5P39 effectively alleviate the severity of ALI, and its mechanism might relate to the inhibition of LPS-activated TLR4/MyD88 signaling pathway, demonstrating a promising potential for further development into an anti-inflammatory drug candidate.
Collapse
Affiliation(s)
- Yanting He
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yalei Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuchen Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Anqi Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
15
|
Glycitin alleviates lipopolysaccharide-induced acute lung injury via inhibiting NF-κB and MAPKs pathway activation in mice. Int Immunopharmacol 2019; 75:105749. [PMID: 31306981 DOI: 10.1016/j.intimp.2019.105749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary diffuse dysfunction disease caused by immoderate inflammatory response breaking the coordination of physiological structures and functions, and there are very few effective treatments to reduce high morbidity of ALI in critical patients. Glycitin is a natural ingredient derived from the seeds of leguminous plants and may have potent anti-inflammation features. The purpose of this study was to investigate the anti-inflammation effect of glycitin on LPS-induced ALI in mice and elucidate its possible anti-inflammatory mechanisms. The results of histopathological changes, the wet/dry weight ratio as well as the myeloperoxidase (MPO) activity indicated that glycitin obviously alleviated the lung injury induced by LPS. In addition, qPCR and ELISA results found that glycitin could dose-dependently decrease the expressions of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Western blotting was performed to revealed that glycitin inhibited the activation of NF-κB and MAPKs signaling pathways by suppressing the expression of TLR4 protein and the phosphorylation of IKKβ, IκBα, p65, p38, ERK, and JNK. All data indicated that glycitin could protect lung tissues from LPS-induced inflammation via inhibiting TLR4-mediated NF-κB and MAPKs signaling pathways.
Collapse
|
16
|
Wang B, Wang J, Lu D, Qi N, Liu Q. The Defensive Action of LYRM03 on LPS-Induced Acute Lung Injury by NF-κB/TLR4/NLRP3 Signals. J INVEST SURG 2019; 34:284-296. [PMID: 31274341 DOI: 10.1080/08941939.2019.1634165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the current investigation was to study the role of 3-amino-2-hydroxy-4-phenyl-valyl-isoleucine (LYRM03) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) and investigate its potential pathogenesis. An LPS-induced ALI model was produced with LPS (5 mg/kg) followed by 24 h of injury. Rats were randomly assigned to 6 groups for in vivo experiments: (1) Sham, (2) LYRM03 (20 mg/kg), (3) LPS, (4) LPS plus LYRM03 (5 mg/kg), (5) LPS plus LYRM03 (10 mg/kg), and (6) LPS plus LYRM03 (20 mg/kg). The rat alveolar macrophage cell line (NR8383) cells were divided into 6 groups for in vitro experiments: (1) Sham, (2) LYRM03 (200 μmol/L), (3) LPS (100 ng/mL), (4) LPS plus LYRM03 (50 μmol/L), (5) LPS plus LYRM03 (100 μmol/L), and (6) LPS plus LYRM03 (200 μmol/L). Further study about siRNA targeting NF-κB p65, TLR4, and NLRP3 to explore the potential mechanism of LYRM03 in the LPS-induced ALI models have been done. Therefore, LYRM03 decreased LPS-induced ALI and NR8383 activation as demonstrated through hematoxylin-eosin staining and western blot analysis in vivo and in vitro. LYRM03 ameliorated the content of protein in bronchoalveolar lavage fluid, myeloperoxidase in the lung and malondialdehyde (MDA) in serum. In addition, LYRM03 ameliorated the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) in the serum of rats and the supernatant of NR8383 cells. Moreover, LYRM03 significantly inhibited the activities of nuclear factor kappa B (NF-κB), myeloid differentiation factor 88 (MyD88), and toll-like receptor 4 (TLR4). LYRM03 also reduced the increase in the inflammasome, including apoptosis-related speck-like protein containing CARD (ASC), and NOD-like receptor 3 (NLRP3), in LPS-stimulated rats and NR8383 cells. The extent of injury and lung injury scores in the LYRM03 (20 mg/kg) + siRNA targeting NF-κB p65, TLR4, or NLRP3 + LPS-treated rats were higher than that in the LYRM03 (20 mg/kg) + LPS-treated rats. In summary, LYRM03 conferred an intensely lung defensive action on LPS-induced ALI in vivo and in vitro, which could be associated with the abatement of TLR4-induced NLRP3/NF-κB.
Collapse
Affiliation(s)
- Bin Wang
- Department of Critical Care Medicine, Rizhao People Hospital, Rizhao, People's Republic of China
| | - Jiaoyue Wang
- Department of Critical Care Medicine, Rizhao People Hospital, Rizhao, People's Republic of China
| | - Daopeng Lu
- Department of Emergency, Jinan Medical Emergency Center, Jinan, People's Republic of China
| | - Na Qi
- Department of Respiratory Medicine, Hengshui People Hospital, Hengshui, People's Republic of China
| | - Qin Liu
- Department of Emergency, Jinan Medical Emergency Center, Jinan, People's Republic of China
| |
Collapse
|