1
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Veeram A, Shaikh TB, Kaur R, Chowdary EA, Andugulapati SB, Sistla R. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 2024; 47:1423-1443. [PMID: 38466531 DOI: 10.1007/s10753-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Collapse
Affiliation(s)
- Anjali Veeram
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - E Abhisheik Chowdary
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
3
|
Walvekar KP, Tirunavalli SK, Eedara AC, Chandra Y, Kuncha M, B R Kumar A, Sistla R, Andugulapati SB, Chilaka S. Biochanin A Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice by Modulating the NF-κB and MAPK Signaling Pathways. Inflammation 2024:10.1007/s10753-024-02103-5. [PMID: 39017810 DOI: 10.1007/s10753-024-02103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Psoriasis is a chronic skin inflammatory disorder characterized by the hyper-activation of the immune system and the over-proliferation of epidermal keratinocytes. This study aimed to investigate the anti-psoriatic activity of Biochanin A (BCA), a phytomolecule with known anti-inflammatory and anti-cancer properties, using the IMQ-induced psoriasis-like mouse model. Network pharmacology analysis was performed to investigate the targetability of Biochanin A (BCA) against psoriasis. Psoriasis-like skin inflammation was established using BALB/c mice by topical application of IMQ (5%). BCA cream (0.3%, 1%, 3%) was applied on the skin regions every day for 6 days. The skin phenotypes-erythema and scaling were scored every day. On the 7th day, skin tissues were collected for gene expression analysis, histopathological analysis, cytokine levels determination, and western blot analysis for signaling mechanisms. The network pharmacology analysis has identified 57 common targets between psoriasis and BCA. The topical application of IMQ induced a typical psoriasis-like skin phenotype including redness, skin thickening, and plaque formation. Upon BCA treatment, the psoriasis-like symptoms were significantly reduced in a dose-dependent manner. The targets identified by the network pharmacology (MMP9, EGFR, and PTGS2) and the pro-inflammatory cytokine gene expression were found to be significantly elevated in IMQ controls, and upon BCA treatment they were found significantly reduced. The release of cytokines linked to psoriasis (IL-17A and IL-23) were significantly reduced upon BCA treatment. Furthermore, our findings demonstrated that BCA treatment alleviated the psoriasis-like symptoms via modulating NF-κB and MAPK signaling pathways. Our results demonstrate the therapeutic potential of BCA against IMQ-induced psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Komal Paresh Walvekar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Abhisheik Chowdary Eedara
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Yogesh Chandra
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Madhusudhana Kuncha
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Ashwin B R Kumar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India.
| | - Sabarinadh Chilaka
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
4
|
Ling Z, Wang Z, Chen L, Mao J, Ma D, Han X, Tian L, Zhu Q, Lu G, Yan X, Ding Y, Xiao W, Chen Y, Peng A, Yin X. Naringenin Alleviates Radiation-Induced Intestinal Injury by Inhibiting TRPV6 in Mice. Mol Nutr Food Res 2024; 68:e2300745. [PMID: 38581304 DOI: 10.1002/mnfr.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Indexed: 04/08/2024]
Abstract
SCOPE Naringenin (NAR) possesses unique anti-inflammatory, antiapoptosis effects and various bioactivities; however, its role against radiation-induced intestinal injury (RIII) remains unclear. This study aims to investigate whether NAR has protective effects against radiation-induced intestinal injury and the underlying mechanisms. METHODS AND RESULTS C57BL/6J mice are exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI), then gavaged with NAR for 7 days. NAR treatment prolongs the survival rate, protects crypts and villi from damage, alleviates the level of radiation-induced inflammation, and mitigates intestinal barrier damage in the irradiated mice. Additionally, NAR reduces immune cell infiltration and intestinal epithelial cell apoptosis. NAR also shows radioprotective effects in human colon cancer cells (HCT116) and human intestinal epithelial cells (NCM460). It reduces cell damage by reducing intracellular calcium ion levels and reactive oxygen species (ROS) levels. NAR-mediated radioprotection is associated with the downregulation of transient receptor potential vanilloid 6 (TRPV6), and inhibition of apoptosis pathway. Notably, treatment with NAR fails to further increase the protective effects of the TRPV6 inhibitor 2-APB, indicating that TRPV6 inhibition is essential for NAR activity. CONCLUSION NAR inhibits the apoptosis pathway by downregulating TRPV6 and reducing calcium ion level, thereby alleviating RIII. Therefore, NAR is a promising therapeutic drug for RIII.
Collapse
Affiliation(s)
- Zhi Ling
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Zheng Wang
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Lin Chen
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Jingxian Mao
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Dongmei Ma
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xiao Han
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Linlin Tian
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Qingtian Zhu
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Guotao Lu
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xuebing Yan
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yanbing Ding
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Weiming Xiao
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Aijun Peng
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xudong Yin
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
- Institute of Digestive Diseases, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
5
|
Kaur R, Shaikh TB, Priya Sripadi H, Kuncha M, Vijaya Sarathi UVR, Kulhari H, Balaji Andugulapati S, Sistla R. Nintedanib solid lipid nanoparticles improve oral bioavailability and ameliorate pulmonary fibrosis in vitro and in vivo models. Int J Pharm 2024; 649:123644. [PMID: 38040396 DOI: 10.1016/j.ijpharm.2023.123644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Nintedanib (NIN) and pirfenidone are the only approved drugs for the treatment of Idiopathic Pulmonary Fibrosis (IPF). However, NIN and pirfenidone have low oral bioavailability and limited therapeutic potential, requiring higher dosages to increase their efficacy, which causes significant liver and gastrointestinal toxicities. In this study, we aimed to develop nintedanib-loaded solid lipid nanoparticles (NIN-SLN) to improve the oral bioavailability and therapeutic potential against TGF-β-induced differentiation in IPF fibroblasts and bleomycin (BLM)-induced lung fibrosis in rat models. NIN-SLN was prepared using a double-emulsification method and characterization studies (Particle size, zeta potential, entrapment efficiency and other parameters) were performed using various techniques. NIN-SLN treatment significantly (p < 0.001) downregulated α-SMA and COL3A1 expression in TGF-β stimulated DHLF and LL29 cells. NIN-SLN showed a 2.87-fold increase in the bioavailability of NIN and also improved the NIN levels in lung tissues compared to NIN alone. Pharmacodynamic investigation revealed that NIN-SLN (50 mg/Kg) treatment significantly attenuated BLM-induced lung fibrosis by inhibiting epithelial-to-mesenchymal-transition (EMT), extracellular matrix remodelling, and collagen deposition compared to free NIN. Additionally, in the BLM model of fibrosis, NIN-SLN greatly improved the BLM-caused pathological changes, attenuated the NIN-induced gastrointestinal abnormalities, and significantly improved the lung functional indices compared to free NIN. Collectively, NIN-SLN could be a promising nanoformulation for the management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Madhusudana Kuncha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382 030, Gujarat, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
6
|
Ma J, Wan Y, Song L, Wang L, Wang H, Li Y, Huang D. Polystyrene nanobeads exacerbate chronic colitis in mice involving in oxidative stress and hepatic lipid metabolism. Part Fibre Toxicol 2023; 20:49. [PMID: 38110964 PMCID: PMC10726634 DOI: 10.1186/s12989-023-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Nanoplastics (NPs) are omnipresent in our lives as a new type of pollution with a tiny size. It can enter organisms from the environment, accumulate in the body, and be passed down the food chain. Inflammatory bowel disease (IBD) is a nonspecific intestinal inflammatory disease that is recurrent and prevalent in the population. Given that the intestinal features of colitis may affect the behavior and toxicity of NPs, it is imperative to clarify the risk and toxicity mechanisms of NPs in colitis models. METHODS AND RESULTS In this study, mice were subjected to three cycles of 5-day dextran sulfate sodium (DSS) exposures, with a break of 7 to 11 days between each cycle. After the first cycle of DSS exposure, the mice were fed gavagely with water containing 100 nm polystyrene nanobeads (PS-NPs, at concentrations of 1 mg/kg·BW, 5 mg/kg·BW and 25 mg/kg·BW, respectively) for 28 consecutive days. The results demonstrated that cyclic administration of DSS induced chronic inflammation in mice, while the standard drug "5-aminosalicylic acid (5-ASA)" treatment partially improved colitis manifestations. PS-NPs exacerbated intestinal inflammation in mice with chronic colitis by activating the MAPK signaling pathway. Furthermore, PS-NPs aggravated inflammation, oxidative stress, as well as hepatic lipid metabolism disturbance in the liver of mice with chronic colitis. CONCLUSION PS-NPs exacerbate intestinal inflammation and injury in mice with chronic colitis. This finding highlights chronically ill populations' susceptibility to environmental hazards, which urgent more research and risk assessment studies.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Lingmin Song
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Luchen Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
7
|
Kotipalli RSS, Patnaik SS, Kumar JM, Ramakrishna S, Muralidharan K. Biochanin-A attenuates DHEA-induced polycystic ovary syndrome via upregulation of GDF9 and BMP15 signaling in vivo. Life Sci 2023; 326:121795. [PMID: 37230376 DOI: 10.1016/j.lfs.2023.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
AIMS Phytoestrogens can act as natural estrogens owing to their structural similarity to human estrogens. Biochanin-A (BCA) is a well-studied phytoestrogen with a wide variety of pharmacological activities, whereas not reported in the most frequently encountered endocrinopathy called polycystic ovary syndrome (PCOS) in women. PURPOSE This study aimed to investigate the therapeutic effect of BCA on dehydroepiandrosterone (DHEA) induced PCOS in mice. MAIN METHODS Thirty-six female C57BL6/J mice were divided into six groups: sesame oil, DHEA-induced PCOS, DHEA + BCA (10 mg/kg/day), DHEA + BCA (20 mg/kg/day), DHEA + BCA (40 mg/kg/day), and metformin (50 mg/kg/day). KEY FINDINGS The results showed a decrease in obesity, elevated lipid parameters, restoration of hormonal imbalances (testosterone, progesterone, estradiol, adiponectin, insulin, luteinizing hormone, and follicle-stimulating hormone), estrus irregular cyclicity, and pathological changes in the ovary, fat pad, and liver. SIGNIFICANCE In conclusion, BCA supplementation inhibited the over secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1β) and upregulated TGFβ superfamily markers such as GDF9, BMP15, TGFβR1, and BMPR2 in the ovarian milieu of PCOS mice. Furthermore, BCA reversed insulin resistance by increasing circulating adiponectin levels through a negative correlation with insulin levels. Our results indicate that BCA attenuated DHEA-induced PCOS ovarian derangements, which could be mediated by the TGFβ superfamily signaling pathway via GDF9 and BMP15 and associated receptors as first evidenced in this study.
Collapse
Affiliation(s)
- Rama Satya Sri Kotipalli
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samata Sai Patnaik
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Jerald Mahesh Kumar
- Animal House, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Sistla Ramakrishna
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Kathirvel Muralidharan
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|