1
|
Khalilzad MA, Mohammadi J, Najafi S, Amirsaadat S, Zare S, Khalilzad M, Shamloo A, Khaghani A, Peyrovan A, Khalili SFS, Fayyaz N, Zare S. Harnessing the Anti-Inflammatory Effects of Perinatal Tissue Derived Therapies for the Treatment of Inflammatory Skin Diseases: A Comprehensive Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10822-3. [PMID: 39531196 DOI: 10.1007/s12015-024-10822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Dealing with chronic inflammatory skin conditions like atopic dermatitis and psoriasis can be extremely difficult. Current treatments, such as topical corticosteroids, often have limitations and side effects. However, researchers have discovered that the placenta's remarkable properties may provide a breakthrough in effectively addressing these skin conditions. The placenta comprises three essential tissues: decidua, placental membrane, and umbilical cord. Placental derivatives have shown significant potential in treating psoriasis by reducing inflammatory cytokines and inhibiting keratinocyte proliferation. In the case of atopic dermatitis, umbilical cord stem cells have demonstrated anti-inflammatory effects by targeting critical factors and promoting anti-inflammatory cytokines. The scope of benefits associated with placental derivatives transcends these specific applications. They also potentially address other inflammatory skin diseases, such as vitiligo, by stimulating melanin production. Moreover, these derivatives have been leveraged in the treatment of pemphigus and epidermolysis bullosa (EB), showcasing potential as a wound dressing that could eliminate the necessity for painful dressing changes in EB patients. In summary, the integration of placental derivatives stands to revolutionize our approach to inflammatory skin conditions owing to their distinct properties and the prospective benefits they offer. This comprehensive review delves into the current applications of placental derivatives in addressing inflammatory skin diseases, presenting a novel treatment approach.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negin Fayyaz
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dairov A, Sekenova A, Alimbek S, Nurkina A, Shakhatbayev M, Kumasheva V, Kuanysh S, Adish Z, Issabekova A, Ogay V. Psoriasis: The Versatility of Mesenchymal Stem Cell and Exosome Therapies. Biomolecules 2024; 14:1351. [PMID: 39595528 PMCID: PMC11591958 DOI: 10.3390/biom14111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage differentiating stromal cells with extensive immunomodulatory and anti-inflammatory properties. MSC-based therapy is widely used in the treatment of various pathologies, including bone and cartilage diseases, cardiac ischemia, diabetes, and neurological disorders. Along with MSCs, it is promising to study the therapeutic properties of exosomes derived from MSCs (MSC-Exo). A number of studies report that the therapeutic properties of MSC-Exo are superior to those of MSCs. In particular, MSC-Exo are used for tissue regeneration in various diseases, such as healing of skin wounds, cancer, coronary heart disease, lung injury, liver fibrosis, and neurological, autoimmune, and inflammatory diseases. In this regard, it is not surprising that the scientific community is interested in studying the therapeutic properties of MSCs and MSC-Exo in the treatment of psoriasis. This review summarizes the recent advancements from preclinical and clinical studies of MSCs and MSC-Exo in the treatment of psoriasis, and it also discusses their mechanisms of therapeutic action involved in the treatment of this disease.
Collapse
Affiliation(s)
- Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Symbat Alimbek
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Assiya Nurkina
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Miras Shakhatbayev
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Sandugash Kuanysh
- Obstetrics and Gynecology, Astana Medical University, Astana 010000, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, Astana 010000, Kazakhstan;
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan or (A.D.); (A.S.); (S.A.); (A.N.); (M.S.); (V.K.); (V.O.)
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
3
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
4
|
Patel AA, Mohamed AH, Rizaev J, Mallick AK, Qasim MT, Abdulmonem WA, Jamal A, Hattiwale HM, Kamal MA, Ahmad F. Application of mesenchymal stem cells derived from the umbilical cord or Wharton's jelly and their extracellular vesicles in the treatment of various diseases. Tissue Cell 2024; 89:102415. [PMID: 38851032 DOI: 10.1016/j.tice.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Mesenchymal stem cells (MSCs) originating from the umbilical cord (UC) or Wharton's jelly (WJ) have attracted substantial interest due to their potential to augment therapeutic approaches for a wide range of disorders. These cells demonstrate a wide range of capabilities in the process of differentiating into a multitude of cell types. Additionally, they possess a significant capacity for proliferation and are conveniently accessible. Furthermore, they possess a status of being immune-privileged, exhibit minimal tumorigenic characteristics, and raise minimal ethical concerns. Consequently, they are well-suited candidates for tissue regeneration and the treatment of diseases. Additionally, UC-derived MSCs offer a substantial yield compared to other sources. The therapeutic effects of these MSCs are closely associated with the release of nanosized extracellular vesicles (EVs), including exosomes and microvesicles (MVs), containing lipids, microRNAs, and proteins that facilitate intercellular communication. Due to their reduced tumorigenic and immunogenic characteristics, in addition to their convenient manipulability, EVs have arisen as a viable alternative for the management of disorders. The favorable characteristics of UC-MSCs or WJ-MSCs and their EVs have generated significant attention in clinical investigations encompassing diverse pathologies. Therefore, we present a review encompassing current preclinical and clinical investigations, examining the implications of UC-MSCs in diverse diseases, including those affecting bone, cartilage, skin, liver, kidney, neural, lung, cardiovascular, muscle, and retinal tissues, as well as conditions like cancer, diabetes, sepsis, and others.
Collapse
Affiliation(s)
- Ayyub Ali Patel
- Clinical Biochemistry Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hilla, Babil 51001, Iraq.
| | - Jasur Rizaev
- Department of Public Health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Ayaz Khurram Mallick
- Clinical Biochemistry Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
5
|
Li X, Zhang F, Sun L, Cai X, Lou F, Sun Y, Gao M, Wang Z, Tang S, Fan L, Wu Y, Jin X, Deng S, Xu Z, Sun X, Li Q, Wang H. Single-Cell RNA Sequencing Identifies WARS1+ Mesenchymal Stem Cells with Enhanced Immunomodulatory Capacity and Improved Therapeutic Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:257-267. [PMID: 38856632 DOI: 10.4049/jimmunol.2300752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangxiao Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengjiao Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Gao
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sibei Tang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinping Jin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Li
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Shen R, Lu Y, Cai C, Wang Z, Zhao J, Wu Y, Zhang Y, Yang Y. Research progress and prospects of benefit-risk assessment methods for umbilical cord mesenchymal stem cell transplantation in the clinical treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:196. [PMID: 38956734 PMCID: PMC11218107 DOI: 10.1186/s13287-024-03797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past decade, we have witnessed the development of cell transplantation as a new strategy for repairing spinal cord injury (SCI). However, due to the complexity of the central nervous system (CNS), achieving successful clinical translation remains a significant challenge. Human umbilical cord mesenchymal stem cells (hUMSCs) possess distinct advantages, such as easy collection, lack of ethical concerns, high self-renewal ability, multilineage differentiation potential, and immunomodulatory properties. hUMSCs are promising for regenerating the injured spinal cord to a significant extent. At the same time, for advancing SCI treatment, the appropriate benefit and risk evaluation methods play a pivotal role in determining the clinical applicability of treatment plans. Hence, this study discusses the advantages and risks of hUMSCs in SCI treatment across four dimensions-comprehensive evaluation of motor and sensory function, imaging, electrophysiology, and autonomic nervous system (ANS) function-aiming to improve the rationality of relevant clinical research and the feasibility of clinical translation.
Collapse
Affiliation(s)
- Ruoqi Shen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Chaoyang Cai
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Ziming Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiayu Zhao
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yingjie Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yinian Zhang
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
8
|
Kuang YH, Zhu W, Lin G, Cheng LM, Qin Q, Huang ZJ, Shi YL, Zhang CL, Xu JH, Yan KX, Lv CZ, Li W, Han Q, Stambler I, Lim LW, Chakrabarti S, Ulfhake B, Min KJ, Ellison-Hughes G, Cho WC, Jin K, Yao D, Lu C, Zhao RC, Chen X. Expert Consensus on the Application of Stem Cells in Psoriasis Research and Clinical Trials. Aging Dis 2024:AD.2024.0012. [PMID: 39012666 DOI: 10.14336/ad.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Psoriasis is an immune-mediated, chronic, relapsing, inflammatory, systemic disease induced by individual-environmental interactions, and is often lifelong because of the difficulty of treatment. In recent years, a variety of targeted therapies, including biologics, have improved the lesions and quality of life of most psoriasis patients, but they still do not address the problem of relapse and may be associated with decreased efficacy or adverse events such as infections over time. Therefore, there is an urgent need for breakthroughs in psoriasis treatment and in relapse-delaying and non-pharmacologic strategies, and stem cell therapy for psoriasis has emerged. In recent years, research on stem cell therapy for psoriasis has received a lot of attention, however, there is no reference standard as well as consensus in this field of research. Therefore, according to the latest consensus and guidelines, combined with relevant literature reports, clinical practice experience and the results of discussions with experts, this consensus specifies the types of stem cells commonly used in the treatment of psoriasis, the methods, dosages, and routes of stem cell therapy for psoriasis, as well as the clinical evaluations (efficacy and safety) of stem cell therapy for psoriasis. In addition, this consensus also provides normative standards for the processes of collection, preparation, preservation and quality control of stem cells and their related products, as well as recommendations for the management of stem cells during infusion for the treatment of psoriasis. This consensus provides the latest specific reference standards and practice guidelines for the field of stem cell therapy for psoriasis.
Collapse
Affiliation(s)
- Ye-Hong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cell, Changsha, China
| | - La-Mei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cell, Changsha, China
| | - Qun Qin
- The Office of Drug Clinical Trials Institution, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Jun Huang
- Center for Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yu-Ling Shi
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Shanghai Skin Disease Hospital, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chun-Lei Zhang
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jin-Hua Xu
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Xiang Yan
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Cheng-Zhi Lv
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
- Department of Dermatology, Dalian Dermatosis Hospital, Dalian, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| | - Qin Han
- International Society on Aging and Disease, Fort Worth, TX, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Ilia Stambler
- International Society on Aging and Disease, Fort Worth, TX, USA
- Department of Science, Technology and Society, Bar Ilan University, Ramat Gan, Israel
| | - Lee Wei Lim
- International Society on Aging and Disease, Fort Worth, TX, USA
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Sasanka Chakrabarti
- International Society on Aging and Disease, Fort Worth, TX, USA
- Maharishi Markandeshwar Deemed University, Mullana-Ambala, India
| | - Brun Ulfhake
- International Society on Aging and Disease, Fort Worth, TX, USA
- Karolinska University Hospital, Stockholm, Sweden
| | - Kyung-Jin Min
- International Society on Aging and Disease, Fort Worth, TX, USA
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Georgina Ellison-Hughes
- International Society on Aging and Disease, Fort Worth, TX, USA
- School of Basic and Medical Biosciences, Faculty of Life Sciences &;amp Medicine, King's College London, London, UK
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Kunlin Jin
- International Society on Aging and Disease, Fort Worth, TX, USA
- University of North Texas Health Science Center, Bryan, TX, USA
| | - Danni Yao
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Robert Chunhua Zhao
- International Society on Aging and Disease, Fort Worth, TX, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- China Dermatologist Association, China
- Chinese Society of Dermatology, China
| |
Collapse
|
9
|
Bharatha M, Nandana MB, Praveen R, Nayaka S, Velmurugan D, Vishwanath BS, Rajaiah R. Unconjugated bilirubin and its derivative ameliorate IMQ-induced psoriasis-like skin inflammation in mice by inhibiting MMP9 and MAPK pathway. Int Immunopharmacol 2024; 130:111679. [PMID: 38377853 DOI: 10.1016/j.intimp.2024.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves dysregulated proliferation of keratinocytes. Psoriatic skin lesions are characterized by redness, thickness, and scaling. The interleukin axis of IL-23/IL-17 is critically involved in the development of human psoriasis. Imiquimod (IMQ), an agonist of TLR7 is known to induce psoriatic-like skin inflammation in mice. The topical application of IMQ induces systemic inflammation with increased proinflammatory cytokines in serum and secondary lymphoid organs. Further, matrix metalloproteases (MMPs) have been implicated in the pathophysiology of psoriatic-like skin inflammation. The increased MMP9 activity and gene expression of proinflammatory cytokines in IMQ-induced psoriatic skin is mediated by the activation of the MAPK pathway. Moreover, the increased expression of neutrophil-specific chemokines confirmed the infiltration of neutrophils at the site of psoriatic skin inflammation. In contrast, expression of IL-10, an anti-inflammatory cytokine gene expression is reduced in IMQ-treated mice skin. Topical application of unconjugated bilirubin (UCB) and its derivative dimethyl ester of bilirubin (BD1) on IMQ-induced psoriatic mice skin significantly mitigated the symptoms of psoriasis by inhibiting the activity of MMP9. Further, UCB and BD1 reduced neutrophil infiltration as evidenced by decreased myeloperoxidase (MPO) activity and reduced gene expression of proinflammatory cytokines, and neutrophil-specific chemokines. Apart from these modulations UCB and BD1 reduced MAPK phosphorylation and upregulated anti-inflammatory cytokines. To conclude, UCB and BD1 immunomodulated the psoriatic skin inflammation induced by IMQ in mice by inhibiting neutrophil mediated MMP9, decreased proinflammatory cytokines gene expression and modulating the MAPK pathway.
Collapse
Affiliation(s)
- Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Devadasan Velmurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| |
Collapse
|