1
|
Kawamura S. Through cross-disciplinary collaboration. Primates 2024; 65:7-13. [PMID: 38198096 DOI: 10.1007/s10329-023-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Shoji Kawamura
- Department of Integrated Biosciences, Division of Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
2
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
3
|
Ramírez-Torres CE, Espinosa-Gómez FC, Morales-Mávil JE, Reynoso-Cruz JE, Laska M, Hernández-Salazar LT. Influence of tannic acid concentration on the physicochemical characteristics of saliva of spider monkeys ( Ateles geoffroyi). PeerJ 2022; 10:e14402. [PMID: 36452077 PMCID: PMC9703984 DOI: 10.7717/peerj.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Tannins are a chemical defense mechanism of plants consumed by herbivores. Variations in salivary physicochemical characteristics such as pH, total protein concentration (TP), and presence of proline-rich proteins (PRPs) in animals have been reported as a mechanism to protect the oral cavity when consuming food with variations in pH and tannins. Variations in salivary physiochemistry as adaptations for consuming tannin-rich foods have been found in omnivorous and folivorous primates, but have not yet been reported in frugivorous species such as spider monkeys. We therefore assessed changes in pH using test strips, TP concentration by measuring absorbance at 595 nm in a spectrophotometer and salivary PRPs using the SDS-PAGE electrophoresis technique in the saliva of nine captive spider monkeys in response to the consumption of solutions with different concentrations of tannic acid. The results showed variations in pH, TP concentration and the presence and variation of possible salivary PRPs associated with tannic acid concentration. These findings suggest that spider monkeys may tailor their salivary physicochemical characteristics in response to the ingestion of potentially toxic compounds.
Collapse
Affiliation(s)
| | - Fabiola Carolina Espinosa-Gómez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autonóma del Estado de Puebla (UPAEP), Puebla, Puebla, México
| | | | | | - Matthias Laska
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden, Sweden
| | | |
Collapse
|
4
|
Melin AD, Veilleux CC, Janiak MC, Hiramatsu C, Sánchez-Solano KG, Lundeen IK, Webb SE, Williamson RE, Mah MA, Murillo-Chacon E, Schaffner CM, Hernández-Salazar L, Aureli F, Kawamura S. Anatomy and dietary specialization influence sensory behaviour among sympatric primates. Proc Biol Sci 2022; 289:20220847. [PMID: 35975434 PMCID: PMC9382214 DOI: 10.1098/rspb.2022.0847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Senses form the interface between animals and environments, and provide a window into the ecology of past and present species. However, research on sensory behaviours by wild frugivores is sparse. Here, we examine fruit assessment by three sympatric primates (Alouatta palliata, Ateles geoffroyi and Cebus imitator) to test the hypothesis that dietary and sensory specialization shape foraging behaviours. Ateles and Cebus groups are comprised of dichromats and trichromats, while all Alouatta are trichomats. We use anatomical proxies to examine smell, taste and manual touch, and opsin genotyping to assess colour vision. We find that the frugivorous spider monkeys (Ateles geoffroyi) sniff fruits most often, omnivorous capuchins (Cebus imitator), the species with the highest manual dexterity, use manual touch most often, and that main olfactory bulb volume is a better predictor of sniffing behaviour than nasal turbinate surface area. We also identify an interaction between colour vision phenotype and use of other senses. Controlling for species, dichromats sniff and bite fruits more often than trichromats, and trichromats use manual touch to evaluate cryptic fruits more often than dichromats. Our findings reveal new relationships among dietary specialization, anatomical variation and foraging behaviour, and promote understanding of sensory system evolution.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,German Primate Research Center, Gottingen, Germany
| | - Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, AZ, USA.,Department of Anthropology, University of Texas, Austin, TX, USA
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,School of Science, Engineering & Environment, University of Salford, Manchester, UK
| | - Chihiro Hiramatsu
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan
| | | | - Ingrid K Lundeen
- Department of Anthropology, University of Texas, Austin, TX, USA
| | - Shasta E Webb
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Rachel E Williamson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Megan A Mah
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | | | | | | | - Filippo Aureli
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México.,Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Shoji Kawamura
- Department of Integrative Biosciences, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
5
|
Hickey DG, Davies WIL, Hughes S, Rodgers J, Thavanesan N, MacLaren RE, Hankins MW. Chimeric human opsins as optogenetic light sensitisers. J Exp Biol 2021; 224:270919. [PMID: 34151984 PMCID: PMC8325934 DOI: 10.1242/jeb.240580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/08/2021] [Indexed: 12/03/2022]
Abstract
Human opsin-based photopigments have great potential as light-sensitisers, but their requirement for phototransduction cascade-specific second messenger proteins may restrict their functionality in non-native cell types. In this study, eight chimeric human opsins were generated consisting of a backbone of either a rhodopsin (RHO) or long-wavelength-sensitive (LWS) opsin and intracellular domains from Gq/11-coupled human melanopsin. Rhodopsin/melanopsin chimeric opsins coupled to both Gi and Gq/11 pathways. Greater substitution of the intracellular surface with corresponding melanopsin domains generally showed greater Gq/11 activity with a decrease in Gi activation. Unlike melanopsin, rhodopsin and rhodopsin/melanopsin chimeras were dependent upon exogenous chromophore to function. By contrast, wild-type LWS opsin and LWS opsin/melanopsin chimeras showed only weak Gi activation in response to light, whilst Gq/11 pathway activation was not detected. Immunocytochemistry (ICC) demonstrated that chimeric opsins with more intracellular domains of melanopsin were less likely to be trafficked to the plasma membrane. This study demonstrates the importance of Gα coupling efficiency to the speed of cellular responses and created human opsins with a unique combination of properties to expand the range of customised optogenetic biotools for basic research and translational therapies. Summary: Combining different domains of human visual opsins and melanopsin creates functionally unique chimeric opsins with potential optogenetic applications.
Collapse
Affiliation(s)
- Doron G Hickey
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,The Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| | - Wayne I L Davies
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Umeå Centre for Molecular Medicine, Umeå University, Umeå, S-90187, Sweden.,School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, OX1 3QU, UK
| | - Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, OX1 3QU, UK.,Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PT, UK
| | | | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust and Oxford NIHR Biomedical Research Centre, Oxford, OX3 9DU,UK
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX1 3QU, UK.,Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
6
|
Henriques LD, Hauzman E, Bonci DMO, Chang BSW, Muniz JAPC, da Silva Souza G, de Lima Silveira LC, de Faria Galvão O, Goulart PRK, Ventura DF. Uniform trichromacy in Alouatta caraya and Alouatta seniculus: behavioural and genetic colour vision evaluation. Front Zool 2021; 18:36. [PMID: 34238318 PMCID: PMC8268213 DOI: 10.1186/s12983-021-00421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Primate colour vision depends on a matrix of photoreceptors, a neuronal post receptoral structure and a combination of genes that culminate in different sensitivity through the visual spectrum. Along with a common cone opsin gene for short wavelengths (sws1), Neotropical primates (Platyrrhini) have only one cone opsin gene for medium-long wavelengths (mws/lws) per X chromosome while Paleotropical primates (Catarrhini), including humans, have two active genes. Therefore, while female platyrrhines may be trichromats, males are always dichromats. The genus Alouatta is inferred to be an exception to this rule, as electrophysiological, behavioural and molecular analyses indicated a potential for male trichromacy in this genus. However, it is very important to ascertain by a combination of genetic and behavioural analyses whether this potential translates in terms of colour discrimination capability. We evaluated two howler monkeys (Alouatta spp.), one male A. caraya and one female A. seniculus, using a combination of genetic analysis of the opsin gene sequences and a behavioral colour discrimination test not previously used in this genus. Both individuals completed the behavioural test with performances typical of trichromatic colour vision and the genetic analysis of the sws1, mws, and lws opsin genes revealed three different opsin sequences in both subjects. These results are consistent with uniform trichromacy in both male and female, with presumed spectral sensitivity peaks similar to Catarrhini, at ~ 430 nm, 532 nm, and 563 nm for S-, M- and L-cones, respectively.
Collapse
Affiliation(s)
- Leonardo Dutra Henriques
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Belinda S W Chang
- Department of Cell and System Biology, University of Toronto, Toronto, Canada
| | | | - Givago da Silva Souza
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luiz Carlos de Lima Silveira
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Olavo de Faria Galvão
- Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
7
|
Bolt LM, Brandt LSE, Molina RL, Schreier AL. Maderas Rainforest Conservancy: A One Health approach to conservation. Am J Primatol 2021; 84:e23293. [PMID: 34096645 DOI: 10.1002/ajp.23293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/09/2021] [Accepted: 05/22/2021] [Indexed: 11/09/2022]
Abstract
Maderas Rainforest Conservancy (MRC) was incorporated as a conservation nonprofit organization in 2008, and manages two sites where biological field courses have been offered since the 1990s: La Suerte Biological Research Station in Costa Rica, and Ometepe Biological Research Station in Nicaragua. MRC employs a One Health approach to conservation education, and can serve as a model for other biological field sites. The Nicaraguan Molina family, who owns the sites, partnered with primatologist Paul Garber in 1994 to develop a primate field course aimed at introducing university students to field research. Through using their land to further conservation education and research, the Molina family has preserved the forest and engaged the local communities near their sites. Eight graduate theses and 46 refereed publications have been completed since 2010 based on research undertaken at MRC sites. While primate field courses have been offered at least once annually since 1994 and remain popular, a range of other ecological courses are now additionally offered. MRC operates from a One Health perspective, engaging in forest restoration and ecological monitoring projects, and has gradually expanded community outreach initiatives. MRC now conducts regular medical and veterinary missions in the communities surrounding the research stations which provide health care to local people and limit the population growth of domestic animals, thereby increasing the survival of wild animals. MRC is also active in ESL-teaching and conservation education, and funds Proyecto Jade, which empowers local women to make and sell organic jewelry. Through these programs, MRC works to help the local communities live more sustainably with the environment around them. MRC's support of research, commitment to education, medical and veterinary missions, and outreach initiatives to the local community all work together for the well-being of both the people and the environment, thus exemplifying the One Health perspective.
Collapse
Affiliation(s)
- Laura M Bolt
- Department of Anthropology, University of Waterloo, Waterloo, Ontario, Canada.,The Maderas Rainforest Conservancy, Miami, Florida, USA
| | - LaRoy S E Brandt
- The Maderas Rainforest Conservancy, Miami, Florida, USA.,Department of Biology, Lincoln Memorial University, Harrogate, Tennessee, USA
| | | | - Amy L Schreier
- The Maderas Rainforest Conservancy, Miami, Florida, USA.,Department of Biology, Regis University, Denver, Colorado, USA
| |
Collapse
|
8
|
Melin AD, Hogan JD, Campos FA, Wikberg E, King‐Bailey G, Webb S, Kalbitzer U, Asensio N, Murillo‐Chacon E, Cheves Hernandez S, Guadamuz Chavarria A, Schaffner CM, Kawamura S, Aureli F, Fedigan L, Jack KM. Primate life history, social dynamics, ecology, and conservation: Contributions from long‐term research in Área de Conservación Guanacaste, Costa Rica. Biotropica 2020. [DOI: 10.1111/btp.12867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Amanda D. Melin
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
- Verhaltensökologie & Soziobiologie Deutsches Primatenzentrum – Leibniz‐Institut für Primatenforschung Göttingen Germany
| | - Jeremy D. Hogan
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
| | | | - Eva Wikberg
- Department of Anthropology Tulane University New Orleans LA USA
| | | | - Shasta Webb
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
| | - Urs Kalbitzer
- Department of Anthropology McGill University Montreal QC Canada
| | - Norberto Asensio
- Departamento de Psicología Social y Metodología de las Ciencias del Comportamiento Universidad del País Vasco Bilbao Spain
| | | | | | | | | | - Shoji Kawamura
- Department of Integrated Biosciences The University of Tokyo Kashiwa Japan
| | - Filippo Aureli
- Instituto de Neuroetología Universidad Veracruzana Xalapa Mexico
- Research Centre in Evolutionary Anthropology and Palaeoecology Liverpool John Moores University Liverpool UK
| | - Linda Fedigan
- Department of Anthropology and Archaeology University of Calgary Calgary AB Canada
| | - Katharine M. Jack
- Department of Anthropology University of Texas at San Antonio San Antonio TX USA
| |
Collapse
|
9
|
Sánchez-Solano KG, Morales-Mávil JÉ, Laska M, Melin A, Hernández-Salazar LT. Visual detection and fruit selection by the mantled howler monkey (Alouatta palliata). Am J Primatol 2020; 82:e23186. [PMID: 32812274 DOI: 10.1002/ajp.23186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 11/05/2022]
Abstract
Howler monkeys (platyrrhini) have evolved routine trichromatic color vision independently from catarrhines, which presents an opportunity to test hypotheses concerning the adaptive value of distinguishing reddish from greenish hues. A longstanding hypothesis posits that trichromacy aids in the efficient detection of reddish-ripe fruits, which could be an advantage for the detection of the nutritional content of the fruit, such as sugars. In the present study, we assessed fruit visual conspicuity and selection based on color and sucrose content by wild mantled howler monkeys (Alouatta palliata) on Agaltepec Island, Mexico. We used colorimetry to classify dietary fruits as cryptic (greenish) or conspicuous (reddish) against their background leaves. Species-specific color models indicate that trichromatic howler monkeys should be more efficient in discriminating the conspicuous ripe fruits from leaves compared to detecting cryptic ripe fruits from leaves. We found howler monkeys consume more cryptic fruits compared to conspicuous fruits, and that they consume more unripe fruits than ripe fruits. The consumption (acceptance) of fruit was independent of sucrose content, and thus this disaccharide may not play an essential role in mantled howler food selection. Our findings suggest that routine trichromatic color vision may aid in the detection and discrimination of conspicuously colored fruits, but that the final decision whether to accept or reject a fruit probably involves the use of other senses in addition to vision.
Collapse
Affiliation(s)
- Karem G Sánchez-Solano
- Biología de la Conducta, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Jorge É Morales-Mávil
- Biología de la Conducta, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Matthias Laska
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping, Sweden
| | - Amanda Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura T Hernández-Salazar
- Biología de la Conducta, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
10
|
Flores-Escobar E, Sanpera C, Jover L, Cortés-Ortiz L, Rangel-Negrín A, Canales-Espinosa D, Dias PAD. Isotopic niche partitioning in two sympatric howler monkey species. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:438-446. [PMID: 32091131 DOI: 10.1002/ajpa.24028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Ecological similarity between species can lead to interspecific trophic competition. However, when ecologically similar species coexist, they may differ in foraging strategies and habitat use, which can lead to niche partitioning. As the body tissues of consumers contain a stable isotope signature that reflects the isotopic composition of their diet, stable isotope analysis is a useful tool to study feeding behavior. We measured the isotopic niche width, which is a proxy for trophic niche width, of mantled (Alouatta palliata) and black (A. pigra) howler monkeys. Specifically, studied populations in allopatry and sympatry to assess whether these species showed niche partitioning. MATERIALS AND METHODS Between 2008 and 2012, we collected hair samples from 200 subjects (113 black and 87 mantled howler monkeys) and used continuous flow isotope ratio mass spectrometry to estimate δ13 C and δ15 N. We described the isotopic niche width of each species in allopatry and sympatry with the Bayesian estimation of the standard ellipse areas. RESULTS In allopatry, isotopic niche width and isotopic variation were similar in both species. In sympatry, black howler monkeys had a significantly broader isotopic niche, which was mainly determined by high δ15 N values, and included the majority of mantled howler monkeys' isotopic niche. The isotopic niche of mantled howler monkeys did not differ between sympatry and allopatry. CONCLUSIONS The coexistence of these ecologically similar species may be linked to trophic niche adjustments by one species, although the particular features of such adjustments (e.g., dietary, spatial, or sensory partitioning) remain to be addressed.
Collapse
Affiliation(s)
- Elizabeth Flores-Escobar
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.,Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Carolina Sanpera
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Lluís Jover
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Ariadna Rangel-Negrín
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Domingo Canales-Espinosa
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Pedro Américo D Dias
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
11
|
Goulart VDLR, Boubli JP, Young RJ. Medium/Long wavelength sensitive opsin diversity in Pitheciidae. Sci Rep 2017; 7:7737. [PMID: 28798406 PMCID: PMC5552705 DOI: 10.1038/s41598-017-08143-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/05/2017] [Indexed: 11/09/2022] Open
Abstract
New World primates feature a complex colour vision system. Most species have polymorphic colour vision where males have a dichromatic colour perception and females can be either dichromatic or trichromatic. The adaptive value of high allelic diversity of opsins, a light sensitive protein, found in primates' eyes remains unknown. Studies revealing the allelic diversity are important as they shed light on our understanding of the adaptive value of differences in the colouration of species and their ecologies. Here we investigate the allelic types found in Pitheciidae, an understudied New World primate family, revealing the diversity of medium/long wavelength sensitive opsins both in cryptic and conspicuous species of this primate family. We found five alleles in Cacajao, six in Callicebinae (i.e. Plecturocebus, Cheracebus, and Callicebus), four in Chiropotes, and three in Pithecia, some of them reported for the first time. Both cryptic and conspicuous species in this group presented high allelic diversity.
Collapse
Affiliation(s)
- Vinicius D L R Goulart
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil.
- School of Environment and Life Sciences, Peel Building, University of Salford Manchester, Salford, M5 4WT, UK.
| | - Jean P Boubli
- School of Environment and Life Sciences, Peel Building, University of Salford Manchester, Salford, M5 4WT, UK
| | - Robert J Young
- School of Environment and Life Sciences, Peel Building, University of Salford Manchester, Salford, M5 4WT, UK
| |
Collapse
|
12
|
Melin AD, Khetpal V, Matsushita Y, Zhou K, Campos FA, Welker B, Kawamura S. Howler monkey foraging ecology suggests convergent evolution of routine trichromacy as an adaptation for folivory. Ecol Evol 2017; 7:1421-1434. [PMID: 28261454 PMCID: PMC5330884 DOI: 10.1002/ece3.2716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 02/03/2023] Open
Abstract
Primates possess remarkably variable color vision, and the ecological and social factors shaping this variation remain heavily debated. Here, we test whether central tenants of the folivory hypothesis of routine trichromacy hold for the foraging ecology of howler monkeys. Howler monkeys (genus Alouatta) and paleotropical primates (Parvorder: Catarrhini) have independently acquired routine trichromacy through fixation of distinct mid- to long-wavelength-sensitive (M/LWS) opsin genes on the X-chromosome. The presence of routine trichromacy in howlers, while other diurnal neotropical monkeys (Platyrrhini) possess polymorphic trichromacy, is poorly understood. A selective force proposed to explain the evolution of routine trichromacy in catarrhines-reliance on young, red leaves-has received scant attention in howlers, a gap we fill in this study. We recorded diet, sequenced M/LWS opsin genes in four social groups of Alouatta palliata, and conducted colorimetric analysis of leaves consumed in Sector Santa Rosa, Costa Rica. For a majority of food species, including Ficus trees, an important resource year-round, young leaves were more chromatically conspicuous from mature leaves to trichromatic than to hypothetical dichromatic phenotypes. We found that 18% of opsin genes were MWS/LWS hybrids; when combined with previous research, the incidence of hybrid M/LWS opsins in this species is 13%. In visual models of food discrimination ability, the hybrid trichromatic phenotype performed slightly poorer than normal trichromacy, but substantially better than dichromacy. Our results provide support for the folivory hypothesis of routine trichromacy. Similar ecological pressures, that is, the search for young, reddish leaves, may have driven the independent evolution of routine trichromacy in primates on separate continents. We discuss our results in the context of balancing selection acting on New World monkey opsin genes and hypothesize that howlers experience stronger selection against dichromatic phenotypes than other sympatric species, which rely more heavily on cryptic foods.
Collapse
Affiliation(s)
- Amanda D. Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABCanada
- Department of Medical Genetics and Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
| | - Vishal Khetpal
- Department of AnthropologyWashington University in St. LouisSt. LouisMOUSA
| | - Yuka Matsushita
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Kaile Zhou
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
- Department of Plant ProtectionCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouZhejiangChina
| | - Fernando A. Campos
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryABCanada
- Department of AnthropologyTulane UniversityNew OrleansLAUSA
| | - Barbara Welker
- Department of AnthropologyState University of New York at GeneseoGeneseoNYUSA
| | - Shoji Kawamura
- Department of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
13
|
Kawamura S, Melin AD. Evolution of Genes for Color Vision and the Chemical Senses in Primates. EVOLUTION OF THE HUMAN GENOME I 2017. [DOI: 10.1007/978-4-431-56603-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Tsutsui K, Otoh M, Sakurai K, Suzuki-Hashido N, Hayakawa T, Misaka T, Ishimaru Y, Aureli F, Melin AD, Kawamura S, Imai H. Variation in ligand responses of the bitter taste receptors TAS2R1 and TAS2R4 among New World monkeys. BMC Evol Biol 2016; 16:208. [PMID: 27733116 PMCID: PMC5062938 DOI: 10.1186/s12862-016-0783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/30/2016] [Indexed: 12/02/2022] Open
Abstract
Background New World monkeys (NWMs) are unique in that they exhibit remarkable interspecific variation in color vision and feeding behavior, making them an excellent model for studying sensory ecology. However, it is largely unknown whether non-visual senses co-vary with feeding ecology, especially gustation, which is expected to be indispensable in food selection. Bitter taste, which is mediated by bitter taste receptors (TAS2Rs) in the tongue, helps organisms avoid ingesting potentially toxic substances in food. In this study, we compared the ligand sensitivities of the TAS2Rs of five species of NWMs by heterologous expression in HEK293T cells and calcium imaging. Results We found that TAS2R1 and TAS2R4 orthologs differ in sensitivity among the NWM species for colchicine and camphor, respectively. We then reconstructed the ancestral receptors of NWM TAS2R1 and TAS2R4, measured the evolutionary shift in ligand sensitivity, and identified the amino acid replacement at residue 62 as responsible for the high sensitivity of marmoset TAS2R4 to colchicine. Conclusions Our results provide a basis for understanding the differences in feeding ecology among NWMs with respect to bitter taste. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0783-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kei Tsutsui
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiro Otoh
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kodama Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Takashi Hayakawa
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Japan Monkey Centre, Inuyama, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Filippo Aureli
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK.,Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
| | - Amanda D Melin
- Departments of Anthropology & Archaeology and Medical Genetics, University of Calgary, Calgary, Canada
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama, Japan.
| |
Collapse
|
15
|
Kawamura S. Color vision diversity and significance in primates inferred from genetic and field studies. Genes Genomics 2016; 38:779-791. [PMID: 27594978 PMCID: PMC4987397 DOI: 10.1007/s13258-016-0448-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022]
Abstract
Color provides a reliable cue for object detection and identification during various behaviors such as foraging, mate choice, predator avoidance and navigation. The total number of colors that a visual system can discriminate is largely dependent on the number of different spectral types of cone opsins present in the retina and the spectral separations among them. Thus, opsins provide an excellent model system to study evolutionary interconnections at the genetic, phenotypic and behavioral levels. Primates have evolved a unique ability for three-dimensional color vision (trichromacy) from the two-dimensional color vision (dichromacy) present in the majority of other mammals. This was accomplished via allelic differentiation (e.g. most New World monkeys) or gene duplication (e.g. Old World primates) of the middle to long-wavelength sensitive (M/LWS, or red-green) opsin gene. However, questions remain regarding the behavioral adaptations of primate trichromacy. Allelic differentiation of the M/LWS opsins results in extensive color vision variability in New World monkeys, where trichromats and dichromats are found in the same breeding population, enabling us to directly compare visual performances among different color vision phenotypes. Thus, New World monkeys can serve as an excellent model to understand and evaluate the adaptive significance of primate trichromacy in a behavioral context. I shall summarize recent findings on color vision evolution in primates and introduce our genetic and behavioral study of vision-behavior interrelationships in free-ranging sympatric capuchin and spider monkey populations in Costa Rica.
Collapse
Affiliation(s)
- Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience BLDG 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| |
Collapse
|
16
|
Silveira LCL, Saito CA, da Silva Filho M, Kremers J, Bowmaker JK, Lee BB. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology. PLoS One 2014; 9:e113321. [PMID: 25405863 PMCID: PMC4236167 DOI: 10.1371/journal.pone.0113321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.
Collapse
Affiliation(s)
- Luiz Carlos L. Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| | - Cézar A. Saito
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - James K. Bowmaker
- Division of Visual Science, Institute of Ophthalmology, University College London, London, England, United Kingdom
| | - Barry B. Lee
- State College of Optometry, State University of New York, New York, New York, United States of America
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
17
|
The Genetic Basis of Primate Behavior: Genetics and Genomics in Field-Based Primatology. INT J PRIMATOL 2013; 35:1-10. [PMID: 25013243 DOI: 10.1007/s10764-013-9732-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|