1
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
2
|
Pang H, Gong Y, Wang Y, Zhang L. The expression of miR-21, HSP90a and gGASP-1 in serum of patients with lung cancer and their correlation with pathological subtypes. J Med Biochem 2024; 43:460-468. [PMID: 39139173 PMCID: PMC11318063 DOI: 10.5937/jomb0-48051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 08/15/2024] Open
Abstract
Background To investigate the expression of miR-21, heat shock protein-90a (HSP90a) and G protein-coupled receptorrelated sorting protein 1(GASP-1) in the serum of lung cancer patients and their correlation with pathological subtypes. Methods Eighty patients with lung cancer were included in the lung cancer group from May 2020 to May 2022, and 40 volunteers who underwent physical examination were randomly included in the control group according to the group ratio of 2:1. This ratio balances the need for a sufficiently large experimental group to detect significant effects with the practicality of recruiting a manageable control group. To ensure the validity of our findings, we meticulously calculated the sample size to achieve adequate statistical power, thus enabling us to draw reliable conclusions. Serum miR-21, HSP90a and GASP-1 levels of patients in the two groups were detected. We quantitatively assessed the serum levels of miR-21, HSP90a, and GASP1 in lung cancer patients and healthy volunteers. We employed enzyme-linked immunosorbent assay (ELISA) for HSP90a and GASP-1, and reverse transcription-polymerase chain reaction (RT-PCR) for miR-21, ensuring precise quantification. To explore the correlation between it and pathological subtypes, TNM stage and lymph node metastasis of lung cancer patients. TNM stands for Tumor, Node, and Metastasis. This system is widely used for staging cancer and describes the size and extent of the primary tumor (T), the absence or presence of cancer in nearby lymph nodes (N), and whether the cancer has spread to other parts of the body (M). Results The serum levels of miR-21, HSP90a and GASP1 in lung cancer group were higher than those in control group (P < 0.05). ROC curve analysis showed that serum miR-21, HSP90a and GASP-1 levels had certain value in the diagnosis of lung cancer, and their AUC values were 0.901, 0.874 and 0.865, respectively (P < 0.05). There was no difference in the relative expression level of serum miR-21 between squamous cell carcinoma group and adenocarcinoma group (P>0.05), but the levels of HSP90a and GASP-1 in adenocarcinoma group were higher than those in squamous cell carcinoma group (P < 0.05). There was no difference in the levels of serum miR-21, HSP90a and GASP-1 between stage I and stage II groups (P>0.05). The levels of serum miR-21, HSP90a and GASP-1 in stage III and stage IV groups were higher than those in stage I and stage II groups, and those in stage IV were higher than those in stage III group (P < 0.05). The serum levels of miR-21, HSP90a and GASP-1 in patients with metastasis were higher than those in patients without metastasis (P < 0.05). Conclusions Our study concludes that there is a notable association between elevated serum levels of miR-21, HSP90a, and GASP-1 and lung cancer. However, it is crucial to acknowledge that these findings are preliminary and further statistical analysis is needed to strengthen these associations. Future studies with comprehensive statistical evaluation will be vital to validate these potential biomarkers for lung cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Hongyan Pang
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| | - Yange Gong
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| | - Yaojie Wang
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| | - Lianyong Zhang
- Cangzhou Central Hospital, Department of Respiratory and Critical Care Medicine, Cangzhou, China
| |
Collapse
|
3
|
Meng F, Zhu S, Gong M, Tao H, Wang W, Wang G. Heat shock protein 70 is involved in polaprezinc driven cell protection against Helicobacter pylori-induced injury. Int J Med Microbiol 2023; 313:151582. [PMID: 37285706 DOI: 10.1016/j.ijmm.2023.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Polaprezinc (PZ) plays a role in the protection of gastric mucosa and inhibiting Helicobacter pylori (H. pylori) growth in vitro. The objective of this study was to determine the protective effects of PZ on human gastric epithelial cells (GES-1) against H. pylori-induced damage, while also examining heat shock protein 70 (HSP70) as a potential underlying factor in this protection. Our findings revealed that PZ exerted bactericidal effects against H. pylori strains. We also observed that PZ mitigated the H. pylori-induced damage to GES-1 cells by increasing cell viability, reducing LDH release, and decreasing the secretion of pro-inflammatory factors such as MCP-1 and IL-6. Co-culturing PZ with GES-1 cells significantly up-regulated the GES-1 HSP70 expression in both a time and dose-dependent manner. Pre-incubating (for 12 h) or co-culturing (for 24 h) GES-1 cells with PZ reversed the down-regulation of HSP70 in GES-1 cells caused by H. pylori infection. However, when quercetin was used to inhibit the up-regulation of HSP70 in GES-1 cells, the protective effect of PZ on GES-1 cells was significantly reduced. Based on the results of this study, PZ exhibits a protective role on GES-1 cells against H. pylori injury, as well as a direct bactericidal effect on H. pylori. HSP70 is involved in the PZ-driven host cell protection against H. pylori injury. These findings provide insight into alternative strategies for H. pylori treatment.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Siying Zhu
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Meiliang Gong
- Department of Laboratory Medicine, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongjin Tao
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Gangshi Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
4
|
Decreased Levels of Chaperones in Mucopolysaccharidoses and Their Elevation as a Putative Auxiliary Therapeutic Approach. Pharmaceutics 2023; 15:pharmaceutics15020704. [PMID: 36840025 PMCID: PMC9967431 DOI: 10.3390/pharmaceutics15020704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are rare genetic disorders belonging to the lysosomal storage diseases. They are caused by mutations in genes encoding lysosomal enzymes responsible for degrading glycosaminoglycans (GAGs). As a result, GAGs accumulate in lysosomes, leading to impairment of cells, organs and, consequently, the entire body. Many of the therapies proposed thus far require the participation of chaperone proteins, regardless of whether they are therapies in common use (enzyme replacement therapy) or remain in the experimental phase (gene therapy, STOP-codon-readthrough therapy). Chaperones, which include heat shock proteins, are responsible for the correct folding of other proteins to the most energetically favorable conformation. Without their appropriate levels and activities, the correct folding of the lysosomal enzyme, whether supplied from outside or synthesized in the cell, would be impossible. However, the baseline level of nonspecific chaperone proteins in MPS has never been studied. Therefore, the purpose of this work was to determine the basal levels of nonspecific chaperone proteins of the Hsp family in MPS cells and to study the effect of normalizing GAG concentrations on these levels. Results of experiments with fibroblasts taken from patients with MPS types I, II, IIIA, IIIB, IIIC, IID, IVA, IVB, VI, VII, and IX, as well as from the brains of MPS I mice (Idua-/-), indicated significantly reduced levels of the two chaperones, Hsp70 and Hsp40. Interestingly, the reduction in GAG levels in the aforementioned cells did not lead to normalization of the levels of these chaperones but caused only a slight increase in the levels of Hsp40. An additional transcriptomic analysis of MPS cells indicated that the expression of other genes involved in protein folding processes and the cell response to endoplasmic reticulum stress, resulting from the appearance of abnormally folded proteins, was also modulated. To summarize, reduced levels of chaperones may be an additional cause of the low activity or inactivity of lysosomal enzymes in MPS. Moreover, this may point to causes of treatment failure where the correct structure of the enzyme supplied or synthesized in the cell is crucial to lower GAG levels.
Collapse
|
5
|
Xie Y, Huang J, Chen Y. Exogenous recombinant Hsp70 attenuates sevoflurane anesthesia-induced cognitive dysfunction in aged mice. Brain Behav 2023; 13:e2861. [PMID: 36573756 PMCID: PMC9847620 DOI: 10.1002/brb3.2861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/18/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a severe postoperative neurological sequela in elderly patients, and there is currently no standard treatment for POCD. In this study, whether recombinant human heat shock protein 70 (rHsp70) could alleviate sevoflurane-induced cognitive impairment in aged mice is investigated. METHODS To determine the prophylactic effect of rHsp70 in sevoflurane-induced cognitive dysfunction, aged mice were pretreated with different concentrations of rHsp70 (29.4, 58.8, and 117.6 μg/kg; intranasal injected; N = 12) every day for 1 week; then, 3% sevoflurane was utilized to anesthetize the aged mice. Cognitive function, neurotoxicity, and serum and hippocampal Hsp70 levels in aged mice undergoing sevoflurane anesthesia were assessed by the Morris water maze test and enzyme-linked immunosorbent assay. The effects of rHsp70 on inflammatory response were assessed by proinflammatory cytokine production and nuclear factor-κB (NF-κB) activation assays. RESULTS We found that aged mice exposed to sevoflurane showed reduced learning and memory ability and reduced Hsp70 expression, which were both restored by rHsp70 pretreatment. RHsp70 also reversed sevoflurane-induced up-regulated Bax and Bcl-2 expression and interleukin-1, IL-6, and monocyte chemoattractant protein-1 overproduction. Finally, rHsp70 pretreatment suppressed sevoflurane-induced NF-κB activation. Our study indicated that rHsp70 was sufficient to suppress sevoflurane-induced cognitive decline and neurotoxicity. CONCLUSION Our important finding warrants further study on the clinical application of rHsp70 in elderly patients undergoing anesthesia.
Collapse
Affiliation(s)
- Yongxiang Xie
- Department of Anesthesiology, Longyan People Hospital of Fujian, Longyan, China
| | - Jianzhong Huang
- Department of Anesthesiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yijia Chen
- Department of Anesthesiology, Longyan People Hospital of Fujian, Longyan, China
| |
Collapse
|
6
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Kamal SR, Potukutchi S, Gelovani DJ, Bonomi RE, Kallakuri S, Cavanaugh JM, Mangner T, Conti A, Liu RS, Pasqualini R, Arap W, Sidman RL, Perrine SA, Gelovani JG. Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats. Mol Psychiatry 2022; 27:1683-1693. [PMID: 35027678 PMCID: PMC11629393 DOI: 10.1038/s41380-021-01369-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.
Collapse
Affiliation(s)
- Swatabdi R Kamal
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Shreya Potukutchi
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - David J Gelovani
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Robin E Bonomi
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - John M Cavanaugh
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Thomas Mangner
- Cyclotron-Radiochemistry Facility, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alana Conti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Departments of Neurosurgery and Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA.
- Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
8
|
Yang X, Tong G, Dong L, Yan T, Xu H, Tang G, Zhang Y, Ma K, Yin J, Kuang Y. Evaluation of qPCR reference genes for taimen (Hucho taimen) under heat stress. Sci Rep 2022; 12:313. [PMID: 35013399 PMCID: PMC8748915 DOI: 10.1038/s41598-021-03872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
As a powerful and attractive method for detecting gene expression, qRT-PCR has been broadly used in aquaculture research. Understanding the biology of taimen (Hucho taimen) has drawn increasing interest because of its ecological and economic value. Stable reference genes are required for the reliable quantification of gene expression, but such genes have not yet been optimized for taimen. In this study, the stability levels of 10 commonly used candidate reference genes were evaluated using geNorm, NormFinder, BestKeeper, and RefFinder. The expression levels of the 10 genes were detected using 240 samples from 48 experimental groups consisting of 40 individuals treated under four heat-stress conditions (18, 20, 22, and 24 °C) for 24 h and 26 °C for 4, 24, 48, and 72 h. Six tissues (blood, heart, brain, gill, skin, and liver) were collected from each individual. Ribosomal protein S29 (RPS29) and ribosomal protein L19 (RPL19) were the most stable genes among all of the samples, whereas 28S ribosomal RNA (28S rRNA), attachment region binding protein (ARBP), and 18S ribosomal RNA (18S rRNA) were the least stable. These results were verified by an expression analysis of taimen heat-stress genes (heat shock protein 60, hsp60, and heat shock protein 70, hsp70). In conclusion, RPS29 and RPL19 are the optimal reference genes for qRT-PCR analyses of taimen, irrespective of the tissue and experimental conditions. These results allow the reliable study of gene expression in taimen.
Collapse
Affiliation(s)
- Xiaoxing Yang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150070, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201303, China
| | - Guangxiang Tong
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150070, China.,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Harbin, 150070, China
| | - Le Dong
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150070, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201303, China
| | - Ting Yan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150070, China
| | - Huan Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150070, China
| | - Guopan Tang
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450016, China
| | - Yongquan Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Harbin, 150070, China
| | - Kai Ma
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Harbin, 150070, China
| | - Jiasheng Yin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150070, China.,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Harbin, 150070, China
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China. .,Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150070, China.
| |
Collapse
|
9
|
Oh JS, Park J, Kim K, Jeong HH, Oh YM, Choi S, Choi KH. HSP70-mediated neuroprotection by combined treatment of valproic acid with hypothermia in a rat asphyxial cardiac arrest model. PLoS One 2021; 16:e0253328. [PMID: 34138955 PMCID: PMC8211226 DOI: 10.1371/journal.pone.0253328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
It has been reported that valproic acid (VPA) combined with therapeutic hypothermia can improve survival and neurologic outcomes in a rat asphyxial cardiac arrest model. However, neuroprotective mechanisms of such combined treatment of valproic acid with hypothermia remains unclear. We hypothesized that epigenetic regulation of HSP70 by histone acetylation could increase HSP70-mediated neuroprotection suppressed under hypothermia. Male Sprague-Dawley rats that achieved return of spontaneous circulation (ROSC) from asphyxial cardiac arrest were randomized to four groups: normothermia (37°C ± 1°C), hypothermia (33°C ± 1°C), normothermia + VPA (300 mg/kg IV initiated 5 minutes post-ROSC and infused over 20 min), and hypothermia + VPA. Three hours after ROSC, acetyl-histone H3 was highly expressed in VPA-administered groups (normothermia + VPA, hypothermia + VPA). Four hours after ROSC, HSP70 mRNA expression levels were significantly higher in normothermic groups (normothermia, normothermia + VPA) than in hypothermic groups (hypothermia, hypothermia + VPA). The hypothermia + VPA group showed significantly higher HSP70 mRNA expression than the hypothermia group. Similarly, at five hours after ROSC, HSP70 protein levels were significantly higher in normothermic groups than in hypothermic groups. HSP70 levels were significantly higher in the hypothermia + VPA group than in the hypothermia group. Only the hypothermia + VPA group showed significantly attenuated cleaved caspase-9 levels than the normothermia group. Hypothermia can attenuate the expression of HSP70 at transcriptional level. However, VPA administration can induce hyperacetylation of histone H3, leading to epigenetic transcriptional activation of HSP70 even in a hypothermic status. Combining VPA treatment with hypothermia may compensate for reduced activation of HSP70-mediated anti-apoptotic pathway.
Collapse
Affiliation(s)
- Joo Suk Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Jungtaek Park
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kiwook Kim
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Hyun Ho Jeong
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Young Min Oh
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Semin Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| | - Kyoung Ho Choi
- Department of Emergency Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Republic of Korea
| |
Collapse
|
10
|
Kim JY, Barua S, Huang MY, Park J, Yenari MA, Lee JE. Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury. Cells 2020; 9:cells9092020. [PMID: 32887360 PMCID: PMC7563654 DOI: 10.3390/cells9092020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury. Through the use of mutant animal models, gene transfer, or heat stress, a number of studies have now reported positive outcomes of HSP70 induction. However, these approaches are not practical for clinical translation. Thus, pharmaceutical compounds that can induce HSP70, mostly by inhibiting HSP90, have been investigated as potential therapies to mitigate neurological disease and lead to neuroprotection. This review summarizes the neuroprotective mechanisms of HSP70 and discusses potential ways in which this endogenous therapeutic molecule could be practically induced by pharmacological means to ultimately improve neurological outcomes in acute neurological disease.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Mei Ying Huang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA
- Correspondence: (M.A.Y.); (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.)
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (M.A.Y.); (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.)
| |
Collapse
|
11
|
Lai H, Nie L, Zeng X, Xin S, Wu M, Yang B, Luo Y, Liu B, Zheng J, Liu H. Enhancement of heat shock protein 70 attenuates inducible nitric oxide synthase in preeclampsia complicated with fetal growth restriction. J Matern Fetal Neonatal Med 2020; 35:2555-2563. [PMID: 32654546 DOI: 10.1080/14767058.2020.1789965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Preeclampsia (PE) and fetal growth restriction (FGR) have abnormal placental implantation and endothelial dysfunction in common. However, their etiologies are not well understood. Both heat shock protein 70 (Hsp70) and nitric oxide (NO) are suggested to play a major role in the regulation of maternal and fetoplacental hemodynamics. In this study, the association of PE with FGR and Hsp70 or NO was analyzed. METHODS A total of 30 cases of PE, 25 cases of PE complicated with FGR and 50 cases of normal pregnant women were chose, and PE and normal animal models were constructed. Subsequently, the levels of Hsp70 and NO in serum and placental tissues of humans and animals were measured and compared. Further, rats were injected with pLV-NC-shRNA, pLV-Hsp70-shRNA, pLV-EFIa-NC, and pLV-EFIa-Hsp70, respectively, the weight of each conceptus, number of pups, fetal crown to tail length, total weight of the placenta/fetus unit, and the content of NO were analyzed. RESULTS The expression of Hsp70 in serum and placental tissues of PE complicated with or without FGR group was increased, whereas the content of NO was decreased compared to the normal group. The fetal weight (FW) of the Hsp70 targeted suppression group was higher than the other two groups, whereas the placental weight (PW) was reversed. Also, NO synthase (NOS) expression was decreased in the Hsp70 over-expression group. CONCLUSIONS We speculated that the enhancement of Hsp70 might be related to the development of PE combined with FGR through inhibiting the synthesis of NOS.
Collapse
Affiliation(s)
- Hua Lai
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Liju Nie
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Xiaoming Zeng
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Siming Xin
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Meiling Wu
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bicheng Yang
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yong Luo
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bingqin Liu
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Jiusheng Zheng
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Huai Liu
- Department of Obstetrics, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
12
|
Heat shock protein signaling in brain ischemia and injury. Neurosci Lett 2019; 715:134642. [PMID: 31759081 DOI: 10.1016/j.neulet.2019.134642] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
Abstract
Heat shock proteins (HSPs) are chaperones that catalyze the refolding of denatured proteins. In addition to their ability to prevent protein denaturation and aggregation, the HSPs have also been shown to modulate many signaling pathways. Among HSPs, the inducible 70 kDa HSP (HSP70) has especially been shown to improve neurological outcome in experimental models of brain ischemia and injury. HSP70 can modulate various aspects of the programmed cell death pathways and inflammation. This review will focus on potential mechanisms of the neuroprotective effects of HSP70 in stroke and brain trauma models. We also comment on potential ways in which HSP70 could be translated into clinical therapies.
Collapse
|
13
|
Pignataro L. Alcohol protects the CNS by activating HSF1 and inducing the heat shock proteins. Neurosci Lett 2019; 713:134507. [PMID: 31541723 DOI: 10.1016/j.neulet.2019.134507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Although alcohol abuse and dependence have profound negative health consequences, emerging evidence suggests that exposure to low/moderate concentrations of ethanol protects multiple organs and systems. In the CNS, moderate drinking decreases the risk of dementia and Alzheimer's disease. This neuroprotection correlates with an increased expression of the heat shock proteins (HSPs). Multiple epidemiological studies revealed an inverse association between ethanol intoxication and traumatic brain injury mortality. In this case, ethanol-induced HSPs limit the inflammatory immune response diminishing cell death and improving the neurobehavioural outcome. Ethanol also protects the brain against ischemic injuries via the HSPs. In our laboratory, we demonstrated that ethanol increased the expression of several HSP genes in neurons and astrocytes by activating the transcription factor, heat shock factor 1 (HSF1). HSF1 induces HSPs that target misfolded proteins for refolding or degradation, increasing the survival chances of the cells. These data indicate that ethanol neuroprotection is mediated by the activation HSF1 and the induction of HSPs.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Columbia University, Department of Anesthesiology, 622 West 168th St., PH 511, New York, NY, 10032, USA; College of Staten Island - City University of New York, 2800 Victory Blvd., Building 1A - 101, Staten Island, NY, 10314, USA.
| |
Collapse
|
14
|
Gervois P, Lambrichts I. The Emerging Role of Triggering Receptor Expressed on Myeloid Cells 2 as a Target for Immunomodulation in Ischemic Stroke. Front Immunol 2019; 10:1668. [PMID: 31379859 PMCID: PMC6650572 DOI: 10.3389/fimmu.2019.01668] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/03/2019] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second most common cause of death and permanent disability. It is characterized by loss of neural tissue in which inflammation plays a crucial role in both the acute contribution to ischemic damage as in the late-stage impact on post-ischemic tissue regeneration. Microglia play a key role in the inflammatory stroke microenvironment as they can adapt a disease-promoting pro-inflammatory- or pro-regenerative phenotype thereby contributing to the exacerbation or alleviation of ischemic damage, respectively. Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell surface receptor which in the central nervous system is mainly expressed on microglia. This receptor has been shown to play an essential role in microglial phagocytosis and function but its contribution in stroke pathobiology remains unclear. TREM2 was shown to be activated by nucleotides and lipid mediators, key factors that are secreted in the extracellular stroke environment by apoptotic neurons and cell/myelin debris. These factors in turn stimulate TREM2 signaling which mediates microglial migration toward- and phagocytosis of myelin debris and apoptotic cells. Moreover, microglial TREM2 appears to counteract the toll-like receptor response, thereby decreasing the production of pro-inflammatory cytokines. Finally, TREM2 is involved in microglial migration, survival, and is suggested to directly stimulate pro-regenerative phenotype shift. Therefore, this receptor is an attractive target for microglial modulation in the treatment of ischemic stroke and it provides additional information on microglial effector functions. This short review aims to elaborate on these TREM2-mediated microglial functions in the pathobiology and resolving of ischemic stroke.
Collapse
Affiliation(s)
- Pascal Gervois
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
15
|
Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J Cell Mol Med 2019; 23:5846-5858. [PMID: 31273911 PMCID: PMC6714234 DOI: 10.1111/jcmm.14479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins (HSPs) are induced after haemorrhagic stroke, which includes subarachnoid haemorrhage (SAH) and intracerebral haemorrhage (ICH). Most of these proteins function as neuroprotective molecules to protect cerebral neurons from haemorrhagic stroke and as markers to indicate cellular stress or damage. The most widely studied HSPs in SAH are HSP70, haeme oxygenase-1 (HO-1), HSP20 and HSP27. The subsequent pathophysiological changes following SAH can be divided into two stages: early brain injury and delayed cerebral ischaemia, both of which determine the outcome for patients. Because the mechanisms of HSPs in SAH are being revealed and experimental models in animals are continually maturing, new agents targeting HSPs with limited side effects have been suggested to provide therapeutic potential. For instance, some pharmaceutical agents can block neuronal apoptosis signals or dilate cerebral vessels by modulating HSPs. HO-1 and HSP70 are also critical topics for ICH research, which can be attributed to their involvement in pathophysiological mechanisms and therapeutic potential. However, the process of HO-1 metabolism can be toxic owing to iron overload and the activation of succedent pathways, for example, the Fenton reaction and oxidative damage; the overall effect of HO-1 in SAH and ICH tends to be protective and harmful, respectively, given the different pathophysiological changes in these two types of haemorrhagic stroke. In the present study, we focus on the current understanding of the role and therapeutic potential of HSPs involved in haemorrhagic stroke. Therefore, HSPs may be potential therapeutic targets, and new agents targeting HSPs are warranted.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
El-Saka MH, Madi NM, Shahba A. The possible role of heat shock protein-70 induction in collagen-induced arthritis in rats. Physiol Int 2019; 106:128-139. [PMID: 31262206 DOI: 10.1556/2060.106.2019.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM This study aimed to evaluate the possible role of heat shock protein-70 (HSP70) induction by 17-allylaminodemethoxygeldanamycin (17-AAG) in collagen-induced arthritis in rats. MATERIAL AND METHODS Male Wistar rats were divided into five groups (n = 10/group) and were treated intraperitoneally twice a week for 4 weeks, namely normal control (saline), arthritis control (AR; saline), AR + 17-AAG, AR + methotrexate (MTX), and AR + 17-AAG + MTX. At the end of the treatments, arthritic score was determined and then the animals were sacrificed. Erythrocyte sedimentation rate (ESR), serum levels of HSP70, interleukin-17 (IL-17), tumor necrosis factor-alpha (TNF-α), rheumatic factor (RF), C-reactive protein (CRP), malondialdehyde (MDA), glutathione peroxidase (GPx), and matrix metalloproteinase-9 (MMP-9) were determined. RESULTS In the AR group, all parameters increased significantly, except for GPx, which showed a pronounced decrease. The 17-AAG and/or MTX treatments significantly reduced arthritic score, ESR, IL-17, TNF-α, RF, CRP, MDA, and MMP-9 with significant increase in GPx compared to the AR group. The HSP70 level was significantly higher in the AR + 17-AAG and the AR + 17-AAG + MTX groups but significantly lower in the AR + MTX group as compared to the AR group. Also, it was significantly lower in the AR + MTX group as compared to the AR + 17-AAG group. CONCLUSION We concluded that HSP70 induction by 17-AAG attenuated the inflammatory process in a rheumatoid arthritis (RA) model induced by collagen, which suggested that HSP70 inducers can be promising agents in the treatment of RA.
Collapse
Affiliation(s)
- M H El-Saka
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - N M Madi
- 1 Department of Physiology, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - A Shahba
- 2 Department of Internal Medicine, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
17
|
von Rüden EL, Wolf F, Gualtieri F, Keck M, Hunt CR, Pandita TK, Potschka H. Genetic and Pharmacological Targeting of Heat Shock Protein 70 in the Mouse Amygdala-Kindling Model. ACS Chem Neurosci 2019; 10:1434-1444. [PMID: 30396268 DOI: 10.1021/acschemneuro.8b00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammatory responses involving Toll-like receptor signaling represent a key factor contributing to epileptogenesis. Thus, it is of particular interest to explore the relevance of toll-like receptor ligands and modulators, such as heat shock protein 70 (HSP70). Motivated by recent findings demonstrating an upregulation of HSP70 in a model of epileptogenesis, we analyzed the consequences of genetic and pharmacological targeting of HSP70 expression in a mouse kindling paradigm. Lack of inducible HSP70 resulted in increased prekindling seizure thresholds. However, at threshold stimulation the deficiency-promoted seizure spread, as indicated by an increased seizure severity. Subsequent kindling stimulations elicited more severe seizures in knockout mice, whereas endogenous termination of seizure activity remained unaffected with duration of behavioral and electrographic seizure activity comparable to that of wild-type mice. Interestingly, HSP70 deficiency resulted in enhanced microglia activation in the CA1 region. Next, we assessed a pharmacological targeting approach aiming to promote HSP70 expression. Celastrol treatment had no impact on kindling progression but reduced postkindling seizure thresholds and enhanced microglia activation in CA1 and CA3. In conclusion, the findings from HSP70-knockout mice support a protective role of HSP70 with an effect on microglia activation and spread of seizure activity. Unexpectedly, celastrol administration resulted in detrimental consequences. These findings should be considered as a warning about the general safety of celastrol as a drug candidate. The impact of pathophysiological mechanisms on the quality of celastrol effects requires comprehensive future studies exploring influencing factors. Moreover, alternate strategies to increase HSP70 expression should be further developed and validated.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Fabio Wolf
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Michael Keck
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, 6550 Fannin Street SM8-024, Houston, Texas 77030, United States
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, 6550 Fannin Street SM8-024, Houston, Texas 77030, United States
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| |
Collapse
|
18
|
Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are discovered as crucial pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Later studies showed their involvement in the recognition of various damage/danger-associated molecular patterns (DAMPs) generated by host itself. Thus, TLRs are capable of recognizing wide-array of patterns/molecules derived from pathogens and host as well and initiating a proinflammatory immune response through the activation of NF-κB and other transcription factors causing synthesis of proinflammatory molecules. The process of neuroinflammation is seen under both sterile and infectious inflammatory diseases of the central nervous system (CNS) and may lead to the development of neurodegeneration. The present article is designed to highlight the importance of TLRs in the pathogenesis of neuroinflammation under diverse conditions. TLRs are expressed by various immune cells present in CNS along with neurons. However out of thirteen TLRs described in mammals, some are present and active in these cells, while some are absent and are described in detail in main text. The role of various immune cells present in the brain and their role in the pathogenesis of neuroinflammation depending on the type of TLR expressed is described. Thereafter the role of TLRs in bacterial meningitis, viral encephalitis, stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and autoimmune disease including multiple sclerosis (MS) is described. The article is designed for both neuroscientists needing information regarding TLRs in neuroinflammation and TLR biologists or immunologists interested in neuroinflammation.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
19
|
Zuo Y, Wang J, Liao F, Yan X, Li J, Huang L, Liu F. Inhibition of Heat Shock Protein 90 by 17-AAG Reduces Inflammation via P2X7 Receptor/NLRP3 Inflammasome Pathway and Increases Neurogenesis After Subarachnoid Hemorrhage in Mice. Front Mol Neurosci 2018; 11:401. [PMID: 30459553 PMCID: PMC6232389 DOI: 10.3389/fnmol.2018.00401] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease that usually has a poor prognosis. Heat shock proteins (HSPs) have been implicated in the mechanisms of SAH-associated damage, including increased inflammation and reduced neurogenesis. The aim of this study was to investigate the effects of HSP90 inhibition on inflammation and neurogenesis in a mouse model of experimental SAH induced by endovascular surgery. Western blotting showed HSP90 levels to be decreased, while neurogenesis, evaluated by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry, was decreased in the hippocampuses of SAH mice. SAH also induced pro-inflammatory factors such as interleukin-1β (IL-1β), capase-1 and the NLRP3 inflammasome. However, intraperitoneal administration of the specific HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) reduced the levels of HSP90, NLRP3, ASC, caspase-1 and IL-1β, while increasing the levels of brain-derived neurotrophic factor and doublecortin (DCX), as well as the number of BrdU-positive cells in SAH mice. In addition, 17-AGG improved short- and long-term neurobehavioral outcomes. The neuroprotective and anti-inflammatory effects of 17-AGG were reversed by recombinant HSP90 (rHSP90); this detrimental effect of HSP90 was inhibited by the specific P2X7 receptor (P2X7R) inhibitor A438079, indicating that SAH-induced inflammation and inhibition of neurogenesis were likely mediated by HSP90 and the P2X7R/NLRP3 inflammasome pathway. HSP90 inhibition by 17-AAG may be a promising therapeutic strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Yuchun Zuo
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| | - Jikai Wang
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| | - Fan Liao
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy, XiangYa Medical School, Central South University, Changsha, China
| | - Jianming Li
- Neuroscience Research Center, Changsha Medical University, Changsha, China
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Fei Liu
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Thrombin Inhibition Reduces the Expression of Brain Inflammation Markers upon Systemic LPS Treatment. Neural Plast 2018; 2018:7692182. [PMID: 30018633 PMCID: PMC6029482 DOI: 10.1155/2018/7692182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/02/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic inflammation and brain pathologies are known to be linked. In the periphery, the inflammation and coagulation systems are simultaneously activated upon diseases and infections. Whether this well-established interrelation also counts for neuroinflammation and coagulation factor expression in the brain is still an open question. Our aim was to study whether the interrelationship between coagulation and inflammation factors may occur in the brain in the setting of systemic inflammation. The results indicate that systemic injections of lipopolysaccharide (LPS) upregulate the expression of both inflammatory and coagulation factors in the brain. The activity of the central coagulation factor thrombin was tested by a fluorescent method and found to be significantly elevated in the hippocampus following systemic LPS injection (0.5 ± 0.15 mU/mg versus 0.2 ± 0.03 mU/mg in the control). A panel of coagulation factors and effectors (such as thrombin, FX, PAR1, EPCR, and PC) was tested in the hippocampus, isolated microglia, and N9 microglia cell by Western blot and real-time PCR and found to be modulated by LPS. One central finding is a significant increase in FX expression level following LPS induction both in vivo in the hippocampus and in vitro in N9 microglia cell line (5.5 ± 0.6- and 2.3 ± 0.1-fold of increase, resp.). Surprisingly, inhibition of thrombin activity (by a specific inhibitor NAPAP) immediately after LPS injection results in a reduction of both the inflammatory (TNFα, CXL9, and CCL1; p < 0.006) and coagulation responses (FX and PAR1; p < 0.004) in the brain. We believe that these results may have a profound clinical impact as they might indicate that reducing coagulation activity in the setting of neurological diseases involving neuroinflammation may improve disease outcome and survival.
Collapse
|
21
|
Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 2018; 11:1756286418774254. [PMID: 29854002 PMCID: PMC5968660 DOI: 10.1177/1756286418774254] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke is a major cause of death. Besides the direct damage resulting from oxygen and glucose deprivation, sterile inflammation plays a pivotal role in increasing cellular death. Damaged-associated molecular patterns (DAMPs) are passively released from dying cells and activate the innate immune system. Thus, they take part in the direct and rapid activation of the inflammatory response after stroke onset. In this review the role of the most important DAMPs, high mobility group box 1, heat and cold shock proteins, purines, and peroxiredoxins, are addressed. Moreover, intracellular pathways activated by DAMPs in microglia are illuminated.
Collapse
Affiliation(s)
- Eileen Gülke
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | |
Collapse
|
22
|
Kitzlerová E, Fišar Z, Lelková P, Jirák R, Zvěřová M, Hroudová J, Manukyan A, Martásek P, Raboch J. Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer's Disease or Depressive Disorder. Med Sci Monit 2018; 24:2599-2619. [PMID: 29703883 PMCID: PMC5944403 DOI: 10.12659/msm.907202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer’s disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. Material/Methods A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. Results Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ɛ4 allele of APOE. Conclusions Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ɛ4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ɛ4 allele.
Collapse
Affiliation(s)
- Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Lelková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ada Manukyan
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
23
|
Ding XF, Wu Y, Qu WR, Fan M, Zhao YQ. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane. Neural Regen Res 2018; 13:449-455. [PMID: 29623929 PMCID: PMC5900507 DOI: 10.4103/1673-5374.228727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation.
Collapse
Affiliation(s)
- Xue-Feng Ding
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wen-Rui Qu
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopedic Hospital of the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ming Fan
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Kim JY, Han Y, Lee JE, Yenari MA. The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 2018; 22:191-199. [PMID: 29421932 DOI: 10.1080/14728222.2018.1439477] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The 70-kDa heat shock protein (Hsp70) is a cytosolic chaperone which facilitates protein folding, degradation, complex assembly, and translocation. Following stroke, these functions have the potential to lead to cytoprotection, and this has been demonstrated using genetic mutant models, direct gene transfer or the induction of Hsp70 via heat stress, approaches which limit its translational utility. Recently, the investigation of Hsp70-inducing pharmacological compounds, which, through their ability to inhibit Hsp90, has obvious clinical implications in terms of potential therapies to mitigate cell death and inflammation, and lead to neuroprotection from brain injury. Areas covered: In this review, we will focus on the role of Hsp70 in cell death and inflammation, and the current literature surrounding the pharmacological induction in acute ischemic stroke models with comments on potential applications at the clinical level. Expert opinion: Such neuroprotectants could be used to synergistically improve neurological outcome or to extend the time window of existing interventions, thus increasing the numbers of stroke victims eligible for treatment.
Collapse
Affiliation(s)
- Jong Youl Kim
- a Department of Anatomy , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Yeonseung Han
- a Department of Anatomy , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Jong Eun Lee
- a Department of Anatomy , Yonsei University College of Medicine , Seoul , Republic of Korea.,b BK21 Plus Project for Medical Science and Brain Research Institute , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Midori A Yenari
- c Department of Neurology , University of California, San Francisco & the San Francisco Veterans Affairs Medical Center , San Francisco , CA , USA
| |
Collapse
|
25
|
Li Y, An C, Han D, Dang Y, Liu X, Zhang F, Xu Y, Zhong H, Sun X. Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways. NEW J CHEM 2018. [DOI: 10.1039/c8nj04819c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A great challenge to the therapy of ischemic stroke is the poor physicochemical properties and inability of the drug to cross the blood–brain barrier (BBB).
Collapse
Affiliation(s)
- Yutao Li
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Chiying An
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Danan Han
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Yanxin Dang
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Xin Liu
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Fengming Zhang
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Yuan Xu
- Department of Pharmacology
- School of Medicine
- Yale University
- New Haven
- USA
| | - Haijing Zhong
- Department of Pharmacology
- School of Medicine
- Yale University
- New Haven
- USA
| | - Xiaojun Sun
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| |
Collapse
|
26
|
Todorović N, Filipović D. The antidepressant- and anxiolytic-like effects of fluoxetine and clozapine in chronically isolated rats involve inhibition of hippocampal TNF-α. Pharmacol Biochem Behav 2017; 163:57-65. [DOI: 10.1016/j.pbb.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
|
27
|
Yu WW, Cao SN, Zang CX, Wang L, Yang HY, Bao XQ, Zhang D. Heat shock protein 70 suppresses neuroinflammation induced by α-synuclein in astrocytes. Mol Cell Neurosci 2017; 86:58-64. [PMID: 29183796 DOI: 10.1016/j.mcn.2017.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation triggered by activation of glial cells plays an important role in the pathophysiology of several neurodegenerative diseases including Parkinson's disease (PD). Besides microglia, astrocytes are also critical in initiating and perpetuating inflammatory process associated with PD. Heat shock protein 70 (Hsp70) is originally described as intracellular chaperone, however, recent study revealed that it had anti-inflammatory effects as well. The present study is designed to investigate whether Hsp70 mediates neuroinflammation in astrocytes. By employing α-synuclein (α-Syn) (A53T) aggregates on primary cultured astrocytes of rats, we found that astrocytes were activated and neuroinflammatory response was triggered, as indicated by over-expression of glial fibrillary acidic protein (GFAP), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), increased production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). The data also showed that the neuroinflammatory response accompanied up-regulated Hsp70 expression. Moreover, over-expression of Hsp70 through transfection of Hsp70 cDNA plasmids could significantly reduce the production of TNF-α, IL-1β, and the expression of GFAP, COX-2 as well as iNOS. While inhibition of Hsp70 by VER155008 exacerbated neuroinflammatory response in astrocytes challenged by α-Syn aggregates. Further mechanistic study indicated that c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) signalings were responsible for the neuroinflammation, which was also regulated by Hsp70. These findings demonstrated that Hsp70 was an important modulator in astrocytes induced inflammation, and up-regulation of Hsp70 might be a potential regulating approach for neuroinflammation-related neurodegenerative diseases, such as PD.
Collapse
Affiliation(s)
- Wen-Wen Yu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Sheng-Nan Cao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Cai-Xia Zang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lu Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Han-Yu Yang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiu-Qi Bao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| | - Dan Zhang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
28
|
Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017; 95:1246-1265. [PMID: 28910616 DOI: 10.1016/j.neuron.2017.07.010] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with a considerable socioeconomic burden. Heterogeneity of pathoanatomical subtypes and diversity in the pathogenesis and extent of injury contribute to differences in the course and outcome of TBI. Following the primary injury, extensive and lasting damage is sustained through a complex cascade of events referred to as "secondary injury." Neuroinflammation is proposed as an important manipulable aspect of secondary injury in animal and human studies. Because neuroinflammation can be detrimental or beneficial, before developing immunomodulatory therapies, it is necessary to better understand the timing and complexity of the immune responses that follow TBI. With a rapidly increasing body of literature, there is a need for a clear summary of TBI neuroimmunology. This review presents our current understanding of the immune response to TBI in a chronological and compartment-based manner, highlighting early changes in gene expression and initial signaling pathways that lead to activation of innate and adaptive immunity. Based on recent advances in our understanding of innate immune cell activation, we propose a new paradigm to study innate immune cells following TBI that moves away from the existing M1/M2 classification of activation states toward a stimulus- and disease-specific understanding of polarization state based on transcriptomic and proteomic profiling.
Collapse
|
29
|
Schaefer AK, Wastyk HC, Mohanan V, Hou CW, Lauro ML, Melnyk JE, Burch JM, Grimes CL. Crohn's Disease Variants of Nod2 Are Stabilized by the Critical Contact Region of Hsp70. Biochemistry 2017; 56:4445-4448. [PMID: 28792733 DOI: 10.1021/acs.biochem.7b00470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn's disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and in vitro biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized in vivo with a molecular chaperone.
Collapse
Affiliation(s)
- Amy K Schaefer
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Hannah C Wastyk
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Vishnu Mohanan
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Ching-Wen Hou
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Mackenzie L Lauro
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - James E Melnyk
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Jason M Burch
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
30
|
Ulbrich F, Hagmann C, Buerkle H, Romao CC, Schallner N, Goebel U, Biermann J. The Carbon monoxide releasing molecule ALF-186 mediates anti-inflammatory and neuroprotective effects via the soluble guanylate cyclase ß1 in rats' retinal ganglion cells after ischemia and reperfusion injury. J Neuroinflammation 2017; 14:130. [PMID: 28655348 PMCID: PMC5488359 DOI: 10.1186/s12974-017-0905-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 06/18/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The endogenously produced gaseous molecule carbon monoxide is able to promote organ protection after ischemia-reperfusion injuries (IRI). The impact of carbon monoxide releasing molecules (CORM) regarding inflammation in neuronal tissues has not been studied in detail. In this investigation, we aimed to analyze the effects of the CORM ALF-186 on neuro-inflammation and hypothesized that the soluble guanylate cyclase (sGC) is playing a decisive role. METHODS Retinal ischemia-reperfusion injury was performed for 60 min in Sprague-Dawley rats. Thereafter, the CORM ALF-186 (10 mg/kg) in the presence or absence of the sGC inhibitor ODQ was injected via a tail vein. Retinal tissue was harvested 24 h later to analyze mRNA or protein expression of sGC-β1 subunit, transcription factors NF-κB and CREB, the inflammatory cytokines TNF-α and IL-6, as well as the heat shock proteins (HSP) HSP-70 and HSP-90. Immunohistochemistry was performed on frozen sections of the retina. The overall neuroprotective effect of ALF-186 was assessed by counting fluorogold-pre-labeled retinal ganglion cells (RGC) 7 days after IRI. RESULTS Ischemia-reperfusion mediated loss of vital RGC was attenuated by the administration of ALF-186 after injury. ALF-186 treatment after IRI induced sGC-ß1 leading to a decreased NF-κB and CREB phosphorylation. Consecutively, ALF-186 mitigated IRI induced TNF-α and IL-6 expression in the retina and in the rats' serum. Moreover, ALF-186 attenuated heat shock protein 70 (Hsp-70) while increasing Hsp-90. The sGC-inhibitor ODQ attenuated the anti-inflammatory effects of ALF-186 and increased retinal loss of ganglion cells. These results were confirmed by immunohistochemistry. CONCLUSION The CORM ALF-186 protected RGC from IRI induced loss. Furthermore, ALF-186 reduced IRI mediated neuroinflammation in the retina and in the serum by activating sGC. Inhibition of sGC stopped the beneficial and protective effects of ALF-186. ALF-186 may present a promising therapeutic alternative in treating inflammation after neuronal IRI.
Collapse
Affiliation(s)
- Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Claus Hagmann
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Carlos C Romao
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Alfama Ltd., Instituto de Biologia Experimental e Tecnológica, IBET, Oeiras, Portugal
| | - Nils Schallner
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106, Freiburg, Germany.
| | - Julia Biermann
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Li J, Yu J, Ma H, Yang N, Li L, Zheng DD, Wu MX, Zhao ZL, Qi HY. Intranasal Pretreatment with Z-Ligustilide, the Main Volatile Component of Rhizoma Chuanxiong, Confers Prophylaxis against Cerebral Ischemia via Nrf2 and HSP70 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1533-1542. [PMID: 28169530 DOI: 10.1021/acs.jafc.6b04979] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Z-Ligustilide (Z-LIG) is a major component in Rhizoma Chuanxiong, which has been traditionally used as a health food supplement for the prevention of cerebrovascular disease in China. This study investigates the ability of intranasal Z-LIG pretreatment to enhance protection against neuronal damage in rats with middle cerebral artery occlusion (MCAO) and the role of cellular stress response mechanisms Nrf2 and HSP70. Z-LIG significantly mitigated infarct volume, neurological dysfunction, blood-brain barrier disruption, and brain edema (p < 0.01). Moreover, Z-LIG prevented the loss of collagen IV, occludin, and ZO-1 (p < 0.05) and decreased MMP-2 and -9 levels (p < 0.01). Meanwhile, Z-LIG up-regulated NQO1 and HSP70. Notably, blockage of Nrf2-driven transcription or down-regulation of HSP70 remarkably attenuated the preventive effect of Z-LIG (p < 0.05). Together, intranasal delivery of Z-LIG enhanced protection against ischemic injury via Nrf2 and HSP70 signaling pathways and has prophylactic potential in the population at high risk of stroke.
Collapse
Affiliation(s)
- Juan Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Jie Yu
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hui Ma
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Na Yang
- Institute of Laboratory Animals, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu 610212, Sichuan, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Ding-Ding Zheng
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Ming-Xia Wu
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Zhi-Long Zhao
- Institute of Laboratory Animals, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu 610212, Sichuan, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| |
Collapse
|
32
|
[Protective effects of heat shock protein 70 against hypoxic pulmonary hypertension in neonatal rats]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28100330 PMCID: PMC7390131 DOI: 10.7499/j.issn.1008-8830.2017.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the protective effect of heat shock protein 70 (HSP70) against hypoxic pulmonary hypertension (HPH) in neonatal rats. METHODS A total of 128 neonatal rats were randomly divided into blank control group, HPH model group, empty virus group, and HSP70 group, with 32 rats in each group. Before the establishment of an HPH model, the rats in the blank control group and HPH model group were given caudal vein injection of 5 μL sterile saline, those in the empty virus group were given caudal vein injection of 5 μL Ad-GFP (1 010 PFU/mL), and those in the HSP70 group were given caudal vein injection of 5 μL Ad-HSP70 (1 010 PFU/mL). HPH model was prepared in the HPH model, empty virus, and HSP70 groups after transfection. At 3, 7, 10, and 14 days after model establishment, a multi-channel physiological recorder was used to record mean pulmonary arterial pressure (mPAP), optical and electron microscopes were used to observe the structure and remodeling parameters of pulmonary vessels, and Western blot was used to measure the protein expression of HSP70, hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1), and inducible nitric oxide synthase (iNOS) in lung tissues. RESULTS At 3, 7, 10, and 14 days after model establishment, the HPH model group and the empty virus group had a significantly higher mPAP than the blank control group (P<0.05). On days 7 and 10 of hypoxia, the blank control group and the HSP70 group had significantly lower MA% and MT% than the HPH model group and the empty virus group (P<0.01); on day 14 of hypoxia, the HPH model group, empty virus group, and HSP70 group had similar MA% and MT% (P>0.05), but had significantly higher MA% and MT% than the blank control group (P<0.01). On days 3, 7 and 10 of hypoxia, the HSP70 group had significantly higher protein expression of HSP70 than the HPH model group, empty virus group, and blank control group (P<0.01); the HSP70 group had significantly lower expression of HIF-1α, ET-1, and iNOS than the HPH model group and the empty virus group (P<0.05) and similar expression of HIF-1α, ET-1, and iNOS as the blank control group (P>0.05). CONCLUSIONS In neonatal rats with HPH, HSP70 transfection can increase the expression of HSP70 in lung tissues, downregulate the expression of HIF-1α, ET-1, and iNOS, alleviate pulmonary vascular remodeling, and reduce pulmonary artery pressure; therefore, it may become a new strategy for the treatment of HPH in neonates.
Collapse
|
33
|
Gu Y, Chen J, Wang T, Zhou C, Liu Z, Ma L. Hsp70 inducer, 17-allylamino-demethoxygeldanamycin, provides neuroprotection via anti-inflammatory effects in a rat model of traumatic brain injury. Exp Ther Med 2016; 12:3767-3772. [PMID: 28101166 DOI: 10.3892/etm.2016.3821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) is the predominant cause of mortality in young adults and children living in China. TBI induces inflammatory responses; in addition, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 are important pro-inflammatory cytokines. Considering the observation that Hsp-70 overexpression can exert neuroprotection, identifying a drug that is able to induce the upregulation of Hsp70 has the potential to be a promising therapy for the treatment of neurological diseases. Thus, the present study assessed the clinical effectiveness of an anticancer drug and Hsp70 activator, 17-allylamino-demethoxygeldanamycin (17-AAG), to evaluate its potential as a treatment for patients with TBI. The aim of present study was to determine the neuroprotective effects of 17-AAG following trauma and to investigate the underlying mechanisms of action. To establish rat models, rats were subjected to a controlled cortical impact injury and randomly divided into vehicle or 17-AAG groups. In the 17-AAG group, rats were administered with an intraperitoneal injection of 17-AAG (80 mg/kg) immediately following the establishment of TBI. The motor function was measured using Neurologic Severity Score, and neuronal death was evaluated using immunofluorescence. The expression levels of GLT-1, Bcl-2 and Hsp-70 were detected by western blot analysis and the expression levels of inflammatory cytokines were quantified using ELISA. The present study determined that 17-AAG significantly reduced brain edema and motor neurological deficits (P<0.05), in addition to increasing neuronal survival. The aforementioned findings are associated with a downregulation of the expression levels of pro-inflammatory cytokines TNF-α, IL-1β and IL-6. Conversely, no significant changes of glutamate transporter-1 expression were observed. The present results suggest that 17-AAG treatment may provide a neuroprotective effect by reducing inflammation following TBI.
Collapse
Affiliation(s)
- Youquan Gu
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jun Chen
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tianhong Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chaoning Zhou
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhaodong Liu
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lanhua Ma
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
34
|
Hehar H, Yu K, Ma I, Mychasiuk R. Paternal age and diet: The contributions of a father’s experience to susceptibility for post-concussion symptomology. Neuroscience 2016; 332:61-75. [DOI: 10.1016/j.neuroscience.2016.06.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/16/2023]
|
35
|
Borges TJ, Lang BJ, Lopes RL, Bonorino C. Modulation of Alloimmunity by Heat Shock Proteins. Front Immunol 2016; 7:303. [PMID: 27555846 PMCID: PMC4977877 DOI: 10.3389/fimmu.2016.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023] Open
Abstract
The immunological mechanisms that evolved for host defense against pathogens and injury are also responsible for transplant rejection. Host rejection of foreign tissue was originally thought to be mediated mainly by T cell recognition of foreign MHC alleles. Management of solid organ transplant rejection has thus focused mainly on inhibition of T cell function and matching MHC alleles between donor and host. Recently, however, it has been demonstrated that the magnitude of the initial innate immune responses upon transplantation has a decisive impact on rejection. The exact mechanisms underlying this phenomenon have yet to be characterized. Ischemic cell death and inflammation that occur upon transplantation are synonymous with extracellular release of various heat shock proteins (Hsps), many of which have been shown to have immune-modulatory properties. Here, we review the impact of Hsps upon alloimmunity and discuss the potential use of Hsps as accessory agents to improve solid organ transplant outcomes.
Collapse
Affiliation(s)
- Thiago J Borges
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul , Brazil
| | - Benjamin J Lang
- Department of Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Rafael L Lopes
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul , Brazil
| | - Cristina Bonorino
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul , Brazil
| |
Collapse
|
36
|
Ying GY, Jing CH, Li JR, Wu C, Yan F, Chen JY, Wang L, Dixon BJ, Chen G. Neuroprotective Effects of Valproic Acid on Blood-Brain Barrier Disruption and Apoptosis-Related Early Brain Injury in Rats Subjected to Subarachnoid Hemorrhage Are Modulated by Heat Shock Protein 70/Matrix Metalloproteinases and Heat Shock Protein 70/AKT Pathways. Neurosurgery 2016; 79:286-95. [DOI: 10.1227/neu.0000000000001264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
37
|
Lauro ML, Burch JM, Grimes CL. The effect of NOD2 on the microbiota in Crohn's disease. Curr Opin Biotechnol 2016; 40:97-102. [PMID: 27035071 DOI: 10.1016/j.copbio.2016.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
Recent advancements toward the treatment of Crohn's disease (CD) indicate great promise for long-term remission. CD patients suffer from a complex host of dysregulated interactions between their innate immune system and microbiome. The most predominant link to the onset of CD is a genetic mutation in the innate immune receptor nucleotide-binding oligomerization domain-containing 2 (NOD2). NOD2 responds to the presence of bacteria and stimulates the immune response. Mutations to NOD2 promote low diversity and dysbiosis in the microbiome, leading to impaired mucosal barrier function. Current treatments suppress the immune response rather than enhancing the function of this critical protein. New progress toward stabilizing NOD2 signaling through its interactions with chaperone proteins holds potential in the development of novel CD therapeutics.
Collapse
Affiliation(s)
- Mackenzie L Lauro
- University of Delaware, Department of Chemistry & Biochemistry, Newark, DE 19716, United States
| | - Jason M Burch
- University of Delaware, Department of Chemistry & Biochemistry, Newark, DE 19716, United States
| | | |
Collapse
|
38
|
Borges PV, Moret KH, Maya-Monteiro CM, Souza-Silva F, Alves CR, Batista PR, Caffarena ER, Pacheco P, Henriques MDG, Penido C. Gedunin Binds to Myeloid Differentiation Protein 2 and Impairs Lipopolysaccharide-Induced Toll-Like Receptor 4 Signaling in Macrophages. Mol Pharmacol 2015; 88:949-61. [PMID: 26330549 DOI: 10.1124/mol.115.098970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 12/16/2022] Open
Abstract
Recognition of bacterial lipopolysaccharide (LPS) by innate immune system is mediated by the cluster of differentiation 14/Toll-like receptor 4/myeloid differentiation protein 2 (MD-2) complex. In this study, we investigated the modulatory effect of gedunin, a limonoid from species of the Meliaceae family described as a heat shock protein Hsp90 inhibitor, on LPS-induced response in immortalized murine macrophages. The pretreatment of wild-type (WT) macrophages with gedunin (0.01-100 µM, noncytotoxic concentrations) inhibited LPS (50 ng/ml)-induced calcium influx, tumor necrosis factor-α, and nitric oxide production in a concentration-dependent manner. The selective effect of gedunin on MyD88-adapter-like/myeloid differentiation primary response 88- and TRIF-related adaptor molecule/TIR domain-containing adapter-inducing interferon-β-dependent signaling pathways was further investigated. The pretreatment of WT, TIR domain-containing adapter-inducing interferon-β knockout, and MyD88 adapter-like knockout macrophages with gedunin (10 µM) significantly inhibited LPS (50 ng/ml)-induced tumor necrosis factor-α and interleukin-6 production, at 6 hours and 24 hours, suggesting that gedunin modulates a common event between both signaling pathways. Furthermore, gedunin (10 µM) inhibited LPS-induced prostaglandin E2 production, cyclooxygenase-2 expression, and nuclear factor κB translocation into the nucleus of WT macrophages, demonstrating a wide-range effect of this chemical compound. In addition to the ability to inhibit LPS-induced proinflammatory mediators, gedunin also triggered anti-inflammatory factors interleukin-10, heme oxygenase-1, and Hsp70 in macrophages stimulated or not with LPS. In silico modeling studies revealed that gedunin efficiently docked into the MD-2 LPS binding site, a phenomenon further confirmed by surface plasmon resonance. Our results reveal that, in addition to Hsp90 modulation, gedunin acts as a competitive inhibitor of LPS, blocking the formation of the Toll-like receptor 4/MD-2/LPS complex.
Collapse
Affiliation(s)
- Perla Villani Borges
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Katelim Hottz Moret
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Ricardo Batista
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ernesto Raúl Caffarena
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Pacheco
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria das Graças Henriques
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carmen Penido
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Thiopental protects human neuroblastoma cells from apoptotic cell death - Potential role of heat shock protein 70. Life Sci 2015; 139:40-5. [PMID: 26297444 DOI: 10.1016/j.lfs.2015.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 11/23/2022]
|
40
|
Yu J, Jiang Z, Ning L, Zhao Z, Yang N, Chen L, Ma H, Li L, Fu Y, Zhu H, Qi H. Protective HSP70 Induction by Z-Ligustilide against Oxygen-Glucose Deprivation Injury via Activation of the MAPK Pathway but Not of HSF1. Biol Pharm Bull 2015. [PMID: 26212861 DOI: 10.1248/bpb.b15-00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat-shock protein 70 (HSP70) is known to function as a protective molecular chaperone that is massively induced in response to misfolded proteins following cerebral ischemia. The objective of this study was to characterize HSP70 induction by Z-ligustilide and explore its potential role in protection against cerebral ischemia-reperfusion injury. Our results demonstrated that the intranasal administration of Z-ligustilide reduced infarct volume and improved neurological function in a rat stroke model. Meanwhile, Z-ligustilide enhanced the cell viability of PC12 cells insulted by oxygen-glucose deprivation-reoxygenation (OGD-Reoxy) and decreased apoptotic and necrotic cell death. Importantly, Z-ligustilide induced HSP70 expression both in vitro and in vivo. Although heat-shock factor 1 (HSF1) nuclear translocation was promoted by Z-ligustilide, HSP70-based heat-shock element (HSE)-binding luciferase activity was not activated, and HSP70 expression responsive to Z-ligustilide was not attenuated by HSE decoy oligonucleotides. However, Z-ligustilide significantly activated the phosphorylation of mitogen-activated protein kinases (MAPKs). Further inhibition of MAPK activity by specific inhibitors attenuated HSP70 induction by Z-ligustilide. Meanwhile, downregulation of HSP70 using KNK437, an HSP70 synthesis inhibitor, or small hairpin RNA (shRNA) significantly attenuated the protection of Z-ligustilide against OGD-Reoxy-induced injury. Moreover, the application of specific inhibitors of MAPKs also achieved similar results. Finally, Z-ligustilide alleviated the accumulation of ubiquitinated proteins induced by OGD-Reoxy, which was inhibited by HSP70-shRNA. Taken together, our results demonstrated that Z-ligustilide may induce protective HSP70 expression via the activation of the MAPK pathway, but not canonical HSF1 transcription. HSP70 plays a key role in the protection of Z-ligustilide against OGD-Reoxy-induced injury.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pharmaceutical Sciences, Southwest University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun X, Crawford R, Liu C, Luo T, Hu B. Development-dependent regulation of molecular chaperones after hypoxia-ischemia. Neurobiol Dis 2015; 82:123-131. [PMID: 26070787 DOI: 10.1016/j.nbd.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 02/08/2023] Open
Abstract
Cellular stress response after hypoxia-Ischemia (HI) may be substantially different between immature and mature brains. To study this phenomenon, postnatal day 7 (P7) and P26 rats were subjected to HI followed by different periods of recovery. Nuclear accumulation of heat-shock transcription factor-1 (HSF1) and expression of molecular chaperone proteins and mRNAs were analyzed by in situ hybridization, Western blotting and confocal microscopy. Nuclear accumulation of HSF1 protein and induction of hsp70 mRNA occurred dramatically in P26 neurons, but minimally in P7 neurons and moderately in microglial cells after HI. Consistently, the level of HSF1 was significantly higher in P26 brain samples, compared with that in P7 brain. Translation of hsp70 mRNA into proteins in P26 mature neurons was seen at 4h and peaked at 24h, when some neurons had already died after HI. Induction of ER glucose-regulated protein-78 (grp78) and mitochondrial hsp60 mRNAs and proteins was moderate and occurred also only in P26 mature brain after HI. These results suggest that the cellular stress response after HI is development-dependent, being pronounced in mature but virtually negligible in neonatal neurons. Therefore, the effectiveness of therapeutic strategies targeting the stress pathway against HI may be significantly different between immature and mature brains. The delayed induction of molecular chaperones in mature brain may be somewhat late for protecting HI neurons from acute HI injury.
Collapse
Affiliation(s)
- Xin Sun
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA; Department of Neurology, The First Teaching Hospital, Jilin University, China
| | - Robert Crawford
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Chunli Liu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Tianfei Luo
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Bingren Hu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA.
| |
Collapse
|
42
|
Ma L, Li Z, Liu Z, Li M, Sui D, Liu Y, Shao W, Wang B, Liu P, Li G. 17AAG improves histological and functional outcomes in a rat CCI model through autophagy activation and apoptosis attenuation. Neurosci Lett 2015; 599:1-6. [PMID: 25957556 DOI: 10.1016/j.neulet.2015.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/18/2015] [Accepted: 05/02/2015] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) is caused by both primary and secondary injury mechanisms, all of which cause neuronal cell death and functional deficits. Both apoptosis and autophagy participated in neuronal cell death and functional loss induced following TBI. Preclinical findings implicate that 17-allylamino-demethoxygeldanamycin (17-AAG), an anticancer drug in clinical, present neuroprotection actions in multiple neurological disorders, but whether 17-AAG is capable of modulating neuronal autophagy has never been addressed. The present study was designed to determine the hypothesis that17-AAG treatment could confer neuroprotection in a rat model of TBI. We also used an autophagy inhibitor 3-methyladenine (3-MA) as well as an autophagy inducer rapamycin (RAPA) to test its underlining mechanisms. Our results showed that post-TBI administration of 17-AAG could attenuate brain edema, decrease neuronal death, as well as improve the recovery of motor function. Afterwards, in our model, 17-AAG treatment protected against TBI-induced apoptosis activation as well as enhanced neuronal autophagy. The present study provides novel clues in understanding the mechanisms of which 17-AAG exerts its neuroprotective activity on neurological disorders.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China; Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Zefu Li
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Zhihui Liu
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Meng Li
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Dehua Sui
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Yongliang Liu
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Wei Shao
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Bo Wang
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Pengfei Liu
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
43
|
Li J, Yang F, Guo J, Zhang R, Xing X, Qin X. 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia. Brain Res 2015; 1610:80-8. [PMID: 25858486 DOI: 10.1016/j.brainres.2015.03.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/13/2022]
Abstract
Neuro-inflammation plays an important role in global cerebral ischemia (GCI). The 72-kDa heat shock protein (Hsp70) has been reported to be involved in the inflammatory response of many central nervous system diseases. Preclinical findings implicate that 17-allylamino-demethoxygeldanamycin (17-AAG), an anticancer drug in clinical, provide neuroprotection actions in a rat model of traumatic brain injury, and the beneficial effects of 17-AAG were specifically due to up-regulation of Hsp70. However, no experiments have tested whether 17-AAG has beneficial or harmful effects in the setting of GCI. The present study was designed to determine the hypothesis that administration of 17-AAG could attenuate cerebral infarction and improve neuronal survival, thereby ameliorating memory impairment in a rat model of GCI. Furthermore, to test whether any neuroprotective effect of 17-AAG was associated with inflammatory response and neuronal autophagy, we examined the expression of multiplex inflammatory cytokine levels as well as autophagy-associate protein in hippocampal CA1 of rat brain. Our results showed that post-GCI administration of 17-AAG significantly protected rats against GCI induced brain injury, and 17-AAG is also an effective antagonist of the inflammatory response and thereby ameliorates hippocampal CA1 neuronal autophagic death. We therefore believe that the present study provides novel clues in understanding the mechanisms by which 17-AAG exerts its neuroprotective activity in GCI. All data reveal that 17-AAG might be a potential neuroprotective agent for ischemic stroke.
Collapse
Affiliation(s)
- Jianxiong Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fei Yang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jia Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangfeng Xing
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
44
|
Kacimi R, Yenari MA. Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia 2015; 63:1200-12. [PMID: 25802219 DOI: 10.1002/glia.22811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
Abstract
The inhibition of the 90-kDa heat shock protein (HSP90) leads to upregulation of the 70-kDa-inducible HSP70. HSP70 has been previously shown to be neuroprotective and anti-inflammatory. Geldanamycin (GA) and other HSP90 inhibitors have emerged as promising therapeutic agents in cancer, presumably owing to their ability to upregulate HSP70. However, the effects of HSP90 inhibition in brain inflammation are still unclear. We investigate the effect of a panel of HSP90 inhibitors on endotoxin-activated microglia and eventual protection from brain-derived endothelial cells. Prior studies have shown that GA protects brain cells from oxidative stress. We show here that when astrocytes or microglial BV2 cells were pretreated with GA or other HSP90 inhibitors, endotoxin-induced cell death was reduced in cocultures of BV2 microglia and brain-derived endothelial cells (bEND.3). Endotoxin-stimulated BV2 cells led to increased nitric oxide (NO) and inducible nitric oxide synthase which was prevented by treatment with all HSP90 inhibitors. HSP90 inhibitors also prevented lipopolysaccharide (LPS)-induced BV2 cell death. We also found that HSP90 inhibition blocked nuclear translocation of nuclear factor kappa B and attenuated IκBα degradation, and inhibited LPS-activated JAK-STAT phosphorylation. We show that pharmacologic inhibition of HSP90 with subsequent HSP70 induction protects cells that comprise the cerebral vasculature against cell death owing to proinflammatory stimuli. This approach may have therapeutic potential in neurological conditions with an inflammatory component.
Collapse
Affiliation(s)
- Rachid Kacimi
- Department of Neurology, University of California, San Francisco & San Francisco Veterans Affairs Medical Center, San Francisco
| | | |
Collapse
|
45
|
Effect of gedunin on acute articular inflammation and hypernociception in mice. Molecules 2015; 20:2636-57. [PMID: 25654532 PMCID: PMC6272452 DOI: 10.3390/molecules20022636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/15/2015] [Accepted: 01/24/2015] [Indexed: 12/20/2022] Open
Abstract
Gedunin, a natural limonoid from Meliaceae species, has been previously described as an antiinflammatory compound in experimental models of allergic inflammation. Here, we report the antiinflammatory and antinociceptive effects of gedunin in an acute model of articular inflammation induced by zymosan (500 μg/cavity; intra-articular) in C57BL/6 mice. Intraperitoneal (i.p.) pretreatment with gedunin (0.005–5 mg/kg) impaired zymosan-induced edema formation, neutrophil accumulation and hypernociception in mouse knee joints, due to decreased expression of preproET-1 mRNA and production of LTB4, PGE2, TNF-α and IL-6. Mouse post-treatment with gedunin (0.05 mg/kg; i.p.) 1 and 6 h after stimulation also impaired articular inflammation, by reverting edema formation, neutrophil accumulation and the production of lipid mediators, cytokines and endothelin. In addition, gedunin directly modulated the functions of neutrophils and macrophages in vitro. The pre-incubation of neutrophil with gedunin (100 µM) impaired shape change, adhesion to endothelial cells, chemotaxis and lipid body formation triggered by different stimuli. Macrophage pretreatment with gedunin impaired intracellular calcium mobilization, nitric oxide production, inducible nitric oxide synthase expression and induced the expression of the antiinflammatory chaperone heat shock protein 70. Our results demonstrate that gedunin presents remarkable antiinflammatory and anti-nociceptive effects on zymosan-induced inflamed knee joints, modulating different cell populations.
Collapse
|
46
|
Kim N, Kim JY, Yenari MA. Pharmacological induction of the 70-kDa heat shock protein protects against brain injury. Neuroscience 2014; 284:912-919. [PMID: 25446362 DOI: 10.1016/j.neuroscience.2014.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 01/29/2023]
Abstract
The 70-kDa heat shock protein (HSP70) is known to protect the brain from injury through multiple mechanisms. We investigated the effect of pharmacological HSP70 induction in experimental traumatic brain injury (TBI). 3-month-old male C57/B6 mice were given 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) intraperitoneally (IP, 2 mg/kg) or intracerebroventricularly (ICV, 1 μg/kg) to determine whether HSP70 could be induced in the brain. Mice were subjected to TBI via cortical controlled impact, and were treated with 17-AAG (or vehicle) IP according to one of two treatment regimens: (1) 2 mg/kg at the time of injury, (2) a total of three doses (4 mg/kg) at 2 and 1d prior to TBI and again at the time of injury. Brains were assessed for HSP70 induction, hemorrhage volume at 3 d, and lesion size at 14 d post-injury. Immunohistochemistry showed that both IP and ICV administration of 17-AAG increased HSP70 expression primarily in microglia and in a few neurons by 24 h but not in astrocytes. 17-AAG induced HSP70 in injured brain tissue as early as 6 h, peaking at 48 h and largely subsiding by 72 h after IP injection. Both treatment groups showed decreased hemorrhage volume relative to untreated mice as well as improved neurobehavioral outcomes. These observations indicate that pharmacologic HSP70 induction may prove to be a promising treatment for TBI.
Collapse
Affiliation(s)
- N Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | - J Y Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | - M A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
47
|
Kim M, Kim SO, Lee M, Park Y, Kim D, Cho KH, Kim SY, Lee EH. Effects of ginsenoside Rb1 on the stress-induced changes of BDNF and HSP70 expression in rat hippocampus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:257-262. [PMID: 24975446 DOI: 10.1016/j.etap.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Ginsenoside Rb1 (GRb1) has been determined to exert diverse neuromodulatory effects including antistress effects in the brain. The hippocampus is a key brain structure for memory, learning, and cognition and is especially vulnerable to neurotoxic effects associated with stress. The aim of this study was to further explore neuroprotective potential of GRb1 on stress-mediated changes in hippocampal gene expression. Recent studies recognize agents that inducing brain-derived neurotrophic factor (BDNF) and heat shock protein (HSP) 70 as important neuroprotective approaches. Thus, we specifically determined the effects of GRb1 on mRNA expression of BDNF and HSP70, in a model of immobilization stress. In agreement with these reports, acute immobilization stress led to a decrease and an increase in the mRNA levels of the BDNF and HSP70, respectively, in the hippocampus. When pretreated orally, GRb1 significantly inhibited the stress-mediated decline of BDNF level whereas it further increased the stress-mediated elevation of HSP70 level. Our results strongly suggest GRb1 effective in controlling stress-related hippocampal dysfunction. Our finding also contributes further understanding of medicinal usefulness of GRb1 targeting hippocampal network alteration which is commonly observed in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mia Kim
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sung-Ok Kim
- College of Oriental Medicine, Daegu Haany University, Daegu 706-060, Republic of Korea
| | - Moonsung Lee
- Department of East-West Medical Science, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | - Yeri Park
- Department of East-West Medical Science, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | - Danhyo Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | - Ki-Ho Cho
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Eunjoo H Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 446-701, Republic of Korea.
| |
Collapse
|
48
|
Xu H, Sun H, Chen SH, Zhang YM, Piao YL, Gao Y. Effects of acupuncture at Baihui (DU20) and Zusanli (ST36) on the expression of heat shock protein 70 and tumor necrosis factor α in the peripheral serum of cerebral ischemia-reperfusion-injured rats. Chin J Integr Med 2014; 20:369-74. [PMID: 24610411 DOI: 10.1007/s11655-014-1800-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore the effects of acupuncture on the peripheral serum expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNF-α) in rats with cerebral ischemia-reperfusion injury (CIRI). METHODS In total, 152 Sprague-Dawley (SD) rats were randomly divided into an operated group and a non-operated group according to a random digits table. The operated group included a sham-operated group, a model group and an acupuncture group, whereas the non-operated group consisted of a normal group. Except for the normal group, each group was further divided into 12, 24, 48, 72, 96, and 144 h time points according to different reperfusion times. Eight rats were assigned in each operated group and in the normal group. The rat model of CIRI was established by the thread occlusion method in the model and acupuncture groups. The acupuncture group was treated with electroacupuncture at Baihui (DU20) and Zusanli (ST36) for the required time after successful operation. Blood was sampled to detect the HSP70 and TNF-α content by enzyme linked immunosorbent assay. RESULTS The expression of HSP70 protein in the peripheral serum of the experimental groups was higher than that in the normal control group. The peak time in both the model and the sham-operated groups was 12 h, and the peak time in the acupuncture group was 24 h. The expression in the acupuncture group declined to a lower level at 72 h and was lower than that in the model and sham-operated groups (P<0.05). The peak time for the expression of TNF-α protein in the peripheral serum of both the model and the acupuncture groups was 24 h, but the expression in the acupuncture group was lower than the model group. Additionally, the expression of TNF-α in all experimental groups was higher than the normal group (P<0.05). CONCLUSIONS Acupuncture at DU20 and ST36 in rats attenuated CIRI, which was associated with a reduction in the expression of HSP70 and TNF-α. These results provide clues to acupuncture's neuroprotective properties. Acupuncture at DU20 and ST36 in rats after CIRI can adjust the expression of HSP70 and TNF-α in the peripheral serum, which might be one of the mechanisms of acupuncture's attenuation of CIRI.
Collapse
Affiliation(s)
- Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | | | | | | | | |
Collapse
|
49
|
Ouyang YB, Giffard RG. MicroRNAs regulate the chaperone network in cerebral ischemia. Transl Stroke Res 2013; 4:693-703. [PMID: 24323423 PMCID: PMC3864745 DOI: 10.1007/s12975-013-0280-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023]
Abstract
The highly evolutionarily conserved 70 kDa heat shock protein (HSP70) family was first understood for its role in protein folding and response to stress. Subsequently, additional functions have been identified for it in regulation of organelle interaction, of the inflammatory response, and of cell death and survival. Overexpression of HSP70 family members is associated with increased resistance to and improved recovery from cerebral ischemia. MicroRNAs (miRNAs) are important posttranscriptional regulators that interact with multiple target messenger RNAs (mRNA) coordinately regulating target genes, including chaperones. The members of the HSP70 family are now appreciated to work together as networks to facilitate organelle communication and regulate inflammatory signaling and cell survival after cerebral ischemia. This review will focus on the new concept of the role of the chaperone network in the organelle network and its novel regulation by miRNA.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, S272A and S290, Stanford, CA, 94305-5117, USA,
| | | |
Collapse
|
50
|
TAT-Hsp70 induces neuroprotection against stroke via anti-inflammatory actions providing appropriate cellular microenvironment for transplantation of neural precursor cells. J Cereb Blood Flow Metab 2013; 33:1778-88. [PMID: 23881248 PMCID: PMC3824176 DOI: 10.1038/jcbfm.2013.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/25/2013] [Accepted: 06/30/2013] [Indexed: 11/08/2022]
Abstract
Heat-shock protein 70 (Hsp70) protects against cerebral ischemia, which is attributed to its chaperone activity. However, recent reports also describe pro-inflammatory actions of Hsp70 via activation of Toll-like receptors (TLR). Using membrane-permeable transactivator of transcription (TAT)-Hsp70, we analyzed TAT-Hsp70-induced neuroprotection and its underlying mechanism after cerebral ischemia in mice. Infusion of TAT-Hsp70 reduced infarct volume and enhanced blood-brain barrier integrity on day 3 poststroke, when given no later than 12 hours. The latter was associated with reduction of microglial activation, although upregulation of pro-inflammatory TLR-2/4 was observed both in verum and in control animals. Nevertheless, protein abundance and nuclear translocation of downstream nuclear factor kappa B (NF-κB) as well as proteasomal degradation of the NF-κB regulator Ikappa B alpha (IκB-α) were significantly reduced by TAT-Hsp70. TAT-Hsp70-induced neuroprotection and functional recovery were restricted to 4 weeks only. However, TAT-Hsp70 provided an appropriate extracellular milieu for delayed intravenous transplantation of adult neural precursor cells (NPCs). Thus, NPCs that were grafted 28 days poststroke induced long-term neuroprotection for at least 3 months, which was not due to integration of grafted cells but rather due to paracrine effects of transplanted NPCs. Conclusively, TAT-Hsp70 ameliorates postischemic inflammation via proteasome inhibition, thus providing an appropriate extracellular milieu for delayed NPC transplantation and culminating in long-term neuroprotection.
Collapse
|