1
|
Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, Tomoaia G, Mocanu A, Pal-Racz C, Toma VA, Roman I, Ujica MA, Pop LC. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024; 30:43. [PMID: 39795101 PMCID: PMC11722367 DOI: 10.3390/molecules30010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability. Formulations have been discovered including curcumin's complexes with brain-derived phospholipids and proteins, or its liposomal encapsulation. These novel strategies aim to improve curcumin's bioavailability and stability, and its capability to cross the BBB, thereby potentially enhancing its efficacy in treating cerebrovascular diseases. In summary, this review provides a comprehensive overview of molecular pathways involved in interactions of curcumin and its metabolites, and brain vascular homeostasis. This review explores cellular and molecular current aspects, of curcumin-based effects with an emphasis on curcumin's metabolism and its impact on pathological conditions, such as neurodegenerative diseases, schizophrenia, and cerebral angiopathy. It also highlights the limitations posed by curcumin's poor bioavailability and discusses ongoing efforts to surpass these impediments to harness the full therapeutic potential of curcumin in neurological disorders.
Collapse
Affiliation(s)
- Claudia-Andreea Moldoveanu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
| | - Alexandra Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor St., RO-400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Department of Orthopedics and Traumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 47 Gen. Traian Moșoiu St., RO-400132 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Csaba Pal-Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Centre for Systems Biology, Biodiversity and Bioresources “3B”, Babeș-Bolyai University, 44 Republicii St., RO-400347 Cluj-Napoca, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Madalina-Anca Ujica
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Lucian-Cristian Pop
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| |
Collapse
|
2
|
Esmaealzadeh N, Miri MS, Mavaddat H, Peyrovinasab A, Ghasemi Zargar S, Sirous Kabiri S, Razavi SM, Abdolghaffari AH. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms. Inflammopharmacology 2024; 32:2125-2151. [PMID: 38769198 DOI: 10.1007/s10787-024-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Neurodegenerative diseases are part of the central nervous system (CNS) disorders that indicate their presence with neuronal loss, neuroinflammation, and increased oxidative stress. Several pathophysiological factors and biomarkers are involved in this inflammatory process causing these neurological disorders. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is an inflammation element, which induced transcription and appears to be one of the important players in physiological procedures, especially nervous disorders. NF-κB can impact upon series of intracellular actions and induce or inhibit many inflammation-related pathways. Multiple reports have focused on the modification of NF-κB activity, controlling its expression, translocation, and signaling pathway in neurodegenerative disorders and injuries like Alzheimer's disease (AD), spinal cord injuries (SCI), and Parkinson's disease (PD). Curcumin has been noted to be a popular anti-oxidant and anti-inflammatory substance and is the foremost natural compound produced by turmeric. According to various studies, when playing an anti-inflammatory role, it interacts with several modulating proteins of long-standing disease signaling pathways and has an unprovocative consequence on pro-inflammatory cytokines. This review article determined to figure out curcumin's role in limiting the promotion of neurodegenerative disease via influencing the NF-κB signaling route. Preclinical studies were gathered from plenty of scientific platforms including PubMed, Scopus, Cochrane, and Google Scholar to evaluate this hypothesis. Extracted findings from the literature review explained the repressing impact of Curcumin on the NF-κB signaling pathway and, occasionally down-regulating the cytokine expression. Yet, there is an essential need for further analysis and specific clinical experiments to fully understand this subject.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdis Sadat Miri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Helia Mavaddat
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Amirreza Peyrovinasab
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Sara Ghasemi Zargar
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Shirin Sirous Kabiri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Seyed Mehrad Razavi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| |
Collapse
|
3
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
4
|
Liu X, Zhang H, Li C, Chen Z, Gao Q, Han M, Zhao F, Chen D, Chen Q, Hu M, Li Z, Wei S, Geng X. The dosage of curcumin to alleviate movement symptoms in a 6-hydroxydopamine-induced Parkinson's disease rat model. Heliyon 2023; 9:e16921. [PMID: 37484231 PMCID: PMC10360947 DOI: 10.1016/j.heliyon.2023.e16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Background Curcumin is a natural compound with extensive pharmacological effects. This research is to verify the optimal dose and administration duration efficacy of curcumin in alleviating the movement symptoms of Parkinson's disease (PD). Methods Wistar rats were divided into six groups including control, model, levodopa treatment and low/middle/high (40/80/160 mg/kg/d) curcumin treatment groups. After stereotactic brain injection of 6-hydroxydopamine (6-OHDA), curcumin was given by intragastric administration for 2 weeks. To evaluate the drug effect, the rats received behavioral tests including apomorphine (APO)-induced rotation test, rotarod test and open field test. Then the rats were sacrificed and the brain slices including substantia nigra pars compacta (SNc) were used for immunofluorescence staining. Results After 6-OHDA injection, the model group showed typical movement symptoms including the severe APO-induced rotation to the healthy side, decreased latency in the rotarod with constant or accelerative mode, and decreased total distance and average speed in the open field test. In the results of immunofluorescence staining, the 6-OHDA induced a severe damage of dopaminergic neurons in SNc. The 160 mg/kg/d treatment of curcumin to intervene for 2 weeks alleviated most of the behavioral disorders but the 40/80 mg/kg/d treatment showed limitations. Then, we compared the effect of 1 week intervention to the 2 weeks with 160 mg/kg/d treatment of curcumin to intervene and results indicated that the treatment of 2 weeks could better alleviate the symptoms. Conclusions Curcumin alleviated 6-OHDA-induced movement symptoms in a PD rat model. Additionally, the effect of curcumin against PD indicated dose and duration dependent and the intervention of 160 mg/kg/d for 2 weeks showed optimally therapeutic effect.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanfen Li
- College of Physical Education, Shandong Normal University, Jinan, China
| | - Zhibin Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxuan Han
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiuyue Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Moradi Vastegani S, Hajipour S, Sarkaki A, Basir Z, Parisa Navabi S, Farbood Y, Khoshnam SE. Curcumin mitigates lipopolysaccharide-induced anxiety/depression-like behaviors, blood–brain barrier dysfunction and brain edema by decreasing cerebral oxidative stress in male rats. Neurosci Lett 2022; 782:136697. [DOI: 10.1016/j.neulet.2022.136697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022]
|
6
|
Apigenin Attenuates Functional and Structural Alterations via Targeting NF-kB/Nrf2 Signaling Pathway in LPS-Induced Parkinsonism in Experimental Rats : Apigenin Attenuates LPS-Induced Parkinsonism in Experimental Rats. Neurotox Res 2022; 40:941-960. [PMID: 35608813 DOI: 10.1007/s12640-022-00521-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a progressive hypokinetic movement disorder caused by selective degeneration of dopaminergic neurons in striatum and dopamine deficiency in a region of the midbrain. LPS is an endotoxin, used as animal model to induce microglial activation, neuroinflammation, oxidative stress, and neurotransmitter alteration with PD-like symptoms. Therefore, to prevent neuroinflammation and neurotransmitter changes and to restore normal brain physiology, we tried apigenin (AGN) alone and in combination with piperine (bioenhancer), in LPS experimental model of rats. In this study, rats were treated with single unilateral intranigral injection of LPS at a dose of 5 μg/5 μl on day 0. The oral administration of AGN (25 and 50 mg/kg; p.o.) alone, AGN (25 mg/kg; p.o.) in combination with piperine (2.5 mg/kg; p.o.), and bromocriptine (10mg/kg; p.o.) started from day 7th once in a day. Intranigral injection of LPS significantly altered body weight and behavioral parameters assessed on weekly basis. Furthermore, the biochemical and neuroinflammatory analysis confirmed (on day 22nd) increased level of nitrite, MDA, SOD, TNF-α, IL-1β, IL-6, and caspase-1, and decreased level of CAT, GSH, and complex-I. Furthermore, altered level of neurotransmitters (DA, GABA, and glutamate) and cellular changes were observed from histopathological and immunohistochemistry (NF-kB and Nrf-2) analysis. Treatment with AGN (25 and 50 mg/kg; p.o.) alone and AGN (25 mg/kg; p.o.) in combination with piperine (2.5 mg/kg; p.o.) significantly attenuated the alteration in body weight, motor impairments, oxidative stress, neuroinflammation, and neurotransmitters in rat brain. The neuroprotective effect of AGN against LPS-induced cell death is attributed by modulating NF-kB and Nrf2 signaling pathway in the striatum.
Collapse
|
7
|
Yao L, Wu J, Koc S, Lu G. Genetic Imaging of Neuroinflammation in Parkinson's Disease: Recent Advancements. Front Cell Dev Biol 2021; 9:655819. [PMID: 34336822 PMCID: PMC8320775 DOI: 10.3389/fcell.2021.655819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative aging disorders characterized by motor and non-motor symptoms due to the selective loss of midbrain dopaminergic (DA) neurons. The decreased viability of DA neurons slowly results in the appearance of motor symptoms such as rigidity, bradykinesia, resting tremor, and postural instability. These symptoms largely depend on DA nigrostriatal denervation. Pharmacological and surgical interventions are the main treatment for improving clinical symptoms, but it has not been possible to cure PD. Furthermore, the cause of neurodegeneration remains unclear. One of the possible neurodegeneration mechanisms is a chronic inflammation of the central nervous system, which is mediated by microglial cells. Impaired or dead DA neurons can directly lead to microglia activation, producing a large number of reactive oxygen species and pro-inflammatory cytokines. These cytotoxic factors contribute to the apoptosis and death of DA neurons, and the pathological process of neuroinflammation aggravates the primary morbid process and exacerbates ongoing neurodegeneration. Therefore, anti-inflammatory treatment exerts a robust neuroprotective effect in a mouse model of PD. Since discovering the first mutation in the α-synuclein gene (SNCA), which can cause disease-causing, PD has involved many genes and loci such as LRRK2, Parkin, SNCA, and PINK1. In this article, we summarize the critical descriptions of the genetic factors involved in PD's occurrence and development (such as LRRK2, SNCA, Parkin, PINK1, and inflammasome), and these factors play a crucial role in neuroinflammation. Regulation of these signaling pathways and molecular factors related to these genetic factors can vastly improve the neuroinflammation of PD.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiayu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sumeyye Koc
- Department of Neuroscience, Institute of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Bhardwaj A, Bhardwaj R, Sharma S, Sharma SK, Dhawan DK, Kaur T. AMPA induced cognitive impairment in rats: Establishing the role of endoplasmic reticulum stress inhibitor, 4-PBA. J Neurosci Res 2021; 99:2573-2591. [PMID: 34197000 DOI: 10.1002/jnr.24859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/05/2020] [Accepted: 05/03/2021] [Indexed: 11/09/2022]
Abstract
Glutamate excitotoxicity and endoplasmic reticulum (ER) recently have been found to be instrumental in the pathogenesis of various neurodegenerative diseases. However, the paucity of literature deciphering the inter-linkage among glutamate receptors, behavioral alterations, and ER demands thorough exploration. Reckoning the aforesaid concerns, a prospective study was outlined to delineate the influence of ER stress inhibition via 4-phenylbutyric acid (PBA) on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excitotoxicity-induced behavioral aspects and possible ER stress-glutamate linkage. Male SD rats were randomly divided into four groups namely sham (surgical control+vehicle, group 1), AMPA-induced excitotoxic group 2 receive a single intra-hippocampal injection of 10 mM AMPA, group 3 received AMPA along with PBA (i.p, 100 mg/kg body weight) for 15 days, and group 4 received PBA alone. Behavioral analyses were performed prior to the sacrifice of animals and hippocampus was extracted thereafter for further analysis. AMPA-induced excitotoxicity exhibited significant impairment of locomotion as well as cognitive functions. The levels of neurotransmitters such as dopamine, homo vanillic acid (HVA), norepinephrine, and serotonin were reduced accompanied by reduced expression of GLUR1 and GLUR4 (glutamate receptor) as well as loss of neurons in different layers of hippocampus. ER stress markers were upregulated upon AMPA excitotoxicity. However, chemical chaperone PBA supplementation remarkably mitigated the behavioral alterations along with expression of glutamate and ER stress intermediates/markers in AMPA excitotoxic animals. Therefore, the present exploration convincingly emphasizes the significance of ER stress and its inhibition via PBA in combating cognitive impairment as well as improving locomotion in excitotoxic animals.
Collapse
Affiliation(s)
- Ankita Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Rishi Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh, India
| | | | | | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Bhatia G, Singh J, Nehru B. Neuroprotective effects of hydro-alcoholic extract of Eclipta alba against 1-methyl-4-phenylpyridinium-induced in vitro and in vivo models of Parkinson's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9390-9406. [PMID: 33145730 DOI: 10.1007/s11356-020-11452-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Pathogenesis of Parkinson's disease (PD) specifically involves the degeneration of dopaminergic neurons in the substantia nigra region, which mainly begun with the overwhelmed oxidative stress and neuroinflammation. Considering the antioxidant and other pharmacological properties, Eclipta alba needs to be exploited for its possible neuroprotective efficacy against PD and other neurological disorders. Therefore, the current study was conducted to exemplify the remedial effects of hydro-alcoholic extract of E. alba (EA-MEx) against MPP+-elicited in vitro and in vivo PD models. SH-SY5Y, a neuroblastoma cell culture and male Wistar rats were used to impersonate the hallmarks of PD. Qualitative and quantitative analyses of EA-MEx revealed the presence of quercetin, ellagic acid, catechin, kaempferol, and epicatechin at varying concentrations. EA-MEx was found to deliver considerable protection against MPP+-induced oxidative damages in SH-SY5Y cells. Furthermore, in vivo study also supported the neuroprotective efficacy of EA-MEx, with significant mitigation of behavioral deficits induced by intrastriatal injection of MPP+. Furthermore, the disturbed levels of cellular antioxidant machinery have been significantly improved with the pre-treatment of EA-MEx. Mechanistically, the expression of α-synuclein, tyrosine hydroxylase, and mortalin were also found to be improved with the prior treatment of EA-MEx. Hence, the study suggests Eclipta alba as a suitable candidate for the development of better neuropathological therapeutics.
Collapse
Affiliation(s)
- Gaurav Bhatia
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Bimla Nehru
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM. Mitochondria as a target for safety and toxicity evaluation of nutraceuticals. NUTRACEUTICALS 2021:463-483. [DOI: 10.1016/b978-0-12-821038-3.00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep 2020; 72:769-782. [PMID: 32458309 DOI: 10.1007/s43440-020-00112-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system, and are important players in both brain injury and neurodegenerative disease. Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), the major active component of turmeric, belongs to the curcuminoid family that was originally isolated from the plant Curcuma longa. Several studies suggest that curcumin may have a beneficial impact on the brain pathology and aging. These effects are due to curcumin's antioxidant, free-radical scavenging, and anti-inflammatory activity. In light of this, our current review aims to discuss the role of astrocytes as essential players in neurodegenerative diseases and suggest that curcumin is capable of direct inhibition of astrocyte activity with a particular focus on its effects in Alexander disease, Alzheimer's disease, ischemia stroke, spinal cord injury, Multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Samira Eghbaliferiz
- Department of Pharmacognosy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
PKC Mediates LPS-Induced IL-1β Expression and Participates in the Pro-inflammatory Effect of A 2AR Under High Glutamate Concentrations in Mouse Microglia. Neurochem Res 2019; 44:2755-2764. [PMID: 31650360 DOI: 10.1007/s11064-019-02895-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pathogens such as bacterial lipopolysaccharide (LPS) play an important role in promoting the production of the inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-α (TNF-α) in response to infection or damage in microglia. However, whether different signalling pathways regulate these two inflammatory factors remains unclear. The protein kinase C (PKC) family is involved in the regulation of inflammation, and our previous research showed that the activation of the PKC pathway played a key role in the LPS-induced transformation of the adenosine A2A receptor (A2AR) from anti-inflammatory activity to pro-inflammatory activity under high glutamate concentrations. Therefore, in the current study, we investigated the role of PKC in the LPS-induced production of these inflammatory cytokines in mouse primary microglia. GF109203X, a specific PKC inhibitor, inhibited the LPS-induced expression of IL-1β messenger ribonucleic acid and intracellular protein in a dose-dependent manner. Moreover, 5 µM GF109203X prevented LPS-induced IL-1β expression but did not significantly affect LPS-induced TNF-α expression. PKC promoted IL-1β expression by regulating the activity of NF-κB but did not significantly impact the activity of ERK1/2. A2AR activation by CGS21680, an A2AR agonist, facilitated LPS-induced IL-1β expression through the PKC pathway at high glutamate concentrations but did not significantly affect LPS-induced TNF-α expression. Taken together, these results suggest a new direction for specific intervention with LPS-induced inflammatory factors in response to specific signalling pathways and provide a mechanism for A2AR targeting, especially after brain injury, to influence inflammation by interfering with A2AR.
Collapse
|
13
|
Kalampokini S, Becker A, Fassbender K, Lyros E, Unger MM. Nonpharmacological Modulation of Chronic Inflammation in Parkinson's Disease: Role of Diet Interventions. PARKINSON'S DISEASE 2019; 2019:7535472. [PMID: 31534664 PMCID: PMC6732577 DOI: 10.1155/2019/7535472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Neuroinflammation is increasingly recognized as an important pathophysiological feature of neurodegenerative diseases such as Parkinson's disease (PD). Recent evidence suggests that neuroinflammation in PD might originate in the intestine and the bidirectional communication between the central and enteric nervous system, the so-called "gut-brain axis," has received growing attention due to its contribution to the pathogenesis of neurological disorders. Diet targets mediators of inflammation with various mechanisms and combined with dopaminergic treatment can exert various beneficial effects in PD. Food-based therapies may favorably modulate gut microbiota composition and enhance the intestinal epithelial integrity or decrease the proinflammatory response by direct effects on immune cells. Diets rich in pre- and probiotics, polyunsaturated fatty acids, phenols including flavonoids, and vitamins, such as the Mediterranean diet or a plant-based diet, may attenuate chronic inflammation and positively influence PD symptoms and even progression of the disease. Dietary strategies should be encouraged in the context of a healthy lifestyle with physical activity, which also has neuroimmune-modifying properties. Thus, diet adaptation appears to be an effective additive, nonpharmacological therapeutic strategy that can attenuate the chronic inflammation implicated in PD, potentially slow down degeneration, and thereby modify the course of the disease. PD patients should be highly encouraged to adopt corresponding lifestyle modifications, in order to improve not only PD symptoms, but also general quality of life. Future research should focus on planning larger clinical trials with dietary interventions in PD in order to obtain hard evidence for the hypothesized beneficial effects.
Collapse
Affiliation(s)
- Stefania Kalampokini
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Anouck Becker
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Epameinondas Lyros
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Marcus M. Unger
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| |
Collapse
|
14
|
Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci 2019; 20:ijms20092293. [PMID: 31075861 PMCID: PMC6539529 DOI: 10.3390/ijms20092293] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022] Open
Abstract
A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with neurodegenerative diseases. However, the serotype, route of administration, and number of injections of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this toxin that could underpin the pathological events linked to the neurodegenerative process.
Collapse
|
15
|
Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A. Effects of Curcumin on Microglial Cells. Neurotox Res 2019; 36:12-26. [PMID: 30949950 DOI: 10.1007/s12640-019-00030-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
Microglia are innate immune system cells which reside in the central nervous system (CNS). Resting microglia regulate the homeostasis of the CNS via phagocytic activity to clear pathogens and cell debris. Sometimes, however, to protect neurons and fight invading pathogens, resting microglia transform to an activated-form, producing inflammatory mediators, such as cytokines, chemokines, iNOS/NO and cyclooxygenase-2 (COX-2). Excessive inflammation, however, leads to damaged neurons and neurodegenerative diseases (NDs), such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Curcumin is a phytochemical isolated from Curcuma longa. It is widely used in Asia and has many therapeutic properties, including antioxidant, anti-viral, anti-bacterial, anti-mutagenic, anti-amyloidogenic and anti-inflammatory, especially with respect to neuroinflammation and neurological disorders (NDs). Curcumin is a pleiotropic molecule that inhibits microglia transformation, inflammatory mediators and subsequent NDs. In this mini-review, we discuss the effects of curcumin on microglia and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Morgayn I Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
16
|
Li DW, Zhou FZ, Sun XC, Li SC, Yang JB, Sun HH, Wang AH. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res 2019; 14:1814-1822. [PMID: 31169200 PMCID: PMC6585553 DOI: 10.4103/1673-5374.257536] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulating studies suggest that neuroinflammation characterized by microglial overactivation plays a pivotal role in the pathogenesis of Parkinson’s disease. As such, inhibition of microglial overactivation might be a promising treatment strategy to delay the onset or slow the progression of Parkinson’s disease. Ginsenoside Rb1, the most active ingredient of ginseng, reportedly exerts neuroprotective effects by suppressing inflammation in vitro. The present study aimed to evaluate the neuroprotective and anti-inflammatory effects of ginsenoside Rb1 in a lipopolysaccharide-induced rat Parkinson’s disease model. Rats were divided into four groups. In the control group, sham-operated rats were intraperitoneally administered normal saline for 14 consecutive days. In the ginsenoside Rb1 group, ginsenoside Rb1 (20 mg/kg) was intraperitoneally injected for 14 consecutive days after sham surgery. In the lipopolysaccharide group, a single dose of lipopolysaccharide was unilaterally microinjected into the rat substantial nigra to establish the Parkinson’s disease model. Lipopolysaccharide-injected rats were treated with normal saline for 14 consecutive days. In the ginsenoside Rb1 + lipopolysaccharide group, lipopolysaccharide was unilaterally microinjected into the rat substantial nigra. Subsequently, ginsenoside Rb1 was intraperitoneally injected for 14 consecutive days. To investigate the therapeutic effects of ginsenoside Rb1, behavioral tests were performed on day 15 after lipopolysaccharide injection. We found that ginsenoside Rb1 treatment remarkably reduced apomorphine-induced rotations in lipopolysaccharide-treated rats compared with the lipopolysaccharide group. To investigate the neurotoxicity of lipopolysaccharide and potential protective effect of ginsenoside Rb1, contents of dopamine and its metabolites in the striatum were measured by high-performance liquid chromatography. Compared with the lipopolysaccharide group, ginsenoside Rb1 obviously attenuated the lipopolysaccharide-induced depletion of dopamine and its metabolites in the striatum. To further explore the neuroprotective effect of ginsenoside Rb1 against lipopolysaccharide-induced neurotoxicity, immunohistochemistry and western blot assay of tyrosine hydroxylase were performed to evaluate dopaminergic neuron degeneration in the substantial nigra par compacta. The results showed that lipopolysaccharide injection caused a large loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra and a significant decrease in overall tyrosine hydroxylase expression. However, ginsenoside Rb1 noticeably reversed these changes. To investigate whether the neuroprotective effect of ginsenoside Rb1 was associated with inhibition of lipopolysaccharide-induced microglial activation, we examined expression of the microglia marker Iba-1. Our results confirmed that lipopolysaccharide injection induced a significant increase in Iba-1 expression in the substantia nigra; however, ginsenoside Rb1 effectively suppressed lipopolysaccharide-induced microglial overactivation. To elucidate the inhibitory mechanism of ginsenoside Rb1, we examined expression levels of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase 2) and phosphorylation of nuclear factor kappa B signaling-related proteins (IκB, IKK) in the substantia nigra with enzyme-linked immunosorbent and western blot assays. Our results revealed that compared with the control group, phosphorylation and expression of inflammatory mediators IκB and IKK in the substantia nigra of lipopolysaccharide group rats were significantly increased; whereas, ginsenoside Rb1 obviously reduced lipopolysaccharide-induced changes on the lesioned side of the substantial nigra par compacta. These findings confirm that ginsenoside Rb1 can inhibit inflammation induced by lipopolysaccharide injection into the substantia nigra and protect dopaminergic neurons, which may be related to its inhibition of the nuclear factor kappa B signaling pathway. This study was approved by the Experimental Animal Ethics Committee of Shandong University of China in April 2016 (approval No. KYLL-2016-0148).
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan; Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Fa-Zhan Zhou
- Department of Cardiovascularology, Taian Central Hospital, Taian, Shandong Province, China
| | - Xian-Chang Sun
- Department of Physiology, Taishan Medical University, Taian, Shandong Province, China
| | - Shu-Chen Li
- Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Jin-Bin Yang
- Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Huan-Huan Sun
- Department of Neurology, The People's Hospital of Xintai, Xintai, Shandong Province, China
| | - Ai-Hua Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
17
|
Lee B, Shim I, Lee H, Hahm DH. Gypenosides attenuate lipopolysaccharide-induced neuroinflammation and anxiety-like behaviors in rats. Anim Cells Syst (Seoul) 2018; 22:305-316. [PMID: 30460112 PMCID: PMC6171448 DOI: 10.1080/19768354.2018.1517825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is considered a major factor in several neuropsychiatric disorders. Gypenosides (GPS) have pharmacological properties with multiple beneficial effects including antiinflammatory, antioxidative, and protective properties. The present study was performed to examine whether GPS shows anxiolytic-like effects in a model of chronic inflammation induced by injection of lipopolysaccharide (LPS) into the rat hippocampus. The effects of GPS on inflammatory factors in the hippocampus and the downstream mechanisms of these effects were also examined. Introduction of LPS into the lateral ventricle caused inflammatory reactions and anxiety-like symptoms in the rats. Daily treatment with GPS (25, 50, and 100 mg/kg) for 21 consecutive days significantly increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. Moreover, GPS administration significantly reduced the freezing response to contextual fear conditioning, and significantly decreased the levels of proinflammatory mediators, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and nuclear factor-kappaB (NF-κB), levels in the brain. Furthermore, GPS reduced LPS-induced elevated levels of Toll-like receptor 4 (TLR4) mRNA and inhibition of brain-derived neurotrophic factor (BDNF) mRNA levels. Taken together, these results suggest that GPS may have anxiolytic-like effects and may have novel therapeutic potential for anxiety-like behaviors caused by neuroinflammation. GPS may be useful for developing an agents for the treatment of neuropsychiatric disorders, such as anxiety, due to its antiinflammatory activities and the modulation of NF-κB/iNOS/TLR4/BDNF.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Sorrenti V, Contarini G, Sut S, Dall'Acqua S, Confortin F, Pagetta A, Giusti P, Zusso M. Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice. Front Pharmacol 2018; 9:183. [PMID: 29556196 PMCID: PMC5845393 DOI: 10.3389/fphar.2018.00183] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Systemic lipopolysaccharide (LPS) induces an acute inflammatory response in the central nervous system (CNS) (“neuroinflammation”) characterized by altered functions of microglial cells, the major resident immune cells of the CNS, and an increased inflammatory profile that can result in long-term neuronal cell damage and severe behavioral and cognitive consequences. Curcumin, a natural compound, exerts CNS anti-inflammatory and neuroprotective functions mainly after chronic treatment. However, its effect after acute treatment has not been well investigated. In the present study, we provide evidence that 50 mg/kg of curcumin, orally administered for 2 consecutive days before a single intraperitoneal injection of a high dose of LPS (5 mg/kg) in young adult mice prevents the CNS immune response. Curcumin, able to enter brain tissue in biologically relevant concentrations, reduced acute and transient microglia activation, pro-inflammatory mediator production, and the behavioral symptoms of sickness. In addition, short-term treatment with curcumin, administered at the time of LPS challenge, anticipated the recovery from memory impairments observed 1 month after the inflammatory stimulus, when mice had completely recovered from the acute neuroinflammation. Together, these results suggest that the preventive effect of curcumin in inhibiting the acute effects of neuroinflammation could be of value in reducing the long-term consequences of brain inflammation, including cognitive deficits such as memory dysfunction.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Stefania Sut
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Francesca Confortin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
19
|
|
20
|
Moore TL, Bowley BGE, Shultz PL, Calderazzo SM, Shobin EJ, Uprety AR, Rosene DL, Moss MB. Oral curcumin supplementation improves fine motor function in the middle-aged rhesus monkey. Somatosens Mot Res 2018; 35:1-10. [PMID: 29447046 DOI: 10.1080/08990220.2018.1432481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aged individuals experience decreased fine motor function of the hand and digits, which could result, in part, from the chronic, systemic state of inflammation that occurs with aging. Recent research for treating age-related inflammation has focused on the effects of nutraceuticals that have anti-inflammatory properties. One particular dietary polyphenol, curcumin, the principal curcuminoid of the spice turmeric, has been shown to have significant anti-inflammatory effects and there is mounting evidence that curcumin may serve to reduce systemic inflammation. Therefore, it could be useful for alleviating age-related impairments in fine motor function. To test this hypothesis we assessed the efficacy of a dietary intervention with a commercially available optimized curcumin to ameliorate or delay the effects of aging on fine motor function of the hand of rhesus monkeys. We administered oral daily doses of curcumin or a control vehicle to 11 monkeys over a 14- to 18-month period in which they completed two rounds of fine motor function testing. The monkeys receiving curcumin were significantly faster at retrieving a food reward by round 2 of testing than monkeys receiving a control vehicle. Further, the monkeys receiving curcumin demonstrated a greater degree of improvement in performance on our fine motor task by round 2 of testing than monkeys receiving a control vehicle. These findings reveal that fine motor function of the hand and digits is improved in middle-aged monkeys receiving chronic daily administration of curcumin.
Collapse
Affiliation(s)
- Tara L Moore
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,b Department of Neurology , Boston University School of Medicine , Boston , MA , USA
| | - Bethany G E Bowley
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Penny L Shultz
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Samantha M Calderazzo
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Eli J Shobin
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,c Graduate Program in Neuroscience , Boston University School of Medicine , Boston , MA , USA
| | - Ajay R Uprety
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Douglas L Rosene
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,d Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| | - Mark B Moss
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,b Department of Neurology , Boston University School of Medicine , Boston , MA , USA.,d Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| |
Collapse
|
21
|
Sharma N, Nehru B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson's disease model. Inflammopharmacology 2017; 26:349-360. [PMID: 29027056 DOI: 10.1007/s10787-017-0402-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) pathology is characterized by the abnormal accumulation and aggregation of the pre-synaptic protein α-synuclein in the dopaminergic neurons as Lewy bodies (LBs). Curcumin, which plays a neuroprotective role in various animal models of PD, was found to directly modulate the aggregation of α-synuclein in in vitro as well as in in vivo studies. While curcumin has been shown to exhibit strong anti-oxidant and anti-inflammatory properties, there are a number of other possible mechanisms by which curcumin may alter α-synuclein aggregation which still remains obscure. Therefore, the present study was designed to understand such concealed mechanisms behind neuroprotective effects of curcumin. An animal model of PD was established by injecting lipopolysaccharide (LPS, 5 µg/5 µl PBS) into the substantia nigra (SN) of rats which was followed by curcumin administration (40 mg/kg b.wt (i.p.)) daily for a period of 21 days. Modulatory functions of curcumin were evident from the inhibition of astrocytic activation (GFAP) by immunofluorescence and NADPH oxidase complex activation by RT-PCR. Curcumin supplementation prevented the LPS-induced upregulation in the protein activity of transcription factor NFκB, proinflammatory cytokines (TNF-α, IL-1β, and IL-1α), inducible nitric oxide synthase (iNOS) as well as the regulating molecules of the intrinsic apoptotic pathway (Bax, Bcl-2, Caspase 3 and Caspase 9) by ELISA. Curcumin also resulted in significant improvement in the glutathione system (GSH, GSSG and redox ratio) and prevented iron deposition in the dopaminergic neurons as depicted from atomic absorption spectroscopy (AAS) and Prussian blue staining, respectively. Curcumin also prevented α-synuclein aggregates in the dopaminergic neurons as observed from gene as well as protein activity of α-synuclein using RT-PCR and IHC. Collectively, our results suggest that curcumin can be further pursued as a candidate drug in the molecules targeted therapy for PD and other related synucleopathies.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
22
|
Kaur S, Sharma N, Nehru B. Anti-inflammatory effects of Ginkgo biloba extract against trimethyltin-induced hippocampal neuronal injury. Inflammopharmacology 2017; 26:87-104. [PMID: 28918573 DOI: 10.1007/s10787-017-0396-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 09/02/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite the immense neuromodulatory potentials of Ginkgo biloba extract as a memory enhancer, its underlying mechanism seems inadequate particularly with regard to its anti-inflammatory properties. AIM The objective of the present study is to investigate the protective potentials of Ginkgo biloba extract (GBE) against hippocampal neuronal injury induced by trimethyltin (TMT), a potent neurotoxicant. METHODS Male SD rats were administered trimethyltin (8.5 mg kg-1 b.wt) single intraperitoneal (i.p.) injection, followed by Ginkgo biloba extract (100 mg kg-1 b.wt i.p) for 21 days. RESULTS The co-administration of GBE with TMT showed marked improvement in cognitive functions. Concomitantly, there was a significant decrease in oxidative stress as evident by reduction in MDA and total ROS levels. In addition, there was a marked suppression of astrocyte activation (GFAP), transcription factor NFκB and proinflammatory cytokines (TNF-α, IL-1α, 1L-6), which were found to be elevated by TMT administration. Histopathological observations showed remarkable improvement in hippocampal neuronal injury in the conjunctive group. CONCLUSION Therefore, it is suggested that Ginkgo biloba extract is an effective agent against trimethyltin-induced hippocampal neuronal loss owing to its antioxidative as well as anti-inflammatory properties.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Neha Sharma
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Bimla Nehru
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|