1
|
Effah CY, Ding X, Drokow EK, Li X, Tong R, Sun T. Bacteria-derived extracellular vesicles: endogenous roles, therapeutic potentials and their biomimetics for the treatment and prevention of sepsis. Front Immunol 2024; 15:1296061. [PMID: 38420121 PMCID: PMC10899385 DOI: 10.3389/fimmu.2024.1296061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Sepsis is one of the medical conditions with a high mortality rate and lacks specific treatment despite several years of extensive research. Bacterial extracellular vesicles (bEVs) are emerging as a focal target in the pathophysiology and treatment of sepsis. Extracellular vesicles (EVs) derived from pathogenic microorganisms carry pathogenic factors such as carbohydrates, proteins, lipids, nucleic acids, and virulence factors and are regarded as "long-range weapons" to trigger an inflammatory response. In particular, the small size of bEVs can cross the blood-brain and placental barriers that are difficult for pathogens to cross, deliver pathogenic agents to host cells, activate the host immune system, and possibly accelerate the bacterial infection process and subsequent sepsis. Over the years, research into host-derived EVs has increased, leading to breakthroughs in cancer and sepsis treatments. However, related approaches to the role and use of bacterial-derived EVs are still rare in the treatment of sepsis. Herein, this review looked at the dual nature of bEVs in sepsis by highlighting their inherent functions and emphasizing their therapeutic characteristics and potential. Various biomimetics of bEVs for the treatment and prevention of sepsis have also been reviewed. Finally, the latest progress and various obstacles in the clinical application of bEVs have been highlighted.
Collapse
Affiliation(s)
- Clement Yaw Effah
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Xianfei Ding
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Emmanuel Kwateng Drokow
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Biostatistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Ran Tong
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Tongwen Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| |
Collapse
|
2
|
Xie J, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol 2023; 31:1206-1224. [PMID: 37330381 DOI: 10.1016/j.tim.2023.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
A growing body of research, especially in recent years, has shown that bacterial extracellular vesicles (bEVs) are one of the key underlying mechanisms behind the pathogenesis of various diseases like pulmonary fibrosis, sepsis, systemic bone loss, and Alzheimer's disease. Given these new insights, bEVs are proposed as an emerging vehicle that can be used as a diagnostic tool or to tackle diseases when used as a therapeutic target. To further boost the understanding of bEVs in health and disease we thoroughly discuss the contribution of bEVs in disease pathogenesis and the underlying mechanisms. In addition, we speculate on their potential as novel diagnostic biomarkers and how bEV-related mechanisms can be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol 2022; 13:1039040. [PMID: 36619996 PMCID: PMC9815515 DOI: 10.3389/fmicb.2022.1039040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-enveloped vesicles secreted by prokaryotic and eukaryotic cells, which are commonly defined as membrane vesicles (MVs) and exosomes, respectively. They play critical roles in the bacteria-bacteria and bacteria-host interactions. In infectious diseases caused by bacteria, as the first line of defense against pathogens, the macrophage polarization mode commonly determines the success or failure of the host's response to pathogen aggression. M1-type macrophages secrete pro-inflammatory factors that support microbicidal activity, while alternative M2-type macrophages secrete anti-inflammatory factors that perform an antimicrobial immune response but partially allow pathogens to replicate and survive intracellularly. Membrane vesicles (MVs) released from bacteria as a distinctive secretion system can carry various components, including bacterial effectors, nucleic acids, or lipids to modulate macrophage polarization in host-pathogen interaction. Similar to MVs, bacteria-infected macrophages can secrete exosomes containing a variety of components to manipulate the phenotypic polarization of "bystander" macrophages nearby or long distance to differentiate into type M1 or M2 to regulate the course of inflammation. Exosomes can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and regulating cellular biological behaviors. The study of the mechanisms by which EVs modulate macrophage polarization has opened new frontiers in delineating the molecular machinery involved in bacterial pathogenesis and challenges in providing new strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, China,*Correspondence: Xingxiao Zhang, ✉
| |
Collapse
|
4
|
Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, Wang H. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [PMID: 35283837 PMCID: PMC8905621 DOI: 10.3389/fmicb.2022.835058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/22/2023] Open
Abstract
Both Gram-positive and Gram-negative bacteria can secrete extracellular vesicles (EVs), which contain numerous active substances. EVs mediate bacterial interactions with their hosts or other microbes. Bacterial EVs play a double-edged role in infections through various mechanisms, including the delivery of virulence factors, modulating immune responses, mediating antibiotic resistance, and inhibiting competitive microbes. The spread of antibiotic resistance continues to represent a difficult clinical challenge. Therefore, the investigation of novel therapeutics is a valuable research endeavor for targeting antibiotic-resistant bacterial infections. As a pathogenic substance of bacteria, bacterial EVs have gained increased attention. Thus, EV inhibitors are expected to function as novel antimicrobial agents. The inhibition of EV production, EV activity, and EV-stimulated inflammation are considered potential pathways. This review primarily introduces compounds that effectively inhibit bacterial EVs and evaluates the prospects of their application.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongfang Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020; 11:600221. [PMID: 33362747 PMCID: PMC7755613 DOI: 10.3389/fmicb.2020.600221] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Membrane vesicles are the nano-sized vesicles originating from membranes. The production of membrane vesicles is a common feature among bacteria. Depending on the bacterial growth phase and environmental conditions, membrane vesicles show diverse characteristics. Various physiological and ecological roles have been attributed to membrane vesicles under both homeostatic and stressful conditions. Pathogens encounter several stressors during colonization in the hostile environment of host tissues. Nutrient deficiency, the presence of antibiotics as well as elements of the host’s immune system are examples of stressors threatening pathogens inside their host. To combat stressors and survive, pathogens have established various defensive mechanisms, one of them is production of membrane vesicles. Pathogens produce membrane vesicles to alleviate the destructive effects of antibiotics or other types of antibacterial treatments. Additionally, membrane vesicles can also provide benefits for the wider bacterial community during infections, through the transfer of resistance or virulence factors. Hence, given that membrane vesicle production may affect the activities of antibacterial agents, their production should be considered when administering antibacterial treatments. Besides, regarding that membrane vesicles play vital roles in bacteria, disrupting their production may suggest an alternative strategy for battling against pathogens. Here, we aim to review the stressors encountered by pathogens and shed light on the roles of membrane vesicles in increasing pathogen adaptabilities in the presence of stress-inducing factors.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|