1
|
Turones LC, Machado LS, Vaz BG, de Almeida R Oliveira G, da Silva Moreira LK, Almeida DDS, Martins AN, Fajemiroye JO, Martins JLR, Ghedini PC, Campos HM, Dos Santos FCA, da Silva CRB, Lião LM, Gil EDS, Costa EA, Menegatti R. Anti-inflammatory and antinociceptive effects, and safety toxicological profile of a new paracetamol analog, LQFM291. Inflammopharmacology 2023; 31:2451-2465. [PMID: 37667090 DOI: 10.1007/s10787-023-01324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/03/2023] [Indexed: 09/06/2023]
Abstract
In the scope of a research program with the goal of developing treatments for inflammatory diseases, the pharmacological evaluation of LQFM291, designed by molecular hybridization from butylated hydroxytoluene and paracetamol, was described. The antioxidant profile of LQFM291 was evaluated by electrochemical measurement. Also, acute or repeated treatments with equimolar doses to paracetamol were used to evaluate the antinociceptive and/or anti-inflammatory activities of LQFM291 in animal models. The toxicologic potential of LQFM291 was also evaluated and compared to paracetamol through biochemical and histopathological analysis after the repeated treatment schedule. As a result of the acute treatment, paracetamol showed a similar antinociceptive effect in formalin test compared to LQFM291. Whereas, after the repeated treatment, when carrageenan-induced hyperalgesia and edema tests were performed, paracetamol showed a delayed antinociceptive and anti-inflammatory effect compared to LQFM291. Furthermore, as other advantages the LQFM291 showed a high redox capacity, a gastroprotective activity and a safety pharmacological profile without any liver or kidney damage. These effects can be related to the prevention of oxidative stress by reduction of protein and lipid peroxidation in gastric tissue, maintenance of glutathione levels in hepatic homogenate, and a systemic reduction of pro-inflammatory cytokine levels, which may characterize the LQFM291 as a more viable and effective alternative to relief pain and inflammatory signs in patients with chronic disorders.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Room 209, Esperança Avenue, Campus Samambaia, Goiania, 74690-900, Brazil.
| | - Lucas S Machado
- Laboratory of Chromatography and Mass Spectrometry, Chemistry Institute, Federal University of Goiás, Campus Colemar Natal e Silva, Goiânia, Brazil
| | - Boniek G Vaz
- Laboratory of Chromatography and Mass Spectrometry, Chemistry Institute, Federal University of Goiás, Campus Colemar Natal e Silva, Goiânia, Brazil
| | | | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Room 209, Esperança Avenue, Campus Samambaia, Goiania, 74690-900, Brazil
| | - Dionys de Souza Almeida
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Room 209, Esperança Avenue, Campus Samambaia, Goiania, 74690-900, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Room 209, Esperança Avenue, Campus Samambaia, Goiania, 74690-900, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Room 209, Esperança Avenue, Campus Samambaia, Goiania, 74690-900, Brazil
| | - José Luís R Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Room 209, Esperança Avenue, Campus Samambaia, Goiania, 74690-900, Brazil
| | - Paulo César Ghedini
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Hericles Mesquita Campos
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Fernanda Cristina A Dos Santos
- Laboratory of Microscopy Applied to Reproduction, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Cinthia Rio Branco da Silva
- Laboratory of Microscopy Applied to Reproduction, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Eric de Souza Gil
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Room 209, Esperança Avenue, Campus Samambaia, Goiania, 74690-900, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
2
|
Martins AN, de Souza Almeida D, Florentino IF, da Silva Moreira LK, Turones LC, Batista DC, Machado LS, Vaz BG, Lião LM, de Almeida Ribeiro Oliveira G, Martins JLR, Fajemiroye JO, Menegatti R, Costa EA, da Silva DPB. Pharmacological evaluation of antinociceptive and anti-inflammatory activities of LQFM202: a new piperazine derivative. Inflammopharmacology 2023; 31:411-422. [PMID: 36443517 DOI: 10.1007/s10787-022-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022]
Abstract
Advances have been made in the search for new multi-target modulators to control pain and inflammation. Therefore, compound 3,5-di-tert-butyl-4-hydroxyphenyl)(4-methylpiperazin-1-yl)methanone (LQFM202) was synthesised and evaluated. First, in vitro assays were performed for COX-1, COX-2, and 5-LOX enzymes. Subsequently, adult female Swiss albino mice treated orally with LQFM202 at doses of 25-200 mg/kg were subjected to acetic acid-induced writhing, formalin-induced pain, carrageenan-induced hyperalgesia, carrageenan- or zymosan-induced paw oedema, or pleurisy. LQFM202 inhibited COX-1, COX-2, and LOX-5 (IC50 = 3499 µM, 1565 µM, and 1343 µM, respectively). In acute animal models, LQFM202 (50, 100, or 200 mg/kg) decreased the amount of abdominal writhing (29%, 52% and 48%, respectively). Pain in the second phase of the formalin test was reduced by 46% with intermediate dose. LQFM202 (100 mg/kg) reduced the difference in nociceptive threshold in all 4 h evaluated (46%, 37%, 30%, and 26%, respectively). LQFM202 (50 mg/kg) decreased the carrageenan-oedema from the second hour (27%, 31% and 25%, respectively); however, LQFM202 (100 mg/kg) decreased the carrageenan-oedema in all hours evaluated (35%, 42%, 48% and 50%, respectively). When using zymosan, LQFM202 (50 mg/kg) decreased the oedema in all hours evaluated (33%, 32%, 31% and 20%, respectively). In the carrageenan-pleurisy test, LQFM202 (50 mg/kg) reduced significantly the number of polymorphonuclear cells (34%), the myeloperoxidase activity (53%), TNF-α levels (47%), and IL-1β levels (58.8%). When using zymosan, LQFM202 (50 mg/kg) reduced the number of polymorphonuclear and mononuclear cells (54% and 79%, respectively); and the myeloperoxidase activity (46%). These results suggest antinociceptive and anti-inflammatory effects of LQFM202.
Collapse
Affiliation(s)
- Aline N Martins
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Dionys de Souza Almeida
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Iziara F Florentino
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Lorrane K da Silva Moreira
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Larissa C Turones
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Daniel C Batista
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Lucas S Machado
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | | | - José Luís Rodrigues Martins
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson A Costa
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Daiany P B da Silva
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Chulrik W, Jansakun C, Chaichompoo W, Tedasen A, Yotmanee P, Sattayakhom A, Chunglok W, Suksamrarn A, Chunglok W. Oxocrebanine from Stephania pierrei exerts macrophage anti-inflammatory effects by downregulating the NF-κB, MAPK, and PI3K/Akt signalling pathways. Inflammopharmacology 2022; 30:1369-1382. [PMID: 35831735 DOI: 10.1007/s10787-022-01021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 01/17/2023]
Abstract
Plant-derived medicinal compounds are increasingly being used to treat acute and chronic inflammatory diseases, which are generally caused by aberrant inflammatory responses. Stephania pierrei Diels, also known as Sabu-lueat in Thai, is a traditional medicinal plant that is used as a remedy for several inflammatory disorders. Since aporphine alkaloids isolated from S. pierrei tubers exhibit diverse pharmacological characteristics, we aimed to determine the anti-inflammatory effects of crude extracts and alkaloids isolated from S. pierrei tubers against lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Notably, the n-hexane extract strongly suppressed nitric oxide (NO) while exhibiting reduced cytotoxicity. Among the five alkaloids isolated from the n-hexane extract, the aporphine alkaloid oxocrebanine exerted considerable anti-inflammatory effects by inhibiting NO secretion. Oxocrebanine also significantly suppressed prostaglandin E2, tumour necrosis factor-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase (COX)-2 protein expression by inactivating the nuclear factor κB, c-Jun NH2-terminal kinase, extracellular signal-regulated kinase 1/2, and phosphatidylinositol 3-kinase/Akt inflammatory signalling pathways. Molecular docking analysis further revealed that oxocrebanine has a higher affinity for toll-like receptor 4/myeloid differentiation primary response 88 signalling targets and the COX-2 protein than native ligands. Thus, our findings highlight the potential anti-inflammatory effects of oxocrebanine and suggest that certain alkaloids of S. pierrei could be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chutima Jansakun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Pathumwadee Yotmanee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apsorn Sattayakhom
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Wilanee Chunglok
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand. .,Food Technology and Innovation Research Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
4
|
MORAES WEULLERFILHODE, SILVA DAIANYPRISCILLABDA, FLORENTINO IZIARAF, ALMEIDA DIONYSS, MOREIRA LORRANEKELLES, NASCIMENTO MARCUSVINÍCIUSM, CARVALHO PABLINNYMDE, COUTO RENÊODO, PAULA JOSÉRDE, COSTA ELSONA. Antinociceptive and anti-inflammatory effects of extract of Celtis iguanaea (Jacq.) Sargent leaves in mice. AN ACAD BRAS CIENC 2022; 94:e20191339. [DOI: 10.1590/0001-3765202220191339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/16/2020] [Indexed: 12/23/2022] Open
|
5
|
Elzahhar PA, Alaaeddine RA, Nassra R, Ismail A, Labib HF, Temraz MG, Belal ASF, El-Yazbi AF. Challenging inflammatory process at molecular, cellular and in vivo levels via some new pyrazolyl thiazolones. J Enzyme Inhib Med Chem 2021; 36:669-684. [PMID: 33618602 PMCID: PMC7901699 DOI: 10.1080/14756366.2021.1887169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09-0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Rasha Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Azza Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria, Egypt
| | | | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, E gypt
| |
Collapse
|
6
|
Turones LC, Martins AN, Moreira LKDS, Fajemiroye JO, Costa EA. Development of pyrazole derivatives in the management of inflammation. Fundam Clin Pharmacol 2020; 35:217-234. [PMID: 33171533 DOI: 10.1111/fcp.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole-antipyrine in 1887, several other derivatives have been screened for anti-inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural-activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti-inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation-related diseases and treatment.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
7
|
Sharma V, Bhatia P, Alam O, Javed Naim M, Nawaz F, Ahmad Sheikh A, Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008–2019). Bioorg Chem 2019; 89:103007. [DOI: 10.1016/j.bioorg.2019.103007] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
8
|
AlFadly ED, Elzahhar PA, Tramarin A, Elkazaz S, Shaltout H, Abu-Serie MM, Janockova J, Soukup O, Ghareeb DA, El-Yazbi AF, Rafeh RW, Bakkar NMZ, Kobeissy F, Iriepa I, Moraleda I, Saudi MN, Bartolini M, Belal AS. Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem 2019; 167:161-186. [DOI: 10.1016/j.ejmech.2019.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
|