1
|
Abdo Qaid EY, Abdullah Z, Zakaria R, Long I. Minocycline protects against lipopolysaccharide-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of the rat. Int J Neurosci 2024; 134:56-65. [PMID: 35638219 DOI: 10.1080/00207454.2022.2084092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE/AIM Neuroinflammation and oxidative stress have been encountered in neurodegenerative diseases such as Alzheimer's disease (AD). However, the neuroprotective effects of minocycline against lipopolysaccharide (LPS)-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of rats are still elusive. The purpose of this study is to investigate the effects of minocycline and memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, on the microglia and astrocytes expression, as well as oxidative stress levels in the mPFC of LPS injected rats. MATERIALS AND METHODS Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels. RESULTS In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p < 0.05). LPS group also exhibited significantly higher levels of PCO and MDA (p < 0.05) and significantly lower levels of CAT and SOD (p < 0.05) when compared to the control group. Both minocycline and memantine-treated LPS rats were able to protect against these effects. CONCLUSION Minocycline, like memantine treatment, reduces oxidative stress in the mPFC of LPS rats via inhibition of glial cells activation.
Collapse
Affiliation(s)
- Entesar Yaseen Abdo Qaid
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
- Faculty of Medicine and Health Sciences, Department of Histology, Taiz University, Taiz, Yemen
| | - Zuraidah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
2
|
Qaid EYA, Abdullah Z, Zakaria R, Long I. Minocycline Protects Against Lipopolysaccharide-Induced Cognitive Impairment and Oxidative Stress: Possible Role of the CREB-BDNF Signaling Pathway. Neurochem Res 2022; 48:1480-1490. [PMID: 36509985 DOI: 10.1007/s11064-022-03842-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
The oxidative stress-induced dysregulation of the cyclic AMP response element-binding protein- brain-derived neurotrophic factor (CREB-BDNF) cascade has been linked to cognitive impairment in several studies. This study aimed to investigate the effect of minocycline on the levels of oxidative stress markers, CREB, and BDNF in lipopolysaccharide (LPS)-induced cognitive impairment. Fifty adult male Sprague Dawley rats were divided randomly into five groups. Group 1 was an untreated control group. Groups 2, 3, 4 and 5 were treated concurrently with LPS (5 mg/kg, i.p) once on day 5 and normal saline (0.7 ml/rat, i.p) or minocycline (25 and 50 mg/kg, i.p) or memantine (10 mg/kg, i.p) once daily from day 1 until day 14, respectively. From day 15 to day 22 of the experiment, Morris Water Maze (MWM) was used to evaluate learning and reference memory in rats. The levels of protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were determined by enzyme-linked immunosorbent assay (ELISA). CREB and BDNF expression and density were measured by immunohistochemistry and western blot analysis, respectively. LPS administration significantly increased escape latency to the hidden platform with decreased travelled distance, swimming speed, target crossings and time spent in the target quadrant. Besides, the hippocampal tissue of LPS rats showed increased levels of PCO and MDA, decreased levels of CAT and SOD, and reduced expression and density of BDNF and CREB. Treatment with minocycline reversed these effects in a dose-dependent manner, comparable to the effects of memantine. Both doses of minocycline treatment protect against LPS-induced cognitive impairment by reducing oxidative stress and upregulating the CREB-BDNF signalling pathway in the rat hippocampus.
Collapse
Affiliation(s)
- Entesar Yaseen Abdo Qaid
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.,Histology Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Zuraidah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Idris Long
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Soler-Martínez R, Deulofeu M, Bagó-Mas A, Dubový P, Verdú E, Fiol N, Boadas-Vaello P. Central Neuropathic Pain Development Modulation Using Coffee Extract Major Polyphenolic Compounds in Spinal-Cord-Injured Female Mice. BIOLOGY 2022; 11:1617. [PMID: 36358318 PMCID: PMC9687351 DOI: 10.3390/biology11111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 08/18/2024]
Abstract
It was recently shown that coffee polyphenolic extract exerts preventive effects on central neuropathic pain development, but it is unknown whether its beneficial effects are associated with only one of its major polyphenolic compounds or if the whole extract is needed to exert such effects. The main objective of this study was to determine whether the separate administration of major polyphenols from coffee extract exerts preventive effects on the development of central neuropathic pain in mice compared with the effects of the whole coffee extract. Thus, spinal-cord-injured female ICR-CD1 mice were daily treated with either coffee extract or its major polyphenolic compounds during the first week, and reflexive and nonreflexive pain responses were evaluated within the acute phase of spinal cord injury. In addition, the injury-induced gliosis and dorsal horn sprouting were evaluated with immunohistochemistry. The results showed that the coffee extract prevented spinal cord injury-induced neuropathic pain, whereas its major polyphenolic compounds resulted in reflexive pain response attenuation. Both preventive and attenuation effects were associated with gliosis and afferent fiber sprouting modulation. Overall, the results suggested that coffee extract effects may be associated with potential synergistic mechanisms exerted by its major polyphenolic compounds and not by the sole effect of only one of them.
Collapse
Affiliation(s)
- Roger Soler-Martínez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| |
Collapse
|
4
|
Ruiz-Alcaraz AJ, Martínez-Sánchez MA, García-Peñarrubia P, Martinez-Esparza M, Ramos-Molina B, Moreno DA. Analysis of the anti-inflammatory potential of Brassica bioactive compounds in a human macrophage-like cell model derived from HL-60 cells. Biomed Pharmacother 2022; 149:112804. [PMID: 35279599 DOI: 10.1016/j.biopha.2022.112804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chronic inflammatory diseases are major causes of global morbidity and mortality. Acute inflammation is meant to protect the body against foreign agents, but it also plays a major role in tissue repairment. Several mediators are involved in this process, including pro-inflammatory cytokines produced by macrophages. Occasionally, if the inflammatory response is not resolved, the acute inflammatory process can evolve into a chronic inflammation. Natural compounds from vegetables are considered as an important source of active agents with potential to treat or prevent inflammatory related pathologies and could be used as an alternative of the therapeutic agents currently in use, such as non-steroidal anti-inflammatory drugs (NSAIDs), which present several side effects. METHODS In this research work we evaluated in vitro the anti-inflammatory activity of a series of ten phytochemicals present in Brassica, measured as the potential of those compounds to reduce the production of key pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) by a human macrophage-like cell model of HL-60 cells RESULTS: Most of the tested phytochemicals (including the most representative bioactive molecules of the major classes of compounds present in cruciferous foods such as glucosinolates, isothiocyanates, hydroxycinnamic acids, flavonols and anthocyanins) demonstrated significant anti-inflammatory activity at micromolar level in the absence of cytotoxic effects in this human macrophage-like cell model. CONCLUSION These data confirm that phytochemicals commonly obtained from Brassica may be potential therapeutic leads to treat or prevent human chronic inflammation and related diseases.
Collapse
Affiliation(s)
- Antonio José Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain.
| | - María Antonia Martínez-Sánchez
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain; Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Pilar García-Peñarrubia
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain
| | - María Martinez-Esparza
- Department of Biochemistry, Molecular Biology B and Immunology, School of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Diego A Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo - 25, 30100 Murcia, Spain.
| |
Collapse
|
5
|
The Effects of Royal Jelly Acid, 10-Hydroxy-trans-2-decenoic Acid, on Neuroinflammation and Oxidative Stress in Astrocytes Stimulated with Lipopolysaccharide and Hydrogen Peroxide. IMMUNO 2021. [DOI: 10.3390/immuno1030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The increased prevalence of neurodegenerative diseases, especially during the COVID-19 outbreak, necessitates the search for natural immune- and cognitive-enhancing agents. 10-Hydroxy-trans-2-decenoic acid (10-H2DA), the main fatty acid of royal jelly, has several pharmacological activities. Given the fundamental role of astrocytes in regulating immune responses of the central nervous system, we used cortical astrocytes to examine the effect of 10-H2DA on the expression of genes associated with neuroinflammation and the production of neurotrophins, as well as cellular resistance to H2O2-induced cytotoxicity. Astrocytes, pretreated with a range of concentrations of 10-H2DA for 24 h, were exposed to lipopolysaccharide (LPS) for 3 h, after which the expression of proinflammatory cytokines (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α)) and neurotrophic factors (BDNF, GDNF, and IGF-1) was evaluated. In the absence of LPS, 10-H2DA had no significant effect on the mRNA expression of neurotrophins or cytokines except for IL-1β, which significantly increased with low doses of 10-H2DA (3 µM). 10-H2DA (10 µM) pretreatment of LPS-stimulated cells did not significantly inhibit the expression of cytokine encoding genes; however, it significantly lowered the mRNA expression of GDNF and tended to decrease BDNF and IGF-1 expression compared with LPS alone. Additionally, 10-H2DA did not protect astrocytes against H2O2-induced oxidative stress. Our data indicate no anti-inflammatory, antioxidant, or neurotrophic effect of 10-H2DA in astrocytes undergoing inflammation or oxidative stress. The effect of IGF-1 inhibition by 10-H2DA on neuronal ketogenesis needs investigation.
Collapse
|
6
|
Borowiec K, Michalak A. Flavonoids from edible fruits as therapeutic agents in neuroinflammation - a comprehensive review and update. Crit Rev Food Sci Nutr 2021; 62:6742-6760. [PMID: 33783286 DOI: 10.1080/10408398.2021.1905604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a key process in the pathogenesis of many neurological disorders, i.e. Alzheimer's disease and Parkinson's disease. However, there are no anti-inflammatory medical interventions recommended so far in the treatment of neuroinflammation-related brain disorders. Therefore, the burden of searching for effective and safe antineuroinflammatory agents is well founded, especially in the aging society. Compounds of plant origin, mainly (poly)phenols, have attracted considerable attention in recent years. Notably, the role of flavonoids in ameliorating neuroinflammation is in the limelight. Thus, we used comprehensive literature retrieval to summarize the effects and active components of edible fruits and their phenolic compounds. As a result, this review presents a valuable summary of results of in vitro, ex vivo, and in vivo studies on the antineuroinflammatory effects of edible fruits and their (poly)phenolic extracts as well as dietary flavonoids and other selected (poly)phenols based on the detailed description of foregoing studies. Additionally, problems resulting from the limited bioavailability of (poly)phenols were discussed.
Collapse
Affiliation(s)
- Kamila Borowiec
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
van de Vyver M, Powrie YSL, Smith C. Targeting Stem Cells in Chronic Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:163-181. [PMID: 33725353 DOI: 10.1007/978-3-030-55035-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell (MSC) dysfunction is a serious complication in ageing and age-related inflammatory diseases such as type 2 diabetes mellitus. Inflammation and oxidative stress-induced cellular senescence alter the immunomodulatory ability of MSCs and hamper their pro-regenerative function, which in turn leads to an increase in disease severity, maladaptive tissue damage and the development of comorbidities. Targeting stem/progenitor cells to restore their function and/or protect them against impairment could thus improve healing outcomes and significantly enhance the quality of life for diabetic patients. This review discusses the dysregulation of MSCs' immunomodulatory capacity in the context of diabetes mellitus and focuses on intervention strategies aimed at MSC rejuvenation. Research pertaining to the potential therapeutic use of either pharmacological agents (NFкB antagonists), natural products (phytomedicine) or biological agents (exosomes, probiotics) to improve MSC function is discussed and an overview of the most pertinent methodological considerations given. Based on in vitro studies, numerous anti-inflammatory agents, antioxidants and biological agents show tremendous potential to revitalise MSCs. An integrated systems approach and a thorough understanding of complete disease pathology are however required to identify feasible candidates for in vivo targeting of MSCs.
Collapse
Affiliation(s)
- Mari van de Vyver
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Yigael S L Powrie
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.,Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Garcez ML, Tan VX, Heng B, Guillemin GJ. Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes. Int J Tryptophan Res 2021; 13:1178646920978404. [PMID: 33447046 PMCID: PMC7780186 DOI: 10.1177/1178646920978404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Michelle L Garcez
- Neurochemistry Laboratory, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X Tan
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,PANDIS.org, Little Collins St, Melbourne VIC, Australia
| |
Collapse
|
9
|
Shi J, Wang W, Sang G, Xi H, Sun Y, Lu C, Ye H, Huang L. Short Term Usage of Omega-3 Polyunsaturated Fatty Acids Ameliorate Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress in the Neonatal Rat Hippocampal Tissue. Front Nutr 2020; 7:572363. [PMID: 33282898 PMCID: PMC7705230 DOI: 10.3389/fnut.2020.572363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: To investigate the effect of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in neonatal rat brain. Methods: Ninety-six 3-day-old Sprague Dawley rats were divided into four groups: control (saline/saline), LPS/ω-3, LPS/ω-6, and LPS/saline (n = 24/group). All rats, except those in the control group, were intraperitoneally challenged once with LPS (0.6 mg/kg) and were treated with ω-3 PUFAs, ω-6 PUFAs, or saline at 15 mL/kg for 1 or 5 consecutive days beginning on the day of LPS-challenge. Rats in the control group underwent the same procedures and received saline (vehicle). After 1 or 5 days of treatment, 12 rats from each group were sacrificed and their hippocampuses were collected. The expression of inflammation-related genes as well as the levels of oxidative stress markers in hippocampal tissues were determined. Results: After 1 or 5 days of treatment, the expression of toll-like receptor 4 and multiple proinflammatory cytokines were significantly decreased in the LPS/ω-3 group compared with those in the LPS/saline group. The activities of superoxide dismutase and glutathione (GSH) were significantly elevated, whereas amounts of malondialdehyde and oxidized glutathione (GSSG) and the ratio of GSSG/GSH were remarkably lowered in the LPS/ω-3 group compared with those in the LPS/saline group after 1 day of treatment. Opposite effects were observed in the LPS/ω-6 group. Conclusion: ω-3 PUFAs may protect rat brain tissue against LPS-induced inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Jipeng Shi
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Weiwei Wang
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Guimei Sang
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Huifang Xi
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yazhou Sun
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chaosheng Lu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Hezhen Ye
- The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Limi Huang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| |
Collapse
|
10
|
Ruta LL, Oprea E, Popa CV, Farcasanu IC. Saccharomyces cerevisiae cells lacking transcription factors Skn7 or Yap1 exhibit different susceptibility to cyanidin. Heliyon 2020; 6:e05352. [PMID: 33145450 PMCID: PMC7592074 DOI: 10.1016/j.heliyon.2020.e05352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Anthocyanidins – the aglycone moiety of anthocyanins – are responsible for the antioxidant traits and for many of the health benefits brought by the consumption of anthocyanin-rich foods, but whether excessive anthocyanidins are deleterious to living organisms is still a matter of debate. In the present study we used the model eukaryotic microorganism Saccharomyces cerevisiae to evaluate the potential toxicity of cyanidin, one of the most prevalent anthocyanidins found in berries, grapes, purple vegetables, and red wine. We found that yeast cells lacking the transcription factors responsible for regulating the response to oxidative stress – Skn7 and Yap1 – exhibited different sensitivities to cyanidin. Cells lacking the transcription factor Skn7 were sensitive to low concentrations of cyanidin, a trait that was augmented by exposure to visible light, notably blue or green light. In contrast, the growth of yeast cells devoid of Yap1 was stimulated by low concentrations, but it was impaired by high cyanidin exposure. High, but not low cyanidin was shown to induce Yap1 translocation from cytosol to nucleus, probably by generating reactive oxygen species such as H2O2. Taken together, these observation suggested that Skn7 and Yap1 have complementary roles in adaptation to cyanidin stress, with Skn7 involved in adaptation to low concentrations and with Yap1 responsible for adaptation to high concentrations of cyanidin. The results imply that caution is needed when utilizing cyanidin-enriched supplements, especially when in combination with prolonged exposure to visible light.
Collapse
Affiliation(s)
- Lavinia Liliana Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Claudia Valentina Popa
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
11
|
Singh A, Yau YF, Leung KS, El-Nezami H, Lee JCY. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain-Liver-Gut Axis. Antioxidants (Basel) 2020; 9:antiox9080669. [PMID: 32722619 PMCID: PMC7465954 DOI: 10.3390/antiox9080669] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress plays an important role in the onset as well as the progression of inflammation. Without proper intervention, acute inflammation could progress to chronic inflammation, resulting in the development of inflammatory diseases. Antioxidants, such as polyphenols, have been known to possess anti-oxidative properties which promote redox homeostasis. This has encouraged research on polyphenols as potential therapeutics for inflammation through anti-oxidative and anti-inflammatory pathways. In this review, the ability of polyphenols to modulate the activation of major pathways of inflammation and oxidative stress, and their potential to regulate the activity of immune cells are examined. In addition, in this review, special emphasis has been placed on the effects of polyphenols on inflammation in the brain–liver–gut axis. The data derived from in vitro cell studies, animal models and human intervention studies are discussed.
Collapse
|
12
|
Pepe G, Salviati E, Rapa SF, Ostacolo C, Cascioferro S, Manfra M, Autore G, Marzocco S, Campiglia P. Citrus sinensis and Vitis vinifera Protect Cardiomyocytes from Doxorubicin-Induced Oxidative Stress: Evaluation of Onconutraceutical Potential of Vegetable Smoothies. Antioxidants (Basel) 2020; 9:antiox9050378. [PMID: 32370308 PMCID: PMC7278676 DOI: 10.3390/antiox9050378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
The interest towards nutraceuticals able to counteract drug side effects is continuously growing in current chemotherapeutic protocols. In the present study, we demonstrated that smoothies containing mixtures of Citrus sinensis and Vitis vinifera L. cv. Aglianico N, two typical fruits of the Mediterranean diet, possess bioactive polyphenols that protect cardiomyocytes against doxorubicin-induced oxidative stress. The polyphenolic extracts isolated from Citrus sinensis- and Vitis vinifera-based functional smoothies were deeply characterized by Liquid Chromatography-Mass Spectrometry methods. Subsequently, the functional smoothies and relative mixtures were tested to verify their ability to affect cellular viability and oxidative stress parameters in embryonic cardiomyocyte cells (H9c2), and human breast adenocarcinoma cell line (MCF-7) exposed to doxorubicin. Interestingly, we found that the mix resulting from Citrus sinensis and Vitis vinifera association in ratio 1:1 was able to reduce cardiomyocytes damage induced by anthracyclines, without significantly interfering with the pro-apoptotic activity of the drug on breast cancer cells. These results point out the potential use of vegetable smoothies as adjuvants functional foods for chemotherapeutic anticancer protocols.
Collapse
Affiliation(s)
- Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Shara Francesca Rapa
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90123 Palermo, Italy;
| | - Michele Manfra
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
- Correspondence: (S.M.); (P.C.); Tel.: +39-089-96-9250 (S.M.); +39-089-96-9242 (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
- Correspondence: (S.M.); (P.C.); Tel.: +39-089-96-9250 (S.M.); +39-089-96-9242 (P.C.)
| |
Collapse
|
13
|
Aboonabi A, Aboonabi A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects. Free Radic Biol Med 2020; 150:30-39. [PMID: 32061902 DOI: 10.1016/j.freeradbiomed.2020.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood. The effects of berry-rich anthocyanin supplements (320 mg/day) for four weeks were examined on features of metabolic syndrome components and the expression of PPAR-γ, Nrf2, and NF-κB dependent genes in MetS and healthy subjects. Total RNA was isolated from whole blood with the PAXgene proprietary blood collection system. Four weeks anthocyanin consumption significantly decreased fasting blood glucose (15.7% vs 3.2%), TG (18.2% vs -1.39%), cholesterol (33.5% vs 1.56%) and LDL (28.4% vs -15.6%) in the MetS compared to Control group (P-value < 0.05, 95% CI). There was a significant up regulation in the expression PPAR-γ gene associated with the lipid and glucose metabolism in MetS subjects which negatively correlated (P-value < 0.01) with the change in the FBG (r = -0.488), Cholesterol (r = -0.496), TG (r = -0.513) and LDL (r = -0.519). Moreover, anthocyanin supplementation decreases serum hs-CRP (-36.3% vs 6.25%) in MetS in compared to Control group (P-value < 0.05). Anthocyanin supplementation also down-regulated the expression of NF-κB dependent genes including TNF-α (-28% and -15%), IL-6 (-16.1% and -13.6%), IL-1A (-21.5% and -12.9%), PCAM-1 (-15% and -17.5%), and COX-2(-26% and -27%) in both MetS and Control group respectively (P-value < 0.05). The study results suggested that berry supplements improved selected features of metabolic syndrome and related cardiovascular risk factors. These benefits may be due to the inhibition of NF-κB dependent gene expression and enhancement of PPAR-γ.
Collapse
Affiliation(s)
- Anahita Aboonabi
- School of Medical Science, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland, 4222, Australia.
| | - Arta Aboonabi
- West Center of Tehran, Payam Noor University, Shahid Bagheri Town, Tehran, Iran.
| |
Collapse
|
14
|
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease. Antioxidants (Basel) 2019; 8:antiox8090333. [PMID: 31443476 PMCID: PMC6770078 DOI: 10.3390/antiox8090333] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.
Collapse
|