1
|
Xu M, Zhang W, Lin B, Lei Y, Zhang Y, Zhang Y, Chen B, Mao Q, Kim JJ, Cao Q. Efficacy of probiotic supplementation and impact on fecal microbiota in patients with inflammatory bowel disease: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:e65-e73. [PMID: 38553410 DOI: 10.1093/nutrit/nuae022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Context: Research regarding the treatment of inflammatory bowel disease (IBD) with probiotics has not yielded consistent results. OBJECTIVE The aim of this meta-analysis was to evaluate the efficacy of probiotics supplementation in patients with IBD. DATA SOURCES Randomized controlled trials (RCTs) evaluating the efficacy of probiotics in patients with IBD were searched in PubMed, the Google Scholar database, Web of Science, and CrossRef for the period July 2003 to June 2023. DATA EXTRACTION The RCTs were extracted, independently by 2 authors, according to the PICOS criteria. DATA ANALYSIS Seven studies, including a total of 795 patients, met the study criteria. Five end points were selected to evaluate the efficacy. Of these, 3 indicators showed a statistically significant difference in efficacy: C-reactive protein (odds ratio [OR]: -2.45, 95% confidence interval [CI]: -3.16, -1.73, P < .01), the number of fecal Bifidobacterium (OR: 3.37, 95% CI: 3.28, 3.47, P < .01), and Lactobacillus(OR: 2.00, 95% CI: 1.91, 2.09, P < .01). The other 2 indicators (disease activity for Crohn's disease and for ulcerative colitis) showed no statistically significant difference, while the OR reflected a positive correlation. CONCLUSION Probiotics supplementation may have a positive effect on IBD by reducing clinical symptoms, reducing the serological inflammatory markers, and increasing favorable gut flora in patients with IBD. Additional RCTs are needed to evaluate the therapeutic effect of probiotics in IBD.
Collapse
Affiliation(s)
- Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wenluo Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Lei
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Binrui Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qingyi Mao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John J Kim
- Division of Gastroenterology and Hepatology, Los Angles General Medical Center, Los Angeles, CA, USA
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Santos EN, Magalhães-Guedes KT, Borges FEDM, Ferreira DD, da Silva DF, Conceição PCG, Lima AKDC, Cardoso LG, Umsza-Guez MA, Ramos CL. Probiotic Microorganisms in Inflammatory Bowel Diseases: Live Biotherapeutics as Food. Foods 2024; 13:4097. [PMID: 39767038 PMCID: PMC11675991 DOI: 10.3390/foods13244097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Inflammatory bowel diseases (IBDs) are characterized by chronic and complex inflammatory processes of the digestive tract that evolve with frequent relapses and manifest at any age; they predominantly affect young individuals. Diet plays a direct role in maintaining the gut mucosal integrity and immune function. Regarding the diet, the administration of probiotics stands out. The use of probiotics for IBD treatment has shown promising effects on consumers' quality of life. (2) Methods: This study aimed to conduct a literature review on the effects of probiotic and smart probiotic ingestion on IBD and analyze the available literature based on the searched keywords using boxplot diagrams to search for scientific data in the online literature published up to October 2024. (3) Results: Google Scholar (containing ~6 × 106 articles) and Science Direct (containing ~5 × 106 articles) were the databases with the highest number of articles for the keywords used in the study. When analyzing the content of the articles, although probiotic microorganisms are currently not part of the standard treatment protocol for IBD, these live biotherapeutics have proven to be an effective treatment option, considering the adverse effects of conventional therapies. Furthermore, the development of genetically engineered probiotics or smart probiotics is a promising treatment for IBD. (4) Conclusions: Probiotics and smart probiotics could represent the future of nutritional medicine in IBD care, allowing patients to be treated in a more natural, safe, effective, and nutritious way. However, although many studies have demonstrated the potential of this biotherapy, clinical trials standardizing dosage and strains are still necessary.
Collapse
Affiliation(s)
- Emanuelle Natalee Santos
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| | - Karina Teixeira Magalhães-Guedes
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
- Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Barão of Geremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil
| | - Fernando Elias de Melo Borges
- Post-Graduate Program in Systems Engineering and Automation, Department of Automatic, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil
| | - Danton Diego Ferreira
- Post-Graduate Program in Systems Engineering and Automation, Department of Automatic, Federal University of Lavras (UFLA), University Campus, Lavras 37000-200, MG, Brazil
| | - Daniele Ferreira da Silva
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| | - Pietro Carlos Gonçalves Conceição
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Ana Katerine de Carvalho Lima
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Lucas Guimarães Cardoso
- Post-Graduate Program in Chemistry Engineering, Polytechnic School, Federal University of Bahia (UFBA) and Salvador University (UNIFACS), Street Professor Aristídes Novis, 02, Federação, Salvador 40210-630, BA, Brazil
| | - Marcelo Andrés Umsza-Guez
- Post-Graduate Program in Food Science, Federal University of Bahia (UFBA), Barão of Geremoabo Street, s/n, Ondina, Salvador 40171-970, BA, Brazil
| | - Cíntia Lacerda Ramos
- Post-Graduate Program in Food Science, Federal University of Vale of Jequitinhonha and Mucuri (UFVJM), Street MGT 367—Km 583, No. 5000, Alto da Jacuba, Diamantina 39100-000, MG, Brazil
| |
Collapse
|
3
|
Xu X, Gao Y, Xiao Y, Yu Y, Huang J, Su W, Li N, Xu C, Gao S, Wang X. Characteristics of the gut microbiota and the effect of Bifidobacterium in very early-onset inflammatory bowel disease patients with IL10RA mutations. Front Microbiol 2024; 15:1479779. [PMID: 39687875 PMCID: PMC11647010 DOI: 10.3389/fmicb.2024.1479779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD) is a distinct subtype of inflammatory bowel disease (IBD) characterized by onset before the age of 6 years, and patients often exhibit more severe clinical features. Interleukin 10 receptor alpha (IL10RA) is a hotspot mutation in the Chinese population and is associated with a poor prognosis closely linked to the onset of IBD. However, limited knowledge exists regarding how the IL10RA mutation influences the host microbiota and its role in disease development. We employed 16S rRNA sequencing to conduct a comprehensive assessment of microbial changes in different types of IBD, employed database to thoroughly examine the influence of Bifidobacterium in IBD and to demonstrate a potential positive effect exerted by Bifidobacterium breve M16V (M16V) through a mouse model. The study demonstrated a significant reduction in the abundance and diversity of the gut microbiota among children with IL10RA mutations compared to those with late-onset pediatric IBD and nonmutated VEO-IBD. Furthermore, the analysis identified genera capable of distinguishing between various types of IBD, with the genus Bifidobacterium emerging as a potential standalone diagnostic indicator and Bifidobacterium may also be involved in related pathways that influence the progression of IBD, such as the biosynthesis of amino acids and inflammation-related pathways. This study corroborated the efficacy of Bifidobacterium in alleviating intestinal inflammation. The impact of IL10RA mutations on VEO-IBD may be mediated by alterations in microbes. M16V demonstrates efficacy in alleviating colitis and holds promise as a novel microbial therapy.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Su
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenshen Gao
- Clinical Research and Development Center of Shanghai Municipal Hospitals, Shanghai Shenkang Hospital Development Center, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Mousa WK, Al Ali A. The Gut Microbiome Advances Precision Medicine and Diagnostics for Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:11259. [PMID: 39457040 PMCID: PMC11508888 DOI: 10.3390/ijms252011259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiome emerges as an integral component of precision medicine because of its signature variability among individuals and its plasticity, which enables personalized therapeutic interventions, especially when integrated with other multiomics data. This promise is further fueled by advances in next-generation sequencing and metabolomics, which allow in-depth high-precision profiling of microbiome communities, their genetic contents, and secreted chemistry. This knowledge has advanced our understanding of our microbial partners, their interaction with cellular targets, and their implication in human conditions such as inflammatory bowel disease (IBD). This explosion of microbiome data inspired the development of next-generation therapeutics for treating IBD that depend on manipulating the gut microbiome by diet modulation or using live products as therapeutics. The current landscape of artificial microbiome therapeutics is not limited to probiotics and fecal transplants but has expanded to include community consortia, engineered probiotics, and defined metabolites, bypassing several limitations that hindered rapid progress in this field such as safety and regulatory issues. More integrated research will reveal new therapeutic targets such as enzymes or receptors mediating interactions between microbiota-secreted molecules that drive or modulate diseases. With the shift toward precision medicine and the enhanced integration of host genetics and polymorphism in treatment regimes, the following key questions emerge: How can we effectively implement microbiomics to further personalize the treatment of diseases like IBD, leveraging proven and validated microbiome links? Can we modulate the microbiome to manage IBD by altering the host immune response? In this review, we discuss recent advances in understanding the mechanism underpinning the role of gut microbes in driving or preventing IBD. We highlight developed targeted approaches to reverse dysbiosis through precision editing of the microbiome. We analyze limitations and opportunities while defining the specific clinical niche for this innovative therapeutic modality for the treatment, prevention, and diagnosis of IBD and its potential implication in precision medicine.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| |
Collapse
|
5
|
Merchak AR, Bolen ML, Tansey MG, Menees KB. Thinking outside the brain: Gut microbiome influence on innate immunity within neurodegenerative disease. Neurotherapeutics 2024; 21:e00476. [PMID: 39482179 PMCID: PMC11585893 DOI: 10.1016/j.neurot.2024.e00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
The complex network of factors that contribute to neurodegeneration have hampered the discovery of effective preventative measures. While much work has focused on brain-first therapeutics, it is becoming evident that physiological changes outside of the brain are the best target for early interventions. Specifically, myeloid cells, including peripheral macrophages and microglia, are a sensitive population of cells whose activity can directly impact neuronal health. Myeloid cell activity includes cytokine production, migration, debris clearance, and phagocytosis. Environmental measures that can modulate these activities range from toxin exposure to diet. However, one of the most influential mediators of myeloid fitness is the gut microenvironment. Here, we review the current data about the role of myeloid cells in gastrointestinal disorders, Parkinson's disease, dementia, and multiple sclerosis. We then delve into the gut microbiota modulating therapies available and clinical evidence for their use in neurodegeneration. Modulating lifestyle and environmental mediators of inflammation are one of the most promising interventions for neurodegeneration and a systematic and concerted effort to examine these factors in healthy aging is the next frontier.
Collapse
Affiliation(s)
- Andrea R Merchak
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - MacKenzie L Bolen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - Kelly B Menees
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Manandhar A, Sabir G, Abdelhady HA, Oumar Abakar A, Gangavarapu RR, Mahmud SA, Malasevskaia I. Probiotic Potential in Irritable Bowel Syndrome and Inflammatory Bowel Disease: A Comprehensive Systematic Review. Cureus 2024; 16:e72089. [PMID: 39575029 PMCID: PMC11581459 DOI: 10.7759/cureus.72089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) are prevalent gastrointestinal disorders with significant global prevalence. Conventional treatments often have adverse effects, prompting interest in probiotics as alternative therapies. This systematic review assesses the efficacy of probiotics in managing symptoms and improving outcomes in adult patients with IBS and IBD. A comprehensive search was conducted across databases such as PubMed, Cochrane Library, and Google Scholar and registers ClinicalTrials.gov and International Standard Randomized Controlled Trial Number (ISRCTN). Using targeted keywords, studies on probiotic efficacy in adult IBS and IBD patients were identified. Data screening, extraction, and quality assessment using the Cochrane Risk of Bias 2 (RoB 2) tool for evaluating randomized controlled trials (RCTs) and Newcastle-Ottawa Scale (NOS) for cohort studies were rigorously performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. From the initial 22,037 references, 18 randomized control trials and two observational studies encompassing 2,675 adults, aged 18-76 years, were deemed eligible. The efficacy of probiotics for IBS and IBD is variable. While some IBS trials show symptom improvement, the results are inconsistent, likely due to the diversity of probiotic strains and patient populations studied. In contrast, probiotics demonstrate more consistent benefits for ulcerative colitis (UC) in IBD, particularly with specific formulations like the De Simone combination. However, probiotics' effects on Crohn's disease (CD) remain less clear, highlighting the need for further research to optimize probiotic regimens and understand their differential effects across the spectrum of IBS and IBD.
Collapse
Affiliation(s)
- Anura Manandhar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ghadeer Sabir
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hala A Abdelhady
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adoum Oumar Abakar
- Internal Medicine and Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ravindra Reddy Gangavarapu
- Medical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, European University, Tbilisi, GEO
| | - Sayed A Mahmud
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Iana Malasevskaia
- Obstetrics and Gynecology, Private Clinic "Yana Alexandr", Sana'a, YEM
- Research and Development, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
7
|
Estevinho MM, Yuan Y, Rodríguez‐Lago I, Sousa‐Pimenta M, Dias CC, Barreiro‐de Acosta M, Jairath V, Magro F. Efficacy and safety of probiotics in IBD: An overview of systematic reviews and updated meta-analysis of randomized controlled trials. United European Gastroenterol J 2024; 12:960-981. [PMID: 39106167 PMCID: PMC11497663 DOI: 10.1002/ueg2.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Probiotics show promise in inflammatory bowel disease (IBD), yet knowledge gaps persist. We performed an overview of systematic reviews and an updated metanalysis of randomized controlled trials (RCT) assessing the effect of probiotics on Crohn's disease (CD) and ulcerative colitis (UC). METHODS MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched up to September 2023. Primary outcomes were clinical remission and recurrence; secondary outcomes included endoscopic response and remission, and adverse events. We calculated odds ratios (OR) using a random-effects model in R. The quality of systematic reviews was assessed using the AMSTAR-2; the trials' risk of bias was evaluated using the Cochrane Collaboration tool. Evidence certainty was rated using the GRADE framework. RESULTS Out of 2613 results, 67 studies (22 systematic reviews and 45 RCTs) met the eligibility criteria. In the updated meta-analysis, the OR for clinical remission in UC and CD was 2.00 (95% CI 1.28-3.11) and 1.61 (95% CI 0.21-12.50), respectively. The subgroup analysis suggested that combining 5-ASA and probiotics may be beneficial for inducing remission in mild-to-moderate UC (OR 2.35, 95% CI 1.29-4.28). Probiotics decreased the odds of recurrence in relapsing pouchitis (OR 0.03, 95% CI 0.00-0.25) and trended toward reducing clinical recurrence in inactive UC (OR 0.65, 95% CI 0.42-1.01). No protective effect against recurrence was identified for CD. Multi-strain formulations appear superior in achieving remission and preventing recurrence in UC. The use of probiotics was not associated with better endoscopic outcomes. Adverse events were similar to control. However, the overall certainty of evidence was low. CONCLUSION Probiotics, particularly multi-strain formulations, appear efficacious for the induction of clinical remission and the prevention of relapse in UC patients as well as for relapsing pouchitis. Notwithstanding, no significant effect was identified for CD. The favorable safety profile of probiotics was also highlighted.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of GastroenterologyUnidade Local de Saúde Gaia Espinho (ULSGE)Vila Nova de GaiaPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
| | - Yuhong Yuan
- Department of MedicineLondon Health Science CenterLondonOntarioCanada
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
| | - Iago Rodríguez‐Lago
- Department of GastroenterologyHospital Universitario de GaldakaoBiocruces Bizkaia Health Research InstituteDeusto UniversityGaldakaoSpain
| | - Mário Sousa‐Pimenta
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| | - Cláudia Camila Dias
- Knowledge Management UnitFaculty of MedicineUniversity of PortoPortoPortugal
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
| | | | - Vipul Jairath
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
- Alimentiv, Inc.LondonOntarioCanada
- Department of Epidemiology and BiostatisticsWestern UniversityLondonOntarioCanada
| | - Fernando Magro
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
- Department of GastroenterologyUnidade Local de Saúde São João (ULSSJ)PortoPortugal
| |
Collapse
|
8
|
Deleu S, Jacobs I, Vazquez Castellanos JF, Verstockt S, Trindade de Carvalho B, Subotić A, Verstockt B, Arnauts K, Deprez L, Vissers E, Lenfant M, Vandermeulen G, De Hertogh G, Verbeke K, Matteoli G, Huys GRB, Thevelein JM, Raes J, Vermeire S. Effect of Mutant and Engineered High-Acetate-Producing Saccharomyces cerevisiae var. boulardii Strains in Dextran Sodium Sulphate-Induced Colitis. Nutrients 2024; 16:2668. [PMID: 39203805 PMCID: PMC11357622 DOI: 10.3390/nu16162668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Acetate-producing Saccharomyces cerevisiae var. boulardii strains could exert improved effects on ulcerative colitis, which here, was preclinically evaluated in an acute dextran sodium sulphate induced model of colitis. Nine-week-old female mice were divided into 12 groups, receiving either drinking water or 2.75% dextran sodium sulphate for 7 days, combined with a daily gavage of various treatments with different levels of acetate accumulation: sham control (phosphate buffered saline, no acetate), non-probiotic control (Baker's yeast, no acetate), probiotic control (Enterol®, transient acetate), and additionally several Saccharomyces cerevisiae var. boulardii strains with respectively no, high, and extra-high acetate accumulation. Disease activity was monitored daily, and feces samples were collected at different timepoints. On day 14, the mice were sacrificed, upon which blood and colonic tissue were collected for analysis. Disease activity in inflamed mice was lower when treated with the high-acetate-producing strain compared to sham and non-probiotic controls. The non-acetate-producing strain showed higher disease activity compared to the acetate-producing strains. Accordingly, higher histologic inflammation was observed in non- or transient-acetate-producing strains compared to the sham control, whereas this increase was not observed for high- and extra-high-acetate-producing strains upon induction of inflammation. These anti-inflammatory findings were confirmed by transcriptomic analysis of differentially expressed genes. Moreover, only the strain with the highest acetate production was superior in maintaining a stable gut microbial alpha-diversity upon inflammation. These findings support new possibilities for acetate-mediated management of inflammation in inflammatory bowel disease by administrating high-acetate-producing Saccharomyces cerevisae var. boulardii strains.
Collapse
Affiliation(s)
- Sara Deleu
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Inge Jacobs
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Jorge F. Vazquez Castellanos
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium (G.R.B.H.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sare Verstockt
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | | | - Ana Subotić
- NovelYeast bv, Bio-Incubator BIO4, Gaston Geenslaan 3, Leuven-Heverlee, 3001 Leuven, Belgium
| | - Bram Verstockt
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Department of Gastroenterology and Hepatology, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Kaline Arnauts
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Lowie Deprez
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Eva Vissers
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Matthias Lenfant
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Department of Gastroenterology and Hepatology, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Greet Vandermeulen
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Gert De Hertogh
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Laboratory of Morphology and Molecular Pathology, UZ Leuven, 3000 Leuven, Belgium
| | - Kristin Verbeke
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Gianluca Matteoli
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
| | - Geert R. B. Huys
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium (G.R.B.H.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Johan M. Thevelein
- NovelYeast bv, Bio-Incubator BIO4, Gaston Geenslaan 3, Leuven-Heverlee, 3001 Leuven, Belgium
| | - Jeroen Raes
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium (G.R.B.H.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Séverine Vermeire
- TARGID, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium; (S.D.); (E.V.)
- Department of Gastroenterology and Hepatology, UZ Leuven, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Wang X, Zhou C, Zhang S, Ma Y, Xiao W, Guo Y. Additive efficacy and safety of probiotics in the treatment of ulcerative colitis: a systematic review and meta-analysis. Eur J Nutr 2024; 63:1395-1411. [PMID: 38446227 DOI: 10.1007/s00394-023-03307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/08/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND We aim to report the latest pooled analyses to evaluate the additive efficacy and safety of probiotics in the treatment of ulcerative colitis (UC). METHODS We systematically searched the relevant literature investigating the efficacy and/or safety of probiotics in patients with UC from PubMed, Embase and Web of Science up to January 2023. Two researchers independently screened the literature, extracted data, and evaluated the quality of the included studies according to the inclusion and exclusion criteria. Any discrepancies throughout these processes were solved by consensus. All statistical analyses were performed by Review Manager version 5.4 and Stata version 15.0. RESULTS A total of 13 articles were included in the pooled analyses, and the studies were all randomized controlled trials with a total of 930 patients. There were no significant differences between the probiotics and placebo groups concerning demographic and baseline characteristics. For patients with active UC, the probiotic group boosted the remission rate by 87% compared to the placebo group, but failed to reach a statistical difference (OR: 1.87; 95% CI 0.98, 3.57; P = 0.06, I2 = 67%); furthermore, there were no statistical differences in maintenance of clinical remission, clinical response, change in UCDAI scores, or mucosal healing outcomes in the probiotic group compared to the placebo group. For patients in clinical remission, the clinical relapse rates were significantly lower in the probiotic group than in the placebo group (OR: 0.34; 95% CI 0.14, 0.79; P = 0.01). Moreover, this study did not observe a significant difference between the two groups for general adverse events rate (OR: 1.98; 95% CI 0.69, 5.68; P = 0.20). CONCLUSION Probiotic-assisted therapy may be effective in inhibiting UC recurrence in patients in clinical remission without increasing the risk of treatment-related adverse events; furthermore, probiotics may increase the rate of clinical remission in patients with active UC. However, caution is needed when interpreting the clinical efficacy of probiotics in improving the clinical outcome of patients with active UC.
Collapse
Affiliation(s)
- Xinyue Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Chunyu Zhou
- Medical Management Office of Beijing University of Chinese Medicine, Beijing, China.
| | - Shaohui Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yixiang Ma
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenqin Xiao
- Beijing University of Chinese Medicine, Beijing, China
| | - Yanmei Guo
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhao Y, Liu Y, Jia L. Gut microbial dysbiosis and inflammation: Impact on periodontal health. J Periodontal Res 2024. [PMID: 38991951 DOI: 10.1111/jre.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Periodontitis is widely acknowledged as the most prevalent type of oral inflammation, arising from the dynamic interplay between oral pathogens and the host's immune responses. It is also recognized as a contributing factor to various systemic diseases. Dysbiosis of the oral microbiota can significantly alter the composition and diversity of the gut microbiota. Researchers have delved into the links between periodontitis and systemic diseases through the "oral-gut" axis. However, whether the associations between periodontitis and the gut microbiota are simply correlative or driven by causative mechanistic interactions remains uncertain. This review investigates how dysbiosis of the gut microbiota impacts periodontitis, drawing on existing preclinical and clinical data. This study highlights potential mechanisms of this interaction, including alterations in subgingival microbiota, oral mucosal barrier function, neutrophil activity, and abnormal T-cell recycling, and offers new perspectives for managing periodontitis, especially in cases linked to systemic diseases.
Collapse
Affiliation(s)
- Yifan Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zaragoza N, Anderson GI, Allison-Logan S, Monir K, Furst AL. Novel delivery systems for controlled release of bacterial therapeutics. Trends Biotechnol 2024; 42:929-937. [PMID: 38310020 DOI: 10.1016/j.tibtech.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
As more is learned about the benefits of microbes, their potential to prevent and treat disease is expanding. Microbial therapeutics are less burdensome and costly to produce than traditional molecular drugs, often with superior efficacy. Yet, as with most medicines, controlled dosing and delivery to the area of need remain key challenges for microbes. Advances in materials to control small-molecule delivery are expected to translate to microbes, enabling similar control with equivalent benefits. In this perspective, recent advances in living biotherapeutics are discussed within the context of new methods for their controlled release. The integration of these advances provides a roadmap for the design, synthesis, and analysis of controlled microbial therapeutic delivery systems.
Collapse
Affiliation(s)
- Nadia Zaragoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace I Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirmina Monir
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Istratescu D, Preda CM, Manuc T, Meianu C, Stroie T, Diculescu M. A Comprehensive Review of Dietary Approaches in Maintaining Remission of Inflammatory Bowel Diseases in Adults. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1068. [PMID: 39064497 PMCID: PMC11278540 DOI: 10.3390/medicina60071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Inflammatory bowel disease (IBD) poses significant challenges in its management, encompassing a spectrum of conditions from Crohn's disease to ulcerative colitis. Dietary interventions have emerged as integral components of the multidisciplinary approach to IBD management, with implications ranging from disease prevention to treatment of active manifestations and addressing complications such as malnutrition. While dietary interventions show promise in improving outcomes for some patients with IBD, there is no consensus in the existing literature regarding remission maintenance in those patients. Furthermore, many patients explore dietary modifications often guided by anecdotal evidence or personal experiences and this could lead to malnutrition and decreased quality of life. This comprehensive review synthesizes existing literature to elucidate the complex interplay between diet and IBD, offering insights into the efficacy and safety of various dietary modalities in maintaining disease remission. It also highlights the importance of patient education in navigating dietary choices and potential risks associated with food avoidance, including the heightened risk of micronutrient deficiencies. Furthermore, it emphasizes the pivotal role of a multidisciplinary care team comprising clinicians and dietitians in providing personalized dietary guidance tailored to individual patient needs and goals. By synthesizing the latest evidence and providing insights into both the potential benefits and risks of dietary interventions, this review could be used as a resource for healthcare professionals and patients alike in navigating the complex landscape of dietary management in IBD.
Collapse
Affiliation(s)
| | - Carmen Monica Preda
- UMF “Carol Davila” Gastroenterology & Hepatology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.I.); (T.M.); (C.M.); (T.S.); (M.D.)
| | | | | | | | | |
Collapse
|
13
|
Sulaimany S, Farahmandi K, Mafakheri A. Computational prediction of new therapeutic effects of probiotics. Sci Rep 2024; 14:11932. [PMID: 38789535 PMCID: PMC11126595 DOI: 10.1038/s41598-024-62796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Probiotics are living microorganisms that provide health benefits to their hosts, potentially aiding in the treatment or prevention of various diseases, including diarrhea, irritable bowel syndrome, ulcerative colitis, and Crohn's disease. Motivated by successful applications of link prediction in medical and biological networks, we applied link prediction to the probiotic-disease network to identify unreported relations. Using data from the Probio database and International Classification of Diseases-10th Revision (ICD-10) resources, we constructed a bipartite graph focused on the relationship between probiotics and diseases. We applied customized link prediction algorithms for this bipartite network, including common neighbors, Jaccard coefficient, and Adamic/Adar ranking formulas. We evaluated the results using Area under the Curve (AUC) and precision metrics. Our analysis revealed that common neighbors outperformed the other methods, with an AUC of 0.96 and precision of 0.6, indicating that basic formulas can predict at least six out of ten probable relations correctly. To support our findings, we conducted an exact search of the top 20 predictions and found six confirming papers on Google Scholar and Science Direct. Evidence suggests that Lactobacillus jensenii may provide prophylactic and therapeutic benefits for gastrointestinal diseases and that Lactobacillus acidophilus may have potential activity against urologic and female genital illnesses. Further investigation of other predictions through additional preclinical and clinical studies is recommended. Future research may focus on deploying more powerful link prediction algorithms to achieve better and more accurate results.
Collapse
Affiliation(s)
- Sadegh Sulaimany
- Social and Biological Network Analysis Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran.
| | - Kajal Farahmandi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Aso Mafakheri
- Social and Biological Network Analysis Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
14
|
Guo J, Li L, Cai Y, Kang Y. The development of probiotics and prebiotics therapy to ulcerative colitis: a therapy that has gained considerable momentum. Cell Commun Signal 2024; 22:268. [PMID: 38745207 PMCID: PMC11094941 DOI: 10.1186/s12964-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.
Collapse
Affiliation(s)
- Jing Guo
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liping Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Paudel D, Nair DVT, Joseph G, Castro R, Tiwari AK, Singh V. Gastrointestinal microbiota-directed nutritional and therapeutic interventions for inflammatory bowel disease: opportunities and challenges. Gastroenterol Rep (Oxf) 2024; 12:goae033. [PMID: 38690290 PMCID: PMC11057942 DOI: 10.1093/gastro/goae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Evidence-based research has confirmed the role of gastrointestinal microbiota in regulating intestinal inflammation. These data have generated interest in developing microbiota-based therapies for the prevention and management of inflammatory bowel disease (IBD). Despite in-depth understanding of the etiology of IBD, it currently lacks a cure and requires ongoing management. Accumulating data suggest that an aberrant gastrointestinal microbiome, often referred to as dysbiosis, is a significant environmental instigator of IBD. Novel microbiome-targeted interventions including prebiotics, probiotics, fecal microbiota transplant, and small molecule microbiome modulators are being evaluated as therapeutic interventions to attenuate intestinal inflammation by restoring a healthy microbiota composition and function. In this review, the effectiveness and challenges of microbiome-centered interventions that have the potential to alleviate intestinal inflammation and improve clinical outcomes of IBD are explored.
Collapse
Affiliation(s)
- Devendra Paudel
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Divek V T Nair
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Grace Joseph
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Amit K Tiwari
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Ma Y, Yang D, Huang J, Liu K, Liu H, Wu H, Bao C. Probiotics for inflammatory bowel disease: Is there sufficient evidence? Open Life Sci 2024; 19:20220821. [PMID: 38585636 PMCID: PMC10998680 DOI: 10.1515/biol-2022-0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) refers to chronic inflammatory disorders of the gut. Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of IBD. Evidence suggests that the intestinal microbiota plays a role in the pathogenesis of IBD, so probiotics have garnered a lot of interest as a potential treatment or prevention for IBD. However, clinical evidence of the efficacy of probiotics is still debatable. We performed a literature review. An advanced search considered clinical studies on probiotic for IBD from inception to 2023 in PubMed, Embase, Cochrane Library, and Web of Science. In the treatment of UC with probiotics, only Escherichia coli Nissle 1917 for maintenance treatment of UC in remission, and Bifidobacterium and VSL#3 for induction of remission in patients with mild to moderately active UC have shown strong evidence. Currently, there are no definitive conclusions regarding the effectiveness of probiotics in CD. The mechanism of probiotic treatment for IBD may be related to reducing oxidative stress, repairing the intestinal barrier, regulating intestinal flora balance, and modulating intestinal immune response. Differences in the benefits of probiotics between CD and UC may be attributable to the different lesion extent and immune-mediated pathophysiology. More robust randomized clinical trials are required to validate the efficacy and safety of diverse probiotic strains in IBD.
Collapse
Affiliation(s)
- Yueying Ma
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Dandan Yang
- Hong Kong Baptist University, Hong Kong999077, China
| | - Jin Huang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Kunli Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huirong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Chunhui Bao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| |
Collapse
|
18
|
Li W, Liang H, He W, Gao X, Wu Z, Hu T, Lin X, Wang M, Zhong Y, Zhang H, Ge L, Jin X, Xiao L, Zou Y. Genomic and functional diversity of cultivated Bifidobacterium from human gut microbiota. Heliyon 2024; 10:e27270. [PMID: 38463766 PMCID: PMC10923715 DOI: 10.1016/j.heliyon.2024.e27270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
The genus Bifidobacterium widely exists in human gut and has been increasingly used as the adjuvant probiotics for the prevention and treatment of diseases. However, the functional differences of Bifidobacterium genomes from different regions of the world remain unclear. We here describe an extensive study on the genomic characteristics and function annotations of 1512 genomes (clustered to 849 non-redundant genomes) of Bifidobacterium cultured from human gut. The distribution of some carbohydrate-active enzymes varied among different Bifidobacterium species and continents. More than 36% of the genomes of B. pseudocatenulatum harbored biosynthetic gene clusters of lanthipeptide-class-iv. 99.76% of the cultivated genomes of Bifidobacterium harbored genes of bile salt hydrolase. Most genomes of B. adolescentis, and all genomes of B. dentium harbored genes involved in gamma-aminobutyric acid synthesis. B. longum subsp. infantis were characterized harboring most genes related to human milk oligosaccharide utilization. Significant differences between the distribution of antibiotic resistance genes among different species and continents revealed the importance to use antibiotics precisely in the clinical treatment. Phages infecting Bifidobacterium and horizontal gene transfers occurring in genomes of Bifidobacterium were dependent on species and region sources, and might help Bifidobacterium adapt to the environment. In addition, the distribution of Bifidobacterium in human gut was found varied from different regions of the world. This study represents a comprehensive view of characteristics and functions of genomes of cultivated Bifidobacterium from human gut, and enables clinical advances in the future.
Collapse
Affiliation(s)
- Wenxi Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- BGI Research, Shenzhen, 518083, China
| | | | - Wenxin He
- BGI Research, Shenzhen, 518083, China
| | | | - Zhinan Wu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xiaoqian Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- BGI Research, Shenzhen, 518083, China
| | - Mengmeng Wang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyi Zhong
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Lan Ge
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
- BGI Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
19
|
Mohammed C, Fuego JP, Garcia KV, Jamil H, Rajesh RY, Escobar AS, Hassan MJ, Rai M. A Mini Literature Review of Probiotics: Transforming Gastrointestinal Health Through Evidence-Based Insights. Cureus 2024; 16:e57055. [PMID: 38681263 PMCID: PMC11051678 DOI: 10.7759/cureus.57055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
As our understanding of the intricate interaction between gut bacteria and human health continues to expand, so too has interest in the ability of probiotics to manage gut microbiota and confer multiple health benefits to the host. The mini literature review focuses on the expanding potential of the use of probiotics in GI health, with a focus on probiotics' potential therapeutic advantages in a variety of gastrointestinal (GI) illnesses. Probiotics play a significant role in managing diarrhea and symptoms of irritable bowel syndrome with diarrhea (IBS-D) by modulating gut microbial communities. Specific probiotic strains have been found to reduce the abundance of harmful bacteria, regulate inflammatory markers like interleukin 6, and improve GI symptoms such as abdominal discomfort and stool consistency. Additionally, probiotic blends have shown potential for preventing GI infections and alleviating GI pain in IBS-D patients. Studies have demonstrated that certain multi-strain probiotics, including Bifidobacterium and Lactobacillus species, can significantly increase the frequency of bowel movements and reduce the proportion of individuals experiencing constipation. It has also been found that probiotic supplementation may reduce the incidence of postoperative complications and mortality, particularly in patients undergoing colorectal adenocarcinoma surgery. Additionally, probiotics have been associated with decreased levels of pro-inflammatory cytokines and improved clinical outcomes in patients with colorectal cancer. Furthermore, probiotics have been associated with enhanced digestive tolerance, reduced GI inflammation, and prolonged clinical remission in certain UC patients. Studies have also shown that probiotics, administered either directly to infants or pregnant women during the perinatal stage, can alleviate symptoms such as inconsolable crying and irritation associated with infant colic, improve bowel movement frequency in cases of functional constipation, and enhance overall conditions in premature infants, including reducing regurgitation and improving feeding tolerance. The review addresses both encouraging results and challenges with probiotic therapy, while also arguing for more studies to elucidate underlying mechanisms and enhance therapeutic techniques. As we traverse the complex field of probiotic therapy in the treatment of GI illnesses, researchers, physicians, and other healthcare professionals can benefit from the informative information provided by this study.
Collapse
Affiliation(s)
- Cara Mohammed
- Orthopedics, East Regional Health Authority, Port of Spain, TTO
| | - Jhon P Fuego
- Internal Medicine, West Visayas State University College of Medicine, Iloilo City, PHL
| | - Karina V Garcia
- Internal Medicine, National Autonomous University of Mexico, Mexico City, MEX
| | - Hira Jamil
- Medicine, University Medical and Dental College Faisalabad, Faisalabad, PAK
| | - Rahul Y Rajesh
- Internal Medicine, Tbilisi State Medical University, Tbilisi, GEO
| | | | | | - Manju Rai
- Immunology, Shri Venkateshwara University, Gajraula, IND
| |
Collapse
|
20
|
Jakubczyk D, Leszczyńska K, Pacyga-Prus K, Kozakiewicz D, Kazana-Płuszka W, Gełej D, Migdał P, Kruszakin R, Zabłocka A, Górska S. What happens to Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with eukaryotic cells? BMC Microbiol 2024; 24:60. [PMID: 38373929 PMCID: PMC10875879 DOI: 10.1186/s12866-023-03179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/29/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The impact of probiotic strains on host health is widely known. The available studies on the interaction between bacteria and the host are focused on the changes induced by bacteria in the host mainly. The studies determining the changes that occurred in the bacteria cells are in the minority. Within this paper, we determined what happens to the selected Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with the intestinal epithelial layer. For this purpose, we tested the bacteria cells' viability, redox activity, membrane potential and enzymatic activity in different environments, including CaCo-2/HT-29 co-culture, cell culture medium, presence of inflammatory inductor (TNF-α) and oxygen. RESULTS We indicated that the external milieu impacts the viability and vitality of bacteria. Bifidobacterium adolescentis decrease the size of the live population in the cell culture medium with and without TNF-α (p < 0.001 and p < 0.01 respectively). In contrast, Bifidobacterium longum ssp. longum significantly increased survivability in contact with the eukaryotic cells and cell culture medium (p < 0.001). Bifidobacterium adolescentis showed significant changes in membrane potential, which was decreased in the presence of eukaryotic cells (p < 0.01), eukaryotic cells in an inflammatory state (p < 0.01), cell culture medium (p < 0.01) and cell culture medium with TNF-α (p < 0.05). In contrast, Bifidobacterium longum ssp. longum did not modulate membrane potential. Instead, bacteria significantly decreased the redox activity in response to milieus such as eukaryotic cells presence, inflamed eukaryotic cells as well as the culture medium (p < 0.001). The redox activity was significantly different in the cells culture medium vs the presence of eukaryotic cells (p < 0.001). The ability to β-galactosidase production was different for selected strains: Bifidobacterium longum ssp. longum indicated 91.5% of positive cells, whereas Bifidobacterium adolescentis 4.34% only. Both strains significantly reduced the enzyme production in contact with the eukaryotic milieu but not in the cell culture media. CONCLUSION The environmental-induced changes may shape the probiotic properties of bacterial strains. It seems that the knowledge of the sensitivity of bacteria to the external environment may help to select the most promising probiotic strains, reduce research costs, and contribute to greater reproducibility of the obtained probiotic effects.
Collapse
Affiliation(s)
- Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Katarzyna Leszczyńska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Pacyga-Prus
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dominika Kozakiewicz
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wioletta Kazana-Płuszka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dominika Gełej
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Migdał
- Inter-Departmental Laboratory of Instrumental Analysis and Preparation, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Roksana Kruszakin
- Inter-Departmental Laboratory of Instrumental Analysis and Preparation, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
21
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Naeem H, Hassan HU, Shahbaz M, Imran M, Memon AG, Hasnain A, Murtaza S, Alsagaby SA, Al Abdulmonem W, Hussain M, Abdelgawad MA, Ghoneim MM, Al Jbawi E. Role of Probiotics against Human Cancers, Inflammatory Diseases, and Other Complex Malignancies. J Food Biochem 2024; 2024:1-23. [DOI: 10.1155/2024/6632209] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Probiotics have growing medical importance as a result of their potential in the prevention and therapeutic support of several complex diseases, including different types of cancers. The anticarcinogenic properties of probiotics are attributed to various mechanisms, including alterations in the composition of the intestinal microbiota, suppression of cell proliferation, stimulation of apoptosis, inhibition of NF-kB, reduction in levels of H2AX, 8-hydroxy-deoxyguanosine, RIG-I, downregulation of IL-17, and TNF signaling pathway. Furthermore, probiotics have demonstrated significant advantages in the prevention and management of other complex diseases, including diabetes, obesity, and cardiovascular diseases. Probiotics had a considerable effect in reducing inflammatory infiltration and the occurrence of precancerous lesions. Additionally, the administration of probiotics led to a decrease in the appearance level of genes related to proinflammatory pathways, including NF-κB, IL-17, and TNF signaling pathways. However, further research studies are required to comprehend the processes via which probiotics exert their effects and to authenticate their potential as alternative therapeutic interventions.
Collapse
Affiliation(s)
- Hammad Naeem
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hammad Ul Hassan
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Anjuman Gul Memon
- Department of Biochemistry, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ammarah Hasnain
- Department of Biotechnology, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Shamas Murtaza
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11932, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Al Diriyah 13713, Saudi Arabia
| | | |
Collapse
|
23
|
Vidal-Gallardo A, Méndez Benítez JE, Flores Rios L, Ochoa Meza LF, Mata Pérez RA, Martínez Romero E, Vargas Beltran AM, Beltran Hernandez JL, Banegas D, Perez B, Martinez Ramirez M. The Role of Gut Microbiome in the Pathogenesis and the Treatment of Inflammatory Bowel Diseases. Cureus 2024; 16:e54569. [PMID: 38516478 PMCID: PMC10957260 DOI: 10.7759/cureus.54569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic condition characterized by inflammation of the gastrointestinal tract. Its exact cause is unknown, but it's thought to result from a dysregulated immune response influenced by various factors, including changes in the intestinal microbiota, diet, lifestyle, and genetics. The gut microbiome, consisting of diverse microorganisms, plays a crucial role in maintaining physiological balance, with its disruption leading to inflammatory responses typical of IBD. Treatments primarily aim at symptom control, employing immunomodulators, corticosteroids, and newer approaches like probiotics, prebiotics, fecal transplants, and dietary modifications, all focusing on leveraging the microbiota's potential in disease management. These strategies aim to restore the delicate balance of the gut microbiome, typically altered in IBD, marked by a decrease in beneficial bacteria and an increase in harmful pathogens. This review underscores the importance of the gut microbiome in the pathogenesis and treatment of IBD, highlighting the shift towards personalized medicine and the necessity for further research in understanding the complex interactions between the gut microbiota, immune system, and genetics in IBD. It points to the potential of emerging treatments and the importance of a multifaceted approach in managing this complex and challenging disease.
Collapse
Affiliation(s)
| | | | | | - Luis F Ochoa Meza
- General Surgery, Hospital General ISSSTE Presidente General Lázaro Cárdenas, Chihuahua, MEX
| | - Rodrigo A Mata Pérez
- General Practice, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, MEX
| | | | | | | | - Douglas Banegas
- General Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Brenda Perez
- Nutrition, Universidad ICEL, Ciudad de México, MEX
| | | |
Collapse
|
24
|
Cosier D, Lambert K, Batterham M, Sanderson-Smith M, Mansfield KJ, Charlton K. The INHABIT (synergIstic effect of aNtHocyAnin and proBIoTics in) Inflammatory Bowel Disease trial: a study protocol for a double-blind, randomised, controlled, multi-arm trial. J Nutr Sci 2024; 13:e1. [PMID: 38282655 PMCID: PMC10808876 DOI: 10.1017/jns.2023.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024] Open
Abstract
Ulcerative Colitis (UC), a type of Inflammatory Bowel Disease (IBD), is a chronic, relapsing gastrointestinal condition with increasing global prevalence. The gut microbiome profile of people living with UC differs from healthy controls and this may play a role in the pathogenesis and clinical management of UC. Probiotics have been shown to induce remission in UC; however, their impact on the gut microbiome and inflammation is less clear. Anthocyanins, a flavonoid subclass, have shown anti-inflammatory and microbiota-modulating properties; however, this evidence is largely preclinical. To explore the combined effect and clinical significance of anthocyanins and a multi-strain probiotic, a 3-month randomised controlled trial will be conducted in 100 adults with UC. Participants will be randomly assigned to one of four groups: anthocyanins (blackcurrant powder) + placebo probiotic, probiotic + placebo fruit powder, anthocyanin + probiotic, or double placebo. The primary outcome is a clinically significant change in the health-related quality-of-life measured with the Inflammatory Bowel Disease Questionnaire-32. Secondary outcomes include shotgun metagenomic sequencing of the faecal microbiota, faecal calprotectin, symptom severity, and mood and cognitive tests. This research will identify the role of adjuvant anti-inflammatory dietary treatments in adults with UC and elucidate the relationship between the gut microbiome and inflammatory biomarkers in this disease, to help identify targeted individualised microbial therapies. ANZCTR registration ACTRN12623000630617.
Collapse
Affiliation(s)
- Denelle Cosier
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly Lambert
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Marijka Batterham
- Statistical Consulting Centre, National Institute for Applied Statistical Research Australia, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Kylie J Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Karen Charlton
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
25
|
Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. THE ISME JOURNAL 2024; 18:wrae104. [PMID: 38861457 PMCID: PMC11195472 DOI: 10.1093/ismejo/wrae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
Collapse
Affiliation(s)
- Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- International Union for Conservation of Nature, C. 39, Los Yoses, San Jose, 146-2150, Costa Rica
| | - Allison Q Byrne
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, United States
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian’s National Zoological Park and Conservation Biology Institute, Front Royal, VA 22630, United States
| | - Amy Ellison
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
| |
Collapse
|
26
|
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol 2023; 13:1268041. [PMID: 38145046 PMCID: PMC10739422 DOI: 10.3389/fcimb.2023.1268041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis (UC) are multifactorial pathologies caused by environmental factors and genetic background. UC is a chronic inflammatory disorder that specifically targets the colon, resulting in inflammation. Various chemical interventions, including aminosalicylates, corticosteroids, immunomodulators, and biological therapies, have been extensively employed for the purpose of managing symptoms associated with UC. Nevertheless, it is important to note that these therapeutic interventions may give rise to undesirable consequences, including, but not limited to, the potential for weight gain, fluid retention, and heightened vulnerability to infections. Emerging therapeutic approaches for UC are costly due to their chronic nature. Alternatives like synbiotic therapy, combining prebiotics and probiotics, have gained attention for mitigating dysbiosis in UC patients. Prebiotics promote beneficial bacteria proliferation, while probiotics establish a balanced gut microbiota and regulate immune system functionality. The utilisation of synbiotics has been shown to improve the inflammatory response and promote the resolution of symptoms in individuals with UC through the stimulation of beneficial bacteria growth and the enhancement of intestinal barrier integrity. Hence, this review article aims to explore the potential benefits and underlying reasons for incorporating alternative approaches in the management of UC with studies performed using prebiotics, probiotics, and synbiotics to treat ulcerative colitis and to highlight safety and considerations in UC and future perspectives. This will facilitate the utilisation of novel treatment strategies for the safer and more efficacious management of patients with UC.
Collapse
Affiliation(s)
- Apurva Jadhav
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Vyavahare
- Sai Ayurved Medical College, Maharashtra University of Health Sciences, Solapur, Maharashtra, India
| | - Archana Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bipinraj Kunchiraman
- Microbial Biotechnology, Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
27
|
Banoth D, Wali MH, Bekova K, Abdulla N, Gurugubelli S, Lin YM, Khan S. The Role of Oral Probiotics in Alleviating Inflammation, Symptom Relief, and Postoperative Recurrence and Their Side Effects in Adults With Crohn's Disease: A Systematic Review. Cureus 2023; 15:e50901. [PMID: 38259373 PMCID: PMC10801111 DOI: 10.7759/cureus.50901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Crohn's disease (CD) is a lifelong problem for patients, despite having multiple pharmacological options and surgeries for treatment. In order to achieve best results, probiotics are being used even though their efficacy is still debatable. This systematic review analyzes the safety and efficacy of several probiotics in CD. PubMed, the Cochrane Library, and ScienceDirect are the databases searched for randomized controlled trials (RCTs), animal studies, in vitro studies, and reviews. After quality appraisal and cross checking the literature, this systematic review is carried out grounded on Preferred Reporting Items for Systematic Review and Meta-Analysis 2020 (PRISMA 2020) guidelines. A study of 16 papers in total which include nearly 2023 subjects showed that only very few probiotics are efficient in furnishing remission in CD complaints. Kefir, an inexpensive fermented milk product, significantly reduced the inflammation and drastically bettered the quality of life and hence can be considered as an asset for CD patients. Lactobacillus thermophilus, Bifidobacterium longum, Enterococcus faecalis, and Bacillus licheniformis can control diarrhea in patients of 22-54-year age group and improve cognitive reactivity in sad mood with short-term consumption. VSL#3 (VSL Pharmaceuticals, Gaithersburg, Maryland, United States) has good efficacy in precluding recurrence and easing side effects after ileocecal resection in adults. Animal models and lab studies have proved that Lactobacillus plantarum CBT LP3, Saccharomyces cerevisiae CNCM I-3856 (yeast), few strains of Lactobacillus plantarum, Bifidobacterium animalis spp., Lactobacillus acidophilus LA1, Lactobacillus paracasei 101/37, and especially Bifidobacterium breve Bbr8 are significant enough to ameliorate the disease condition. In conclusion, probiotics are safe in CD with very few modifiable side effects. Some probiotics are proven to be significant in animal and lab studies; hence, these should be studied in human RCTs, to check their efficiency in human beings. There are limited observational and interventional studies in this regard. Large population-sizes trials are highly demanded in the areas of prognosticated positive results that are mentioned in this systematic review.
Collapse
Affiliation(s)
- Devendar Banoth
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Muhammad Hassaan Wali
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Khava Bekova
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Noor Abdulla
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Simhachalam Gurugubelli
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Yi Mon Lin
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
28
|
Xie W, Jiang H, Chen Y, Zhang H, Song Y, Yu Z, Gu H, Xu H, Han S, Li S, Liu N, Han S. Association between systemic lupus erythematosus and inflammatory bowel disease in European and East Asian populations: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1199896. [PMID: 38022503 PMCID: PMC10654968 DOI: 10.3389/fimmu.2023.1199896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Previous studies have shown a coexistence phenomenon between systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), but the causal relationship between them is still unclear. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis using publicly available summary statistics data to evaluate whether there was a causal relationship between the two diseases. Methods Summary statistics for SLE and IBD were downloaded from the Open Genome-Wide Association Study and the International Inflammatory Bowel Disease Genetics Consortium. European and East Asian populations were included in this MR work. We adopted a series of methods to select instrumental variables that are closely related to SLE and IBD. To make the conclusion more reliable, we applied a variety of different analysis methods, among which the inverse variance-weighted (IVW) method was the main method. In addition, heterogeneity, pleiotropy, and sensitivity were assessed to make the conclusions more convincing. Results In the European population, a negative causal relationship was observed between SLE and overall IBD (OR = 0.94; 95% CI = 0.90, 0.98; P < 0.004) and ulcerative colitis (UC) (OR = 0.93; 95% CI = 0.88, 0.98; P = 0.006). After removing outliers with Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO), the results remained consistent with IVW. However, there was no causal relationship between SLE and Crohn's disease. In the East Asian population, no causal relationship was found between SLE and IBD. Conclusion Our results found that genetic susceptibility to SLE was associated with lower overall IBD risk and UC risk in European populations. In contrast, no association between SLE and IBD was found in East Asian populations. This work might enrich the previous research results, and it may provide some references for research in the future.
Collapse
Affiliation(s)
- Weidong Xie
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haojie Jiang
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Graduate School, Zhejiang University, Hangzhou, China
| | | | - Yaoyu Song
- Wenzhou Medical University, Wenzhou, China
| | - Zhaojie Yu
- Wenzhou Medical University, Wenzhou, China
| | - Huayan Gu
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongkai Xu
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saiyi Han
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou people’s Hospital, Quzhou, China
| | - Sen Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Naxin Liu
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaoliang Han
- Department of The Gastrointestinal Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
30
|
Wu Z, He J, Zhang Z, Li J, Zou H, Tan X, Wang Y, Yao Y, Xiong W. Propionic Acid Driven by the Lactobacillus johnsonii Culture Supernatant Alleviates Colitis by Inhibiting M1 Macrophage Polarization by Modulating the MAPK Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14951-14966. [PMID: 37788400 DOI: 10.1021/acs.jafc.3c00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this study, we investigated the effects of Lactobacillus johnsonii on the mouse colitis model. The results showed that the supernatant of the L. johnsonii culture alleviated colitis and remodeled gut microbiota, represented by an increased abundance of bacteria producing short-chain fatty acids, leading to an increased concentration of propionic acid in the intestine. Further studies revealed that propionic acid inhibited activation of the MAPK signaling pathway and polarization of M1 macrophages. Macrophage clearance assays confirmed that macrophages are indispensable for alleviating colitis through propionic acid. In vitro experiments showed that propionic acid directly inhibited the MAPK signaling pathway in macrophages and reduced M1 macrophage polarization, thereby inhibiting the secretion of pro-inflammatory cytokines. These findings improve our understanding of how L. johnsonii attenuates inflammatory bowel disease (IBD) and provide valuable insights for identifying molecular targets for IBD treatment in the future.
Collapse
Affiliation(s)
- Zhifeng Wu
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhui He
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyue Zhang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huicong Zou
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Wang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Xiong
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Mitra AK, Asala AF, Malone S, Mridha MK. Effects of Probiotics in Adults with Gastroenteritis: A Systematic Review and Meta-Analysis of Clinical Trials. Diseases 2023; 11:138. [PMID: 37873782 PMCID: PMC10594472 DOI: 10.3390/diseases11040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Probiotics have been widely used in gastroenteritis due to acute and chronic illnesses. However, evidence supporting the effectiveness of probiotics in different health conditions is inconclusive and conflicting. The aim of this study was to review the existing literature on the effects of probiotics on gastroenteritis among adults. Only original articles on clinical trials that demonstrated the effects of probiotics in adults with gastroenteritis were used for this analysis. Multiple databases, such as PubMed, Google Scholar, MEDLINE and Scopus databases, were searched for the data. The study followed standard procedures for data extraction using a PRISMA flow chart. A quality appraisal of the selected studies was conducted using CADIMA. Finally, a meta-analysis was performed. Thirty-five articles met the selection criteria; of them, probiotics were found effective in the treatment and/or prevention of chronic inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease in 17 (49%), and the treatment of pouchitis in 4 (11.4%), antibiotic-induced diarrhea in 3 (8.6%), Helicobacter pylori infection in 2 (5.7%) and diverticulitis in 1 (2.9%), while the remaining 7 (20%) were ineffective, and 1 study's results were inconclusive. The meta-analysis did not demonstrate any significant protective effects of probiotics. Having a τ2 value of zero and I2 of 6%, the studies were homogeneous and had minimum variances. Further studies are suggested to evaluate the beneficial effects of probiotics in IBDs and other chronic bowel diseases.
Collapse
Affiliation(s)
- Amal K. Mitra
- Department of Epidemiology and Biostatistics, College of Health Sciences, Jackson State University, Jackson, MS 39213, USA; (A.F.A.); (S.M.)
| | - Adetoun F. Asala
- Department of Epidemiology and Biostatistics, College of Health Sciences, Jackson State University, Jackson, MS 39213, USA; (A.F.A.); (S.M.)
- Office of Preventive Heath, Mississippi State Department of Health, Ridgeland, MS 39157, USA
| | - Shelia Malone
- Department of Epidemiology and Biostatistics, College of Health Sciences, Jackson State University, Jackson, MS 39213, USA; (A.F.A.); (S.M.)
| | - Malay Kanti Mridha
- Brac James P. Grant School of Public Health, Center for Non-Communicable Disease and Nutrition, Brac University, Dhaka 1213, Bangladesh;
| |
Collapse
|
32
|
Rayyan YM, Agraib LM, Alkhatib B, Yamani MI, Abu-Sneineh AT, Tayyem RF. Does probiotic supplementation improve quality of life in mild-to-moderately active ulcerative colitis patients in Jordan? A secondary outcome of the randomized, double-blind, placebo-controlled study. Eur J Nutr 2023; 62:3069-3077. [PMID: 37498369 DOI: 10.1007/s00394-023-03207-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Recent findings revealed a potential effect of a probiotic in improving quality of life (QoL) in ulcerative colitis (UC). In Jordan, there is scarce data about UC patients and QoL. METHODS Twenty-four UC patients were included in the study and were randomly allocated into probiotic (3 × 1010 probiotic capsules containing nine Lactobacillus and five Bifidobacterium species) and placebo control groups (containing polysaccharide supplied in an identical bottle) 3 times daily/6 weeks. A short inflammatory bowel disease questionnaire (SIBDQ) was used to assess the change in the quality of life in both groups at the beginning and the end of the intervention; The study was completed during the COVID-19 pandemic. RESULTS Patients treated with probiotics showed a higher score of social (6.92 ± 0.29, p = 0.019), bowel (6.31 ± 0.46, p = 0.001), emotional (6.47 ± 0.46, p < 0.001), and total SIBDQ scores (6.54 ± 0.29, p < 0.001) compared to the placebo group (5.75 ± 1.57, 4.72 ± 1.34, 4.42 ± 1.67 and 4.96 ± 1.27; respectively). Also, the probiotic group had significantly better scores in the systemic, social, bowel, emotional, and total SIBDQ scores in terms of pre- to post-treatment (p < 0.001). CONCLUSIONS The use of probiotic therapy containing Lactobacillus and Bifidobacterium species had significantly improved the quality of life among UC patients, this was shown by the improvement in the scores of the systemic domain, social domain, bowel domain, emotional domain, and total SIBDQ. This study is part of a registered study at ClinicalTrials.gov with the number NCT04223479.
Collapse
Affiliation(s)
- Yaser Mohammed Rayyan
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan.
| | - Lana M Agraib
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Buthaina Alkhatib
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Reema F Tayyem
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
33
|
Chu HK, Ai Y, Cheng ZL, Yang L, Hou XH. Contribution of gut microbiota to drug-induced liver injury. Hepatobiliary Pancreat Dis Int 2023; 22:458-465. [PMID: 37365109 DOI: 10.1016/j.hbpd.2023.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Drug-induced liver injury (DILI) is caused by various drugs with complex pathogenesis, and diverse clinical and pathological phenotypes. Drugs damage the liver directly through drug hepatotoxicity, or indirectly through drug-mediated oxidative stress, immune injury and inflammatory insult, which eventually lead to hepatocyte necrosis. Recent studies have found that the composition, relative content and distribution of gut microbiota in patients and animal models of DILI have changed significantly. It has been confirmed that gut microbial dysbiosis brings about intestinal barrier destruction and microorganisms translocation, and the alteration of microbial metabolites may cause or aggravate DILI. In addition, antibiotics, probiotics, and fecal microbiota transplantation are all emerging as prospective therapeutic methods for DILI by regulating the gut microbiota. In this review, we discussed how the altered gut microbiota participates in DILI.
Collapse
Affiliation(s)
- Hui-Kuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Ai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zi-Lu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Hua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
34
|
Aghamohammad S, Sepehr A, Miri ST, Najafi S, Pourshafie MR, Rohani M. Investigation of the anti-inflammatory effects of native potential probiotics as supplementary therapeutic agents in an in-vitro model of inflammation. BMC Complement Med Ther 2023; 23:335. [PMID: 37735396 PMCID: PMC10515064 DOI: 10.1186/s12906-023-04153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND IBD is considered an inflammatory disease with abnormal and exaggerated immune responses. To control the symptoms, different theraputic agents could be used, however, utilizing the agents with the least side effects could be important. Probiotics as beneficial microorganisms are one of the complementory theraputic agents that could be used to modulate inflammatory signaling pathways. In the current study, we aimed to identify the precise molecular effects of potential probiotics on signaling pathways involved in the development of inflammation. METHODS A quantitative real-time polymerase chain reaction (qPCR) assay was used to analyze the expression of JAK /STAT (JAK1, JAK2, JAK3, TYK2, STAT1, STAT2, STAT3, STAT4, STAT5 and STAT6) and inflammatory genes (NEMO, TIRAP, IRAK, and RIP) after the HT -29 cell line treatment with the sonicated pathogens and potential probiotics. A cytokine assay was also used to evaluate IL -6 and IL -1β production after potential probiotic treatment. RESULTS The potential probiotic cocktail downregulated the JAK genes and TIRAP, IRAK4, NEMO, and RIP genes in the NF-kB pathway compared with cells that were treated with sonicated gram negative pathogens. The expression of STAT genes was different after potential probiotic treatment. The production of IL -6 and IL -1β decreased after potential probiotic treatment. CONCLUSIONS Considering the importance of controlling the symptoms of IBD to improve the life quality of the patients, using probiotic could be crucial. In the current study the studied native potential probiotic cocktails showed anti-inflammatory effects via modulation of JAK /STAT and NF-kB signaling pathways. This observation suggests that our native potential probiotics consumption could be useful in reducing intestinal inflammation.
Collapse
Affiliation(s)
| | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Tina Miri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeideh Najafi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
35
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
36
|
Sinclair J, Dillon S, Allan R, Brooks-Warburton J, Desai T, Lawson C, Bottoms L. Health Benefits of Montmorency Tart Cherry Juice Supplementation in Adults with Mild to Moderate Ulcerative Colitis: A Protocol for a Placebo Randomized Controlled Trial. Methods Protoc 2023; 6:76. [PMID: 37736959 PMCID: PMC10514793 DOI: 10.3390/mps6050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
Ulcerative colitis, characterized by its relapsing and remissive nature, negatively affects perception, body image, and overall quality of life. The associated financial burden underscores the need for alternative treatment approaches with fewer side effects, alongside pharmaceutical interventions. Montmorency tart cherries, rich in anthocyanins, have emerged as a potential natural anti-inflammatory agent for ulcerative colitis. This manuscript outlines the study protocol for a randomized placebo-controlled trial investigating the effects of Montmorency tart cherry in individuals with ulcerative colitis. The trial aims to recruit 40 participants with mild to moderate disease activity randomly assign them to either a Montmorency tart cherry or placebo group. The intervention will span 6 weeks, with baseline and 6-week assessments. The primary outcome measure is the Inflammatory Bowel Disease Quality of Life Questionnaire. Secondary outcomes include other health-related questionnaires and biological indices. Statistical analysis will adhere to an intention-to-treat approach using linear mixed effect models. Ethical approval has been obtained from the University of Hertfordshire (cLMS/SF/UH/05240), and the trial has been registered as a clinical trial (NCT05486507). The trial findings will be disseminated through a peer-reviewed publication in a scientific journal.
Collapse
Affiliation(s)
- Jonathan Sinclair
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
| | - Stephanie Dillon
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
| | - Robert Allan
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK
| | - Johanne Brooks-Warburton
- Gastroenterology Department, Lister Hospital, Stevenage SG1 4AB, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK (L.B.)
| | - Terun Desai
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK (L.B.)
| | - Charlotte Lawson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK (L.B.)
| |
Collapse
|
37
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
38
|
Khachatryan L, Xiang Y, Ivanov A, Glaab E, Graham G, Granata I, Giordano M, Maddalena L, Piccirillo M, Manipur I, Baruzzo G, Cappellato M, Avot B, Stan A, Battey J, Lo Sasso G, Boue S, Ivanov NV, Peitsch MC, Hoeng J, Falquet L, Di Camillo B, Guarracino MR, Ulyantsev V, Sierro N, Poussin C. Results and lessons learned from the sbv IMPROVER metagenomics diagnostics for inflammatory bowel disease challenge. Sci Rep 2023; 13:6303. [PMID: 37072468 PMCID: PMC10113391 DOI: 10.1038/s41598-023-33050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
A growing body of evidence links gut microbiota changes with inflammatory bowel disease (IBD), raising the potential benefit of exploiting metagenomics data for non-invasive IBD diagnostics. The sbv IMPROVER metagenomics diagnosis for inflammatory bowel disease challenge investigated computational metagenomics methods for discriminating IBD and nonIBD subjects. Participants in this challenge were given independent training and test metagenomics data from IBD and nonIBD subjects, which could be wither either raw read data (sub-challenge 1, SC1) or processed Taxonomy- and Function-based profiles (sub-challenge 2, SC2). A total of 81 anonymized submissions were received between September 2019 and March 2020. Most participants' predictions performed better than random predictions in classifying IBD versus nonIBD, Ulcerative Colitis (UC) versus nonIBD, and Crohn's Disease (CD) versus nonIBD. However, discrimination between UC and CD remains challenging, with the classification quality similar to the set of random predictions. We analyzed the class prediction accuracy, the metagenomics features by the teams, and computational methods used. These results will be openly shared with the scientific community to help advance IBD research and illustrate the application of a range of computational methodologies for effective metagenomic classification.
Collapse
Affiliation(s)
- Lusine Khachatryan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Yang Xiang
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Artem Ivanov
- ITMO University, St. Petersburg, Russian Federation
| | - Enrico Glaab
- University of Luxembourg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | | | | - Adrian Stan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - James Battey
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Stephanie Boue
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | | | | | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
39
|
Bischoff SC, Bager P, Escher J, Forbes A, Hébuterne X, Hvas CL, Joly F, Klek S, Krznaric Z, Ockenga J, Schneider S, Shamir R, Stardelova K, Bender DV, Wierdsma N, Weimann A. ESPEN guideline on Clinical Nutrition in inflammatory bowel disease. Clin Nutr 2023; 42:352-379. [PMID: 36739756 DOI: 10.1016/j.clnu.2022.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023]
Abstract
The present guideline is an update and extension of the ESPEN scientific guideline on Clinical Nutrition in Inflammatory Bowel Disease published first in 2017. The guideline has been rearranged according to the ESPEN practical guideline on Clinical Nutrition in Inflammatory Bowel Disease published in 2020. All recommendations have been checked and, if needed, revised based on new literature, before they underwent the ESPEN consensus procedure. Moreover, a new chapter on microbiota modulation as a new option in IBD treatment has been added. The number of recommendations has been increased to 71 recommendations in the guideline update. The guideline is aimed at professionals working in clinical practice, either in hospitals or in outpatient medicine, and treating patients with IBD. General aspects of care in patients with IBD, and specific aspects during active disease and in remission are addressed. All recommendations are equipped with evidence grades, consensus rates, short commentaries and links to cited literature.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Palle Bager
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | - Johanna Escher
- Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.
| | - Alastair Forbes
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.
| | - Xavier Hébuterne
- Department of Gastroenterology and Clinical Nutrition, CHU of Nice, University Côte d'Azur, Nice, France.
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | - Francisca Joly
- Department of Gastroenterology and Nutrition Support, CHU de Beaujon, APHP, University of Paris, Paris, France.
| | - Stansilaw Klek
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Cancer Institute, Krakow, Poland.
| | - Zeljko Krznaric
- Department of Gastroenterology, Hepatology and Nutrition, University Hospital Centre Zagreb, University of Zagreb, Croatia.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Stéphane Schneider
- Department of Gastroenterology and Clinical Nutrition, CHU de Nice, University Côte d'Azur, Nice, France.
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Kalina Stardelova
- University Clinic for Gastroenterohepatology, Clinical Campus "Mother Theresa", University St Cyrul and Methodius, Skopje, North Macedonia.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Nicolette Wierdsma
- Department of Nutrition and Dietetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| |
Collapse
|
40
|
Manna L, Rizzi E, Bafile E, Cappelleri A, Ruscica M, Macchi C, Podaliri Vulpiani M, Salini R, Rossi E, Panebianco C, Perri F, Pazienza V, Federici F. Lentilactobacillus kefiri SGL 13 and Andrographis paniculata alleviate dextran sulfate sodium induced colitis in mice. Front Nutr 2023; 10:1072334. [PMID: 36860688 PMCID: PMC9968723 DOI: 10.3389/fnut.2023.1072334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that typically involve diarrhea, abdominal pain, fatigue, and weight loss, with a dramatic impact on patients' quality of life. Standard medications are often associated with adverse side effects. Thus, alternative treatments such as probiotics are of great interest. The purpose of the present study was to evaluate the effects of oral administration of Lentilactobacillus kefiri (basonym: Lactobacillus kefiri) SGL 13 and Andrographis paniculata, namely, Paniculin 13™, on dextran sodium sulfate (DSS)- treated C57BL/6J mice. Methods Colitis was induced by administering 1.5% DSS in drinking water for 9 days. Forty male mice were divided into four groups, receiving PBS (control), 1.5% DSS, Paniculin 13™ and 1.5% DSS + Paniculin 13™. Results The results showed that body weight loss and Disease Activity Index (DAI) score were improved by Paniculin 13™. Moreover, Paniculin 13™ ameliorated DSS-induced dysbiosis, by modulating the gut microbiota composition. The gene expression of MPO, TNFα and iNOS in colon tissue was reduced and these data matched with the histological results, supporting the efficacy of Paniculin 13™ in reducing the inflammatory response. No adverse effects were associated to Paniculin 13™ administration. Discussion In conclusion, Paniculin 13™ could be an effective add-on approach to conventional therapies for IBD.
Collapse
Affiliation(s)
- Laura Manna
- PNK Farmaceutici S.p.a., Castelnuovo Vomano, Italy
| | | | | | - Andrea Cappelleri
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UNIMI, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Michele Podaliri Vulpiani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Federica Federici
- PNK Farmaceutici S.p.a., Castelnuovo Vomano, Italy,*Correspondence: Federica Federici,
| |
Collapse
|
41
|
Lomer MCE, Wilson B, Wall CL. British Dietetic Association consensus guidelines on the nutritional assessment and dietary management of patients with inflammatory bowel disease. J Hum Nutr Diet 2023; 36:336-377. [PMID: 35735908 PMCID: PMC10084145 DOI: 10.1111/jhn.13054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite increased awareness of diet and nutrition being integral to the management of patients with inflammatory bowel disease (IBD), there are gaps in the knowledge of IBD healthcare providers regarding nutrition. Furthermore, high quality evidence on nutritional assessment and dietary management of IBD is limited. A Delphi consensus from a panel of experts allows for best-practice guidelines to be developed, especially where high quality evidence is limited. The aim was to develop guidelines for the nutritional assessment and dietary management of IBD using an eDelphi online consensus agreement platform. METHODS Seventeen research topics related to IBD and nutrition were systematically reviewed. Searches in Cochrane, Embase®, Medline® and Scopus® electronic databases were performed. GRADE was used to develop recommendations. Experts from the IBD community (healthcare professionals and patients with IBD) were invited to vote anonymously on the recommendations in a custom-built online platform. Three rounds of voting were carried out with updated iterations of the recommendations and evaluative text based on feedback from the previous round. RESULTS From 23,824 non-duplicated papers, 167 were critically appraised. Fifty-five participants completed three rounds of voting and 14 GRADE statements and 42 practice statements achieved 80% consensus. Comprehensive guidance related to nutrition assessment, nutrition screening and dietary management is provided. CONCLUSIONS Guidelines on the nutritional assessment and dietary management of IBD have been developed using evidence-based consensus to improve equality of care. The statements and practice statements developed demonstrate the level of agreement and the quality and strength of the guidelines.
Collapse
Affiliation(s)
- Miranda C E Lomer
- Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Nutritional Sciences, King's College London, London, UK
| | - Bridgette Wilson
- Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Nutritional Sciences, King's College London, London, UK
| | - Catherine L Wall
- Department of Nutritional Sciences, King's College London, London, UK.,Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
42
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Sancandi M, De Caro C, Cypaite N, Marascio N, Avagliano C, De Marco C, Russo E, Constanti A, Mercer A. Effects of a probiotic suspension Symprove™ on a rat early-stage Parkinson's disease model. Front Aging Neurosci 2023; 14:986127. [PMID: 36742204 PMCID: PMC9890174 DOI: 10.3389/fnagi.2022.986127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
An increasing number of studies in recent years have focused on the role that the gut may play in Parkinson's Disease (PD) pathogenesis, suggesting that the maintenance of a healthy gut may lead to potential treatments of the disease. The health of microbiota has been shown to be directly associated with parameters that play a potential role in PD including gut barrier integrity, immunity, function, metabolism and the correct functioning of the gut-brain axis. The gut microbiota (GM) may therefore be employed as valuable indicators for early diagnosis of PD and potential targets for preventing or treating PD symptoms. Preserving the gut homeostasis using probiotics may therefore lead to a promising treatment strategy due to their known benefits in improving constipation, motor impairments, inflammation, and neurodegeneration. However, the mechanisms underlying the effects of probiotics in PD are yet to be clarified. In this project, we have tested the efficacy of an oral probiotic suspension, Symprove™, on an established animal model of PD. Symprove™, unlike many commercially available probiotics, has been shown to be resistant to gastric acidity, improve symptoms in gastrointestinal diseases and improve gut integrity in an in vitro PD model. In this study, we used an early-stage PD rat model to determine the effect of Symprove™ on neurodegeneration and neuroinflammation in the brain and on plasma cytokine levels, GM composition and short chain fatty acid (SCFA) release. Symprove™ was shown to significantly influence both the gut and brain of the PD model. It preserved the gut integrity in the PD model, reduced plasma inflammatory markers and changed microbiota composition. The treatment also prevented the reduction in SCFAs and striatal inflammation and prevented tyrosine hydroxylase (TH)-positive cell loss by 17% compared to that observed in animals treated with placebo. We conclude that Symprove™ treatment may have a positive influence on the symptomology of early-stage PD with obvious implications for the improvement of gut integrity and possibly delaying/preventing the onset of neuroinflammation and neurodegeneration in human PD patients.
Collapse
Affiliation(s)
- Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Carmen De Caro
- Department of Science of Health, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Neringa Cypaite
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Nadia Marascio
- Department of Science of Health, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom,*Correspondence: Audrey Mercer,
| |
Collapse
|
44
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
45
|
Qu D, Feng S, Li M, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Effects of Bifidobacteria bifidum strains on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and its potential mechanism. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
High Acetate Concentration Protects Intestinal Barrier and Exerts Anti-Inflammatory Effects in Organoid-Derived Epithelial Monolayer Cultures from Patients with Ulcerative Colitis. Int J Mol Sci 2023; 24:ijms24010768. [PMID: 36614212 PMCID: PMC9821118 DOI: 10.3390/ijms24010768] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Short-chain fatty acids as well as their bacterial producers are of increasing interest in inflammatory bowel diseases. Although less studied compared to butyrate, acetate might also be of interest as it may be less toxic to epithelial cells, stimulate butyrate-producing bacteria by cross-feeding, and have anti-inflammatory and barrier-protective properties. Moreover, one of the causative factors of the probiotic potency of Saccharomyces cerevisae var. boulardii is thought to be its high acetate production. Therefore, the objective was to preclinically assess the effects of high acetate concentrations on inflammation and barrier integrity in organoid-based monolayer cultures from ulcerative colitis patients. Confluent organoid-derived colonic epithelial monolayers (n = 10) were exposed to basolateral inflammatory stimulation or control medium. After 24 h, high acetate or control medium was administered apically for an additional 48 h. Changes in TEER were measured after 48 h. Expression levels of barrier genes and inflammatory markers were determined by qPCR. Pro-inflammatory proteins in the supernatant were quantified using the MSD platform. Increased epithelial resistance was observed with high acetate administration in both inflamed and non-inflamed conditions, together with decreased expression levels of IL8 and TNFα and CLDN1. Upon high acetate administration to inflamed monolayers, upregulation of HIF1α, MUC2, and MKI67, and a decrease of the majority of pro-inflammatory cytokines was observed. In our patient-derived human epithelial cell culture model, a protective effect of high acetate administration on epithelial resistance, barrier gene expression, and inflammatory protein production was observed. These findings open up new possibilities for acetate-mediated management of barrier defects and inflammation in IBD.
Collapse
|
47
|
Farajipour H, Sadr S, Matin HR, Aschner M, Asemi Z, Banikazemi Z, Mirzaei H, Taghizadeh M. Therapeutic effect of probiotics on metabolic indices and clinical signs in age-related macular degeneration. J Immunoassay Immunochem 2022; 44:229-241. [PMID: 36576143 DOI: 10.1080/15321819.2022.2159765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probiotics positively influence age-related macular degeneration (ARMD) given their propensity to attenuate oxidative and inflammatory stress. We addressed the impact of probiotics on metabolic profiles, clinical indices, inflammatory and oxidative stress parameters in ARMD patients. We performed a randomized, double-blind, placebo-controlled trial analyzing 57 subjects with ARMD aged between 50 and 85 years. Subjects were randomized into two groups, and received daily for 8 weeks either probiotic capsule or placebo. Fasting blood samples were obtained at baseline and after the 8-week intervention for the determination of metabolic profiles and oxidative stress biomarkers. After the 8-week intervention, compared with the placebo, probiotic supplementation significantly increased means HDL-cholesterol (Probiotic group: +3.86±4.42 vs. Placebo group: -0.55±4.93 mg/dL, P = .001), plasma total antioxidant capacity (TAC) (Probiotic group: +77.43±168.30 vs. Placebo group: -23.12±169.22 mmol/L, P = .02) and significantly decreased malondialdehyde (MDA) levels (Probiotic group: -0.18±0.46 vs. Placebo group: +0.18±0.25 µmol/L, P = .001). There was no significant effect of probiotic administration on other metabolic profiles and clinical symptoms. Overall, an eight-week probiotic administration among ARMD patients had beneficial effects on TAC, MDA and HDL-cholesterol levels; however, it did not affect clinical signs and other metabolic profiles.
Collapse
Affiliation(s)
- Hasan Farajipour
- Department of Ophthalmology, School of Medicine, Matini Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Sadr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Matin
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
48
|
Hu Y, Chen Z, Xu C, Kan S, Chen D. Disturbances of the Gut Microbiota and Microbiota-Derived Metabolites in Inflammatory Bowel Disease. Nutrients 2022; 14:5140. [PMID: 36501169 PMCID: PMC9735443 DOI: 10.3390/nu14235140] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is characterized as a chronic and recurrent inflammatory disease whose pathogenesis is still elusive. The gut microbiota exerts important and diverse effects on host physiology through maintaining immune balance and generating health-benefiting metabolites. Many studies have demonstrated that IBD is associated with disturbances in the composition and function of the gut microbiota. Both the abundance and diversity of gut microbiota are dramatically decreased in IBD patients. Furthermore, some particular classes of microbiota-derived metabolites, principally short-chain fatty acids, tryptophan, and its metabolites, and bile acids have also been implicated in the pathogenesis of IBD. In this review, we aim to define the disturbance of gut microbiota and the key classes of microbiota-derived metabolites in IBD pathogenesis. In addition, we also focus on scientific evidence on probiotics, not only on the molecular mechanisms underlying the beneficial effects of probiotics on IBD but also the challenges it faces in safe and appropriate application.
Collapse
Affiliation(s)
- Yongjia Hu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Zhouzhou Chen
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Chengchen Xu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shidong Kan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
49
|
Berryman MA, Milletich PL, Petrone JR, Roesch LF, Ilonen J, Triplett EW, Ludvigsson J. Autoimmune-associated genetics impact probiotic colonization of the infant gut. J Autoimmun 2022; 133:102943. [PMID: 36356550 DOI: 10.1016/j.jaut.2022.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
To exemplify autoimmune-associated genetic influence on the colonization of bacteria frequently used in probiotics, microbial composition of stool from 1326 one-year-old infants was analyzed in a prospective general-population cohort, All Babies In Southeast Sweden (ABIS). We show that an individual's HLA haplotype composition has a significant impact on which common Bifidobacterium strains thrive in colonizing the gut. The effect HLA has on the gut microbiome can be more clearly observed when considered in terms of allelic dosage. HLA DR1-DQ5 showed the most significant and most prominent effect on increased Bifidobacterium relative abundance. Therefore, HLA DR1-DQ5 is proposed to act as a protective haplotype in many individuals. Protection-associated HLA haplotypes are more likely to influence the promotion of specific bifidobacteria. In addition, strain-level differences are correlated with colonization proficiency in the gut depending on HLA haplotype makeup. These results demonstrate that HLA genetics should be considered when designing effective probiotics, particularly for those at high genetic risk for autoimmune diseases.
Collapse
Affiliation(s)
- Meghan A Berryman
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Patricia L Milletich
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Joseph R Petrone
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Luiz Fw Roesch
- Roesch Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W Triplett
- Triplett Laboratory, Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
50
|
Song S, Jeong A, Lim J, Kim B, Park D, Oh S. Lactiplantibacillus plantarum
L67
probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
- Agricultural Convergence Technology Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
| | - Anna Jeong
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| | - Jina Lim
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
- Department of Animal Biotechnology and Environment Animal Genomics and Bioinformatics National Institute of Animal Science 1500 Kongjwipatjwi‐ro Jellabuk‐do 55365 South Korea
| | - Bum‐Keun Kim
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Dong‐June Park
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Sejong Oh
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| |
Collapse
|