1
|
Iqbal U, Malik A, Sial NT, Mehmood MH, Nawaz S, Papadakis M, Fouad D, Ateyya H, Welson NN, Alexiou A, Batiha GES. β-Citronellol: a potential anti-inflammatory and gastro-protective agent-mechanistic insights into its modulatory effects on COX-II, 5-LOX, eNOS, and ICAM-1 pathways through in vitro, in vivo, in silico, and network pharmacology studies. Inflammopharmacology 2024:10.1007/s10787-024-01569-x. [PMID: 39342545 DOI: 10.1007/s10787-024-01569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The current study aimed to evaluate the anti-inflammatory, anti-oxidant, and pronounced gastro-protective activities of β- Citronellol using in vitro, in vivo assays and in silico approaches. METHODS In vitro assays, denaturation of bovine serum albumin, egg protein, and human Red Blood Cells (RBCs) membrane stabilization were performed, using Piroxicam as standard. For in vivo assessment, Histamine (0.1 ml from 1% w/v) and Formaldehyde (0.1 ml from 2% v/v) were used to mediate inflammation. In silico molecular docking and network pharmacology were employed to probe the possible target genes mediating gastroprotective effect of β-Citronellol at 25, 50, and 100 mg/kg, using indomethacin-induced (25 mg/kg i.p) gastric ulcer in rats. Moreover, Gastric tissues were evaluated for morphological, histopathological, and bio-chemical analysis of PGE2, COX-I, COX-II, 5-LOX, eNOS, ICAM-1, oxygen-free radical scavengers (SOD, CAT), and oxidative stress marker (MDA). RESULTS β-Citronellol prevented denaturation of proteins and RBCs membrane stabilization with maximum effect observed at 6,400 µg/mL. Citronellol decreased rat's paw edema. Network pharmacology and docking studies revealed gastro-protective potential of Citronellol possibly mediated through arachidonic acid pathways by targeting COX-I, COX-II, PGE2, and 5-LOX. Citronellol reduced the ulcer indices, and histopathological changes. Further, β-Citronellol (50 and 100 mg/kg) increased gastric PGE2, COX-1, and eNOS; while suppressing COX-2, 5-LOX and ICAM-1. Citronellol markedly enhanced the oxidative balance in isolated rat stomach tissues. CONCLUSIONS The anti-inflammatory, anti-oxidant, and gastro-protective effects of β-Citronellol against indomethacin-induced gastric ulcer model in rats through mediating COX-I, COX-II, PGE2, 5-LOX, eNOS, and ICAM-1 inflammatory markers.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University Lahore, Lahore, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Lahore, Lahore, Pakistan
| | - Shoaib Nawaz
- The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, 11495, Riyadh, Saudi Arabia
| | - Hayam Ateyya
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- Department of Research and Development, Funogen, 11741, Athens, Greece
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Saeed HE, Ibrahim RR, Kamel S, El-Nahass ES, Khalifa AG. Behavioral, biochemical, histopathological evaluation and gene expression of brain injury induced by nanoceria injected intranasal or intraperitoneal in mice. Toxicol Res (Camb) 2024; 13:tfae095. [PMID: 38966091 PMCID: PMC11221883 DOI: 10.1093/toxres/tfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
Background Nanotechnology has shown a remarkable progress nevertheless, there is a growing concern about probable neurotoxic and neurodegenerative effects due to NPs exposure. Various toxicological and epidemiological studies reported that the brain is a main target for ultrafine particles. Brain inflammation is considered as a possible mechanism that can participate to neurotoxic and neurodegenerative effects. Whether nanoparticles (NPs) may produce neurotoxicity and promote neurodegenerative is largely unstudied. The present study was done to investigate whether intranasal and intra-peritoneal exposure to cerium oxide nanoparticles (CeO2NPs, nanoceria (NC)) could cause neurotoxicity and neurodegenerative changes in the brain tissue through conducting some behavioral tests, biochemical evaluation, histopathological examinations of brain hippocampus and gene expressions. Method Fifteen mice were separated into 3 equal groups. In group (I) "control group", mice were received distilled water orally and kept as a control group. Mice in the group (II) "NC I/P group" were injected i.p with cerium oxide nanoparticles at a dose of 40 mg/kg b.wt, twice weekly for 3 weeks. In group (III) "NC I/N group" mice were received nanoceria intranasally (40 mg/kg b.wt), twice weekly for 3 weeks. Results Exposure to nanceria resulted in oxidative damage in brain tissue, a significant increase in malondialdehyde (MDA) and acetylcholinestrase (AchE) levels, significant decrease in reduced glutathione (GSH) concentration, upregulation in the apoptosis-related genes (c-Jun: c-Jun N-terminal kinases (JNKs), c-Fos: Fos protooncogene, AP-1 transcription factor subunit, c-Myc: c-myelocytomatosis oncogene product or MYC protooncogene, bHLH transcription factor), locomotor and cognitive impairment in mice but the effect was more obvious when nanoceria adminstred intraperitoneally. Conculsion Nanoceria cause oxidative damage in brain tissue of mice when adminstred nanoceria intraperitoneally more than those received nanoceria intranasal.
Collapse
Affiliation(s)
- Hanan E Saeed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rasha Ragab Ibrahim
- Department of Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - El-Shaymaa El-Nahass
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahlam G Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
3
|
Belahcene S, Kebsa W, Akingbade TV, Umar HI, Omoboyowa DA, Alshihri AA, Abo Mansour A, Alhasaniah AH, Oraig MA, Bakkour Y, Leghouchi E. Chemical Composition Antioxidant and Anti-Inflammatory Activities of Myrtus communis L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools. Molecules 2024; 29:849. [PMID: 38398601 PMCID: PMC10893115 DOI: 10.3390/molecules29040849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with H2O2, with an IC50 of 17.81 ± 3.67 µg.mL-1. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Samia Belahcene
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| | - Widad Kebsa
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria;
| | - Tomilola Victor Akingbade
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, PMB 704 Akure, Gaga 340110, Nigeria; (T.V.A.); (H.I.U.)
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, PMB 704 Akure, Gaga 340110, Nigeria; (T.V.A.); (H.I.U.)
| | - Damilola Alex Omoboyowa
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko 57257, Nigeria
| | - Abdulaziz A. Alshihri
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Sciences, Najran University, Najran 1988, Saudi Arabia
| | - Mohammed A. Oraig
- Radiology Department, Khamis Mushayt General Hospital, Khamis Mushayt 62433, Saudi Arabia;
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Essaid Leghouchi
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| |
Collapse
|
4
|
Aziz RLA, Abdel-Wahab A, Abdel-Razik ARH, Kamel S, Farghali AA, Saleh R, Mahmoud R, Ibrahim MA, Nabil TM, El-Ela FIA. Physiological roles of propolis and red ginseng nanoplatforms in alleviating dexamethasone-induced male reproductive challenges in a rat model. Mol Biol Rep 2024; 51:72. [PMID: 38175282 PMCID: PMC10766727 DOI: 10.1007/s11033-023-08991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Red ginseng and propolis are well-known antioxidants that have been related to a reduction in oxidative stress. OBJECTIVE This study evaluated the efficiency of red ginseng and propolis, either in powder or as nano-forms against dexamethasone-induced testicular oxidative challenges in adult male albino rats. METHODS Forty rats were divided into 8 equal groups including control negative group that was given vehicle (DMSO), control positive group that was administered dexamethasone in addition to the nano-propolis, nano-ginseng, nano-propolis + dexamethasone, nano ginseng+dexamethasone, propolis+dexamethasone and ginseng + dexamethasone groups. Serum, semen and tissue samples were obtained. RESULTS Lower testosterone levels, higher levels of MDA, and lower levels of total antioxidant capacity in serum, as well as impaired semen quality and a disturbed histopathological picture of both the testis and seminal glands, were all observed as significant negative effects of dexamethasone. These findings were confirmed by lower gene expression profiles of CYP11A1, StAR, HSD-3b, Nrf-2 and ACTB-3b in testicular and seminal gland tissues. The most powerful anti-dexamethasone effects were obtained with either propolis in nanoform or conventional ginseng. CONCLUSION Propolis nano-formulation and ginseng in conventional form could be considered excellent candidates to ameliorate the oxidative stress provoked by dexamethasone, however, neither nano-ginseng nor conventional propolis showed such effects.
Collapse
Affiliation(s)
- Rabie L Abdel Aziz
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt.
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni- Suef, 62512, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Romaissaa Saleh
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Taghred M Nabil
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni- Suef, 62512, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|