1
|
Lv T, Peng Y, Zhang G, Jiang S, Yang Z, Yang S, Pang H. How About Vanadium-Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206907. [PMID: 36683227 PMCID: PMC10131888 DOI: 10.1002/advs.202206907] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
Collapse
Affiliation(s)
- Tingting Lv
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shu Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zilin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
2
|
Le PA, Le VQ, Tran TL, Nguyen NT, Phung TVB, Dinh VA. Two-Dimensional NH 4V 3O 8 Nanoflakes as Efficient Energy Conversion and Storage Materials for the Hydrogen Evolution Reaction and Supercapacitors. ACS OMEGA 2022; 7:25433-25442. [PMID: 35910106 PMCID: PMC9330131 DOI: 10.1021/acsomega.2c02375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, for the first time, we present two-dimensional (2D) NH4V3O8 nanoflakes as an excellent material for both energy conversion of the hydrogen evolution reaction and storage of supercapacitors by a simple and fast two-step synthesis, which exhibit a completely sheet-like morphology, high crystallinity, good specific surface area, and also stability, as determined by thermogravimetric analysis. The 2D-NH4V3O8 flakes show an acceptable hydrogen evolution performance in 0.5 M H2SO4 on a glassy carbon electrode (GCE) coated with 2D-NH4V3O8, which results in a low overpotential of 314 mV at -10 mA cm-2 with an excellent Tafel slope as low as 90 mV dec-1. So far, with the main focus on energy storage, 2D-NH4V3O8 nanoflakes were found to be ideal for supercapacitor electrodes. The NH4V3O8 working electrode in 1 M Na2SO4 shows an excellent electrochemical capability of 274 F g-1 at 0.5 A g-1 for a maximum energy density of 38 W h kg-1 at a power density as high as 250 W kg-1. Moreover, the crystal structure of 2D-NH4V3O8 is demonstrated by density functional theory (DFT) computational simulation using three functionals, GGA, GGA + U, and HSE06. The simple preparation, low cost, and abundance of the NH4V3O8 material provide a promising candidate for not only energy conversion but also energy-storage applications.
Collapse
Affiliation(s)
- Phuoc-Anh Le
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
- Faculty
of Textile Science and Technology, Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-0018, Japan
| | - Van-Qui Le
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Thien Lan Tran
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
- Department
of Physics, Hue University of Education, Hue University, 34 Le
Loi Stress, Hue 530000, Vietnam
| | - Nghia Trong Nguyen
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Viet Bac Phung
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
| | - Van An Dinh
- Department
of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Huang X, Li Z, Liu H, Zhang M, Du X, Cui X, Wang Q, Wang H. Optimized cyclic and electrochemical performance by organic ion N(CH3)4+ pre-inserted into N(CH3)4V8O20 cathode and hierarchy distributive Zn anode in aqueous zinc ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Pérez-Benítez A, Bernès S. Redetermination of di-ammonium trivanadate, (NH 4) 2V 3O 8. IUCRDATA 2020; 5:x200488. [PMID: 36338297 PMCID: PMC9462213 DOI: 10.1107/s2414314620004885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of (NH4)2V3O8 has been reported twice using single-crystal X-ray data [Theobald et al. (1984 ▸). J. Phys. Chem. Solids, 45, 581-587; Range et al. (1988 ▸). Z. Naturforsch. Teil B, 43, 309-317]. In both cases, the orientation of the ammonium cation in the asymmetric unit was poorly defined: in Theobald's study, the shape and dimensions were constrained for NH4 +, while in Range's study, H atoms were not included. In the present study, we collected a highly redundant data set for this ternary oxide, at 0.61 Å resolution, using Ag Kα radiation. These accurate data reveal that the NH4 + cation is disordered by rotation around a non-crystallographic axis. The rotation axis coincides with one N-H bond lying in the mirror m symmetry element of space-group type P4bm, and the remaining H sites were modelled over two disordered positions, with equal occupancy. It therefore follows that the NH4 + cations filling the space available in the (001) layered structure formed by (V3O8)2- ions do not form strong N-H⋯O hydrogen bonds with the mixed-valent oxidovanadate(IV,V) anions. This feature could have consequences for the Li-ion inter-calation properties of this material, which is used as a cathode for supercapacitors.
Collapse
Affiliation(s)
- Aarón Pérez-Benítez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
| | - Sylvain Bernès
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
| |
Collapse
|
5
|
Jiang H, Zhang Y, Pan Z, Xu L, Zheng J, Gao Z, Hu T, Meng C. Facile hydrothermal synthesis and electrochemical properties of (NH4)2V10O25·8H2O nanobelts for high-performance aqueous zinc ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135506] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Yao ZY, Zhang GQ, Yao WW, Wang XZ, Qian Y, Ren XM. Uniaxial thermal expansion behaviors and ionic conduction in a layered (NH 4) 2V 3O 8. Dalton Trans 2020; 49:10638-10644. [PMID: 32697201 DOI: 10.1039/d0dt01833c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zero/negative thermal expansion (ZTE/NTE), which is an intriguing physical property of solids, has been observed in a few families of materials. ZTE materials possess practical applications in specific circumstances such as space-related applications, engineering structures and precision instrument. Generally, NTE materials are used as additives to form a composite of the ZTE material with positive thermal expansion material. It is still a tremendous challenge to design new families of ZTE/NTE materials. Herein, we presented a temperature-dependent single crystal structure analysis in 110-300 K for a layered (NH4)2V3O8, which crystallizes in a tetragonal space group P4bm and comprises mixed valence [V3O82-]∞ monolayers and NH4+ residual in the interlayer spaces. Along the c-axis, (NH4)2V3O8 demonstrated uniaxial expansion behaviors, i.e., ZTE with αc = -1.10 × 10-6 K-1 in 110-170 K and NTE with αc = -16.25 × 10-6 K-1 in 170-220 K. Along the a-axis, (NH4)2V3O8 exhibited ZTE with αa = + 2.06 × 10-6 K-1 in 240-300 K. The mechanisms of ZTE and NTE were explored using structural analysis. The conduction of NH4+ ions in the interlayer space was studied, indicating that the conductivity rapidly rises with the expansion of interlayer space at temperatures of >293 K. This study discloses that layered vanadates are promising ZTE/NTE materials.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo-Qin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Wan-Wan Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiao-Zu Wang
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yin Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China. and College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Teplonogova MA, Yapryntsev AD, Baranchikov AE, Ivanov VK. Selective hydrothermal synthesis of ammonium vanadates(V) and (IV,V). TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0265-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Liu P, Bian K, Zhu K, Xu Y, Gao Y, Luo H, Lu L, Wang J, Liu J, Tai G. Ultrathin Nanoribbons of in Situ Carbon-Coated V 3O 7·H 2O for High-Energy and Long-Life Li-Ion Batteries: Synthesis, Electrochemical Performance, and Charge-Discharge Behavior. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17002-17012. [PMID: 28459530 DOI: 10.1021/acsami.7b01504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ever-growing demands of Li-ion batteries (LIBs) for high-energy and long-life applications, such as electrical vehicles, have prompted great research interest. Herein, by applying an interesting one-step high-temperature mixing method under hydrothermal conditions, ultrathin V3O7·H2O@C nanoribbons with good crystallinity and robust configuration are in situ synthesized as promising cathode materials of high-energy, high-power, and long-life LIBs. Their capacity is up to 319 mA h/g at a current density of 100 mA/g. Moreover, the capacity of 262 mA h/g can be delivered at 500 mA/g, and 94% of capacity can be retained after 100 cycles. Even at a large current density of 3000 mA/g, they can still deliver a high capacity of 165 mA h/g, and 119% of the initial capacity can be kept after 600 cycles. Importantly, their energy density is up to 800 Wh/kg, which is 48-60% higher than those of conventional cathode materials (such as LiCoO2, LiMn2O4, and LiFePO4), and they can maintain an energy density of 355 Wh/kg at a high power density of 8000 W/kg. Furthermore, based on ex situ X-ray diffraction and X-ray photoelectron spectroscopy technology, their exact charge-discharge behavior is reasonably described for the first time. Excitingly, it is found for the first time that the as-synthesized V3O7·H2O@C nanoribbons are also great promising cathode materials for Na-ion batteries.
Collapse
Affiliation(s)
| | - Kan Bian
- School of Mechanical and Electric Engineering, Guangzhou University , Guangzhou 510006, China
| | | | | | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University , 99 Shangda, Shanghai 200444, China
| | - Hongjie Luo
- School of Materials Science and Engineering, Shanghai University , 99 Shangda, Shanghai 200444, China
| | - Li Lu
- Department of Mechanical Engineering, National University of Singapore , Singapore 117575, Singapore
| | | | | | | |
Collapse
|
9
|
Hu F, Jiang W, Dong Y, Lai X, Xiao L, Wu X. Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries. RSC Adv 2017. [DOI: 10.1039/c7ra04388k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High first discharge capacity of 255 mA h g−1 (vs. Li+/Li) and 130 mA h g−1 (vs. Na+/Na) were observed in NaV6O15 microflowers and the capacity retention reaches 105% and 64% after 50 cycles at the current density of 100 mA g−1 and 50 mA g−1, respectively.
Collapse
Affiliation(s)
- Fang Hu
- School of Materials Science and Engineering
- Shenyang University of Technology
- Shenyang 110870
- P. R. China
| | - Wei Jiang
- School of Materials Science and Engineering
- Shenyang University of Technology
- Shenyang 110870
- P. R. China
| | - Yidi Dong
- School of Materials Science and Engineering
- Shenyang University of Technology
- Shenyang 110870
- P. R. China
| | - Xiaoyong Lai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- P. R. China
| | - Li Xiao
- School of Materials Science and Engineering
- Shenyang University of Technology
- Shenyang 110870
- P. R. China
| | - Xiang Wu
- School of Materials Science and Engineering
- Shenyang University of Technology
- Shenyang 110870
- P. R. China
| |
Collapse
|