1
|
Kumbhakar P, Jayan JS, Sreedevi Madhavikutty A, Sreeram P, Saritha A, Ito T, Tiwary CS. Prospective applications of two-dimensional materials beyond laboratory frontiers: A review. iScience 2023; 26:106671. [PMID: 37168568 PMCID: PMC10165413 DOI: 10.1016/j.isci.2023.106671] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The development of nanotechnology has been advancing for decades and gained acceleration in the 21st century. Two-dimensional (2D) materials are widely available, giving them a wide range of material platforms for technological study and the advancement of atomic-level applications. The design and application of 2D materials are discussed in this review. In order to evaluate the performance of 2D materials, which might lead to greater applications benefiting the electrical and electronics sectors as well as society, the future paradigm of 2D materials needs to be visualized. The development of 2D hybrid materials with better characteristics that will help industry and society at large is anticipated to result from intensive research in 2D materials. This enhanced evaluation might open new opportunities for the synthesis of 2D materials and the creation of devices that are more effective than traditional ones in various sectors of application.
Collapse
Affiliation(s)
- Partha Kumbhakar
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
- Department of Physics and Electronics, CHRIST (Deemed to Be University), Bangalore 560029, India
| | - Jitha S. Jayan
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala, India
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | | | - P.R. Sreeram
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chandra Sekhar Tiwary
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| |
Collapse
|
2
|
Lee G, Jeong M, Kim HR, Kwon M, Baek S, Oh S, Lee M, Lee D, Joo JH. Controlled Electrophoretic Deposition Strategy of Binder-Free CoFe 2O 4 Nanoparticles as an Enhanced Electrocatalyst for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48598-48608. [PMID: 36256595 DOI: 10.1021/acsami.2c11456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetic-sluggish oxygen evolution reaction (OER) is the main obstacle in electrocatalytic water splitting for sustainable production of hydrogen energy. Efficient water electrolysis can be ensured by lowering the overpotential of the OER by developing highly active catalysts. In this study, a controlled electrophoretic deposition strategy was used to develop a binder-free spinel oxide nanoparticle-coated Ni foam as an efficient electrocatalyst for water oxidation. Oxygen evolution was successfully promoted using the CoFe2O4 catalyst, and it was optimized by modulating the electrophoretic parameters. When optimized, CoFe2O4 nanoparticles presented more active catalytic sites, superior charge transfer, increased ion diffusion, and favorable reaction kinetics, which led to a small overpotential of 287 mV for a current density of 10 mA cm-2, with a small Tafel slope of 43 mV dec-1. Moreover, the CoFe2O4 nanoparticle electrode exhibited considerable long-term stability over 100 h without detectable activity loss. The results demonstrate promising potential for large-scale water splitting using Earth-abundant oxide materials via a simple and cheap fabrication process.
Collapse
Affiliation(s)
- Gahyeon Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Minsik Jeong
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Hye Ri Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Minsol Kwon
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Seulgi Baek
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Sekwon Oh
- Surface R&D Group, Korea Institute of Industrial Technology, Incheon21999, Republic of Korea
| | - Minhyung Lee
- Surface R&D Group, Korea Institute of Industrial Technology, Incheon21999, Republic of Korea
| | - Dongju Lee
- Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk28644, Republic of Korea
| | - Jong Hoon Joo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
3
|
Cheng X, He S, Zhang X, Zhou S, Yi S. Enhanced degradation of quinoline in near-neutral pH aqueous solution by magnetically recoverable biochar: Performance, mechanism and variables effects. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Gorshkov NV, Yakovleva EV, Krasnov VV, Kiselev NV, Artyukhov DI, Artyukhov II, Yakovlev AV. Electrode for a Supercapacitor Based on Electrochemically Synthesized Multilayer Graphene Oxide. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221030149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|