1
|
Khan A, Nichakornpong N, Wongsalam T, Prathumrat P, Likitaporn C, Kasemsiri P, Okhawilai M. Development of green synthesised AgNPs decorated on MWCNT modified guar gum-based self-healing hydrogel for strain sensors. Sci Rep 2024; 14:29715. [PMID: 39613847 DOI: 10.1038/s41598-024-81085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Flexible conductive hydrogel strain sensors are gaining popularity due to their exceptional stretchability, sensitivity, and potential for wearable devices. However, their widespread use is hindered by significant issues, such as poor electrical conductivity and weak response time. To address these challenges, new hydrogels based on guar gum, borax, and glycerol have been fabricated via a green synthesis technique. These hydrogels were reinforced with functionalised multiwalled carbon nanotubes (f-MWCNTs) and silver nanoparticle decorated multiwalled carbon nanotubes (AgNP-MWCNTs). The resulting conductive hydrogels exhibited a self-healing capability of 83.2% and effective strain sensing with a gauge factor of 6.58. The incorporation of AgNP-MWCNTs significantly improved the electrical conductivity up to 3.05 ± 0.02 S m- 1, thanks to the tunnelling effect between f-MWCNTs and the synergic interaction of AgNP-MWCNTs. Moreover, the hydrogel sensors displayed excellent durability, enduring 3000 cycles of tensile loading and unloading at 50% strain. This innovative use of green design principles offers a straightforward, cost-effective, and environmentally friendly process for producing high-performance soft materials. These materials hold significant promise for various practical applications, including artificial skins, flexible electronics, and healthcare monitoring, highlighting the high relevance and impact of this research.
Collapse
Affiliation(s)
- Aamir Khan
- Nanoscience and Technology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nichakan Nichakornpong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tawan Wongsalam
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerawat Prathumrat
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chutiwat Likitaporn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Manunya Okhawilai
- Nanoscience and Technology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Kapil P, Verma D, Pradhan R, Kalkal A, Packirisamy G. A bioinspired porous and electroactive reduced graphene oxide hydrogel based biosensing platform for efficient detection of tumor necrosis factor-α. J Mater Chem B 2024. [PMID: 39420620 DOI: 10.1039/d4tb01216j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Oral cancer is one of the leading cancer types, which is frequently diagnosed at an advanced stage, giving patients a poor prognosis and fewer therapeutic choices. To address this gap, exploiting biosensors utilizing anti-biofouling hydrogels for early-stage oral cancer detection in non-invasive body fluids is gaining utter importance. Herein, we have demonstrated the fabrication of an innovative electrochemical immunosensor for the rapid, label-free, non-invasive, and affordable detection of tumor necrosis factor-α (TNF-α), a biomarker associated with oral cancer progression in artificial saliva samples. The gold screen-printed electrodes (gSPEs) are modified with a green synthesized porous and electroactive reduced graphene oxide (rGO) hydrogel utilizing L-cystine (L-cys) as both in situ reducing and surface functionalization agent, followed by covalent immobilization of anti-TNF-α and blocking of residual sites with bovine serum albumin (BSA) to fabricate the BSA/anti-TNF-α/L-cys_rGO hydrogel/gSPE immunosensing platform. The fabricated platform demonstrates excellent performance, with a low limit of detection of 1.20 pg mL-1, a broad linear range from 1 to 200 pg mL-1, and a high sensitivity of 2.10 μA pg-1 mL cm-2 carried out with differential pulse voltammetry (DPV) technique. Moreover, it exhibits specificity towards TNF-α, even in the presence of potential interferents and other cancer biomarkers. Besides, the biosensor showed good reproducibility and repeatability with a relative standard deviation (%RSD) of 5.11% and 1.85%, respectively. Thus, integrating the L-cys_rGO hydrogel in the immunosensor design offers enhanced performance, paving the way for its application in early-stage oral cancer diagnosis.
Collapse
Affiliation(s)
- Parth Kapil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Damini Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Rangadhar Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Ashish Kalkal
- Nanostructured System Laboratory, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, W1W 7TS, UK
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
3
|
Govindharaj K, Govindasamy M, Gokila N, Huang CH, Rajaji U, Albaqami MD, Kumar RTR. Green sonochemical synthesis of ZnCo 2O 4 decorated with carbon nanofibers for enhanced electrochemical detection of bisphenol A in food products. Mikrochim Acta 2024; 191:460. [PMID: 38987355 DOI: 10.1007/s00604-024-06511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
The facile sonochemical synthesis is reported of zinc cobalt oxide (ZnCo2O4) composited with carbon nanofiber (CNF). Structural, chemical, and morphological were characterized by X-ray diffraction (XRD), X-ray photoluminescent spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmittance electron microscopy (TEM), respectively. ZnCo2O4/CNF-modified GCE was applied to the detection of bisphenol A (BPA). The modified GCE shows enhanced sensing performance towards BPA, which includes a linear range (0.2 to 120 μM L-1) alongside a low limit of detection (38.2 nM L-1), low interference, and good stability. Detection of lower concentrations of BPA enables real sample analysis in the food industries (milk, orange juice, yogurt, tap water, and baby feeding bottles). Surprisingly, the BPA was detected in milk 510 nM L-1, orange juice 340 nM L-1, yogurt 1050 nM L-1, and tap water 140 nM L-1. Moreover, an interaction mechanism between the BPA analyte and ZnCo2O4 was discussed.
Collapse
Affiliation(s)
- Kamaraj Govindharaj
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
- Department of Materials Engineering, Ming Chi University of Technology, Taishan District, New Taipei City, 24301, Taiwan
| | - Mani Govindasamy
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| | - N Gokila
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, Taishan District, New Taipei City, 24301, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan.
- College of Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Umamaheswari Rajaji
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), 602105, Chennai, Tamil Nadu, India
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Thangavelu Rajendra Kumar
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
4
|
Noumani A, Verma D, Kaushik A, Khosla A, Solanki PR. Electrochemically microplastic detection using chitosan-magnesium oxide nanosheet. ENVIRONMENTAL RESEARCH 2024; 252:118894. [PMID: 38599449 DOI: 10.1016/j.envres.2024.118894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Microplastics, an invisible threat, are emerging as serious pollutants that continuously affect health by interrupting/contaminating the human cycle, mainly involving food, water, and air. Such serious scenarios raised the demand for developing efficient sensing systems to detect them at an early stage efficiently and selectively. In this direction, the proposed research reports an electrochemical hexamethylenetetramine (HMT) sensing utilizing a sensing platform fabricated using chitosan-magnesium oxide nanosheets (CHIT-MgO NS) nanocomposite. HMT is considered as a hazardous microplastic, which is used as an additive in plastic manufacturers and has been selected as a target analyte. To fabricate sensing electrodes, a facile co-precipitation technique was employed to synthesize MgO NS, which was further mixed with 1% CHIT solution to form a CHIT_MgO NS composite. Such prepared nanocomposite solution was then drop casted to an indium tin oxide (ITO) to fabricate CHIT_MgO NS/ITO sensing electrode to detect HMT electrochemically using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. To determine the limit of detection (LOD) and sensitivity, DPV was performed. The resulting calibrated curve for HMT, ranging from 0.5 μM to 4.0 μM, exhibited a sensitivity of 12.908 μA (μM)-1 cm-2 with a detection limit of 0.03 μM and a limit of quantitation (LOQ) of 0.10 μM. Further, the CHIT_MgO NS/ITO modified electrode was applied to analyze HMT in various real samples, including river water, drain water, packaged water, and tertiary processed food. The results demonstrated the method's high sensitivity and suggested its potential applications in the field of microplastic surveillance, with a focus on health management.
Collapse
Affiliation(s)
- Ashab Noumani
- Nano-Bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Damini Verma
- Nano-Bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, 33805, FL, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ajit Khosla
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an Province, 710071, China
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
6
|
Gulati P, Singh AK, Yadav AK, Pasbola K, Pandey P, Sharma R, Thakar A, Solanki PR. Nano-modified screen-printed electrode-based electrochemical immunosensors for oral cancer biomarker detection in undiluted human serum and saliva samples. NANOSCALE ADVANCES 2024; 6:705-721. [PMID: 38235076 PMCID: PMC10791120 DOI: 10.1039/d3na00682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
This proposed work reports the development of in-house made conductive ink-based screen-printed electrodes (SPEs) for label-free detection of oral cancer biomarkers. Carbon ink synthesis includes graphite powder, gum arabic, and water. The selectivity test of the fabricated SPE involves immobilizing antibodies specific to biomarkers and challenges with redox-active interference, other serum molecules, and non-target biomarkers. Three different biomarkers, cytokeratin-19 fragment (CYFRA 21-1), interleukin 8 (IL-8), and tumor protein p53 (TP-53), act as target entities for the detection of oral cancer in patients' samples (serum, N = 28, and saliva, N = 16) at an early stage. The standard technique enzyme-linked immunosorbent assay (ELISA) was employed to estimate the concentration of the biomarkers in serum and saliva samples. SPEs contain amine (-NH2) functional groups involved in covalent bonding with the carboxyl (-COOH) groups of antibody molecules. These immunosensors exhibited remarkably lower detection limits of 829.5 pg mL-1, 0.543 pg mL-1, and 1.165 pg mL-1, and excellent sensitivity of 0.935 μA mL pg-1 cm-1, 0.039 μA mL pg-1 cm-1, and 0.008 μA mL pg-1 cm-1 for CYFRA 21-1, IL-8, and TP-53 biomarkers, respectively. This sensing platform does not require any functionalization for biomolecule immobilization. Thus, it is a cost-effective, disposable, flexible, miniaturized, and sensitive strip to detect oral cancer biomarkers.
Collapse
Affiliation(s)
- Payal Gulati
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| | - Avinash Kumar Singh
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| | - Amit K Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| | - Kiran Pasbola
- University School of Biotechnology, Guru Gobind Singh Indraprastha University India
| | - Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University India
| | - Alok Thakar
- All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
7
|
Ciobotaru IC, Oprea D, Ciobotaru CC, Enache TA. Low-Cost Plant-Based Metal and Metal Oxide Nanoparticle Synthesis and Their Use in Optical and Electrochemical (Bio)Sensors. BIOSENSORS 2023; 13:1031. [PMID: 38131791 PMCID: PMC10741781 DOI: 10.3390/bios13121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Technological progress has led to the development of analytical tools that promise a huge socio-economic impact on our daily lives and an improved quality of life for all. The use of plant extract synthesized nanoparticles in the development and fabrication of optical or electrochemical (bio)sensors presents major advantages. Besides their low-cost fabrication and scalability, these nanoparticles may have a dual role, serving as a transducer component and as a recognition element, the latter requiring their functionalization with specific components. Different approaches, such as surface modification techniques to facilitate precise biomolecule attachment, thereby augmenting recognition capabilities, or fine tuning functional groups on nanoparticle surfaces are preferred for ensuring stable biomolecule conjugation while preserving bioactivity. Size optimization, maximizing surface area, and tailored nanoparticle shapes increase the potential for robust interactions and enhance the transduction. This article specifically aims to illustrate the adaptability and effectiveness of these biosensing platforms in identifying precise biological targets along with their far-reaching implications across various domains, spanning healthcare diagnostics, environmental monitoring, and diverse bioanalytical fields. By exploring these applications, the article highlights the significance of prioritizing the use of natural resources for nanoparticle synthesis. This emphasis aligns with the worldwide goal of envisioning sustainable and customized biosensing solutions, emphasizing heightened sensitivity and selectivity.
Collapse
Affiliation(s)
- Iulia Corina Ciobotaru
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| | - Daniela Oprea
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
- Faculty of Physics, University of Bucharest, 405 Atomistilor, 077125 Magurele, Romania
| | | | - Teodor Adrian Enache
- National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele, Romania; (I.C.C.); (D.O.); (C.C.C.)
| |
Collapse
|
8
|
Huang Z, Chen Z, Yan D, Jiang S, Nie L, Tu X, Jia X, Wågberg T, Chao L. Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A. Molecules 2023; 28:8036. [PMID: 38138526 PMCID: PMC10745752 DOI: 10.3390/molecules28248036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bisphenol A is one of the most widely used industrial compounds. Over the years, it has raised severe concern as a potential hazard to the human endocrine system and the environment. Developing robust and easy-to-use sensors for bisphenol A is important in various areas, such as controlling and monitoring water purification and sewage water systems, food safety monitoring, etc. Here, we report an electrochemical method to fabricate a bisphenol A (BPA) sensor based on a modified Au nanoparticles/multiwalled carbon nanotubes composite electrocatalyst electrode (AuCu-UPD/MWCNTs/GCE). Firstly, the Au-Cu alloy was prepared via a convenient and controllable Cu underpotential/bulk Au co-electrodeposition on a multiwalled modified carbon nanotubes glassy carbon electrode (GCE). Then, the AuCu-UPD/MWCNTs/GCE was obtained via the electrochemical anodic stripping of Cu underpotential deposition (UPD). Our novel prepared sensor enables the high-electrocatalytic and high-performance sensing of BPA. Under optimal conditions, the modified electrode showed a two-segment linear response from 0.01 to 1 µM and 1 to 20 µM with a limit of detection (LOD) of 2.43 nM based on differential pulse voltammetry (DPV). Determination of BPA in real water samples using AuCu-UPD/MWCNTs/GCE yielded satisfactory results. The proposed electrochemical sensor is promising for the development of a simple, low-cost water quality monitoring system for the detection of BPA in ambient water samples.
Collapse
Affiliation(s)
- Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Zihan Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Dexuan Yan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Shuo Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Xinman Tu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;
| | - Xueen Jia
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Thomas Wågberg
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| |
Collapse
|
9
|
Chuasontia I, Sirisom W, Nakpathomkun N, Toommee S, Pechyen C, Tangnorawich B, Parcharoen Y. Development and Characterization of Nano-Ink from Silicon Carbide/Multi-Walled Carbon Nanotubes/Synthesized Silver Nanoparticles for Non-Enzymatic Paraoxon Residuals Detection. MICROMACHINES 2023; 14:1613. [PMID: 37630149 PMCID: PMC10456359 DOI: 10.3390/mi14081613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The ongoing advancement in the synthesis of new nanomaterials has accelerated the rapid development of non-enzymatic pesticide sensors based on electrochemical platforms. This study aims to develop and characterize Nano-ink for applying organophosphorus pesticides using paraoxon residue detection. Multi-walled carbon nanotubes, silicon carbide, and silver nanoparticles were used to create Nano-ink using a green synthesis process in 1:1:0, 1:1:0.5, and 1:1:1 ratios, respectively. These composites were combined with chitosan of varying molecular weights, which served as a stabilizing glue to keep the Nano-ink employed in a functioning electrode stable. By using X-ray powder diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and a field emission scanning electron microscope, researchers were able to examine the crystallinity, element composition, and surface morphology of Nano-ink. The performance of the proposed imprinted working electrode Nano-ink was investigated using cyclic voltammetry and differential pulse voltammetry techniques. The Cyclic voltammogram of Ag NPs/chitosan (medium, 50 mg) illustrated high current responses and favorable conditions of the Nano-ink modified electrode. Under the optimized conditions, the reduction currents of paraoxon using the DPV techniques demonstrated a linear reaction ranging between 0.001 and 1.0 µg/mL (R2 = 0.9959) with a limit of detection of 0.0038 µg/mL and a limit of quantitation of 0.011 µg/mL. It was concluded that the fabricated Nano-ink showed good electrochemical activity for non-enzymatic paraoxon sensing.
Collapse
Affiliation(s)
- Itsarapong Chuasontia
- Department of Physics, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand; (I.C.)
- Faculty of Learning Science and Education, Thammasat University, Bangkok 12120, Thailand
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
| | - Wichaya Sirisom
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand
| | - Natthapon Nakpathomkun
- Department of Physics, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand; (I.C.)
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
| | - Surachet Toommee
- Industrial Arts Program, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand
| | - Chiravoot Pechyen
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand
| | - Benchamaporn Tangnorawich
- Department of Physics, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand; (I.C.)
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
| | - Yardnapar Parcharoen
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Bangkok 12120, Thailand
| |
Collapse
|
10
|
Çapar N, Polat İ, Yola BB, Atar N, Yola ML. A novel molecular imprinted QCM sensor based on MoS 2NPs-MWCNT nanocomposite for zearalenone determination. Mikrochim Acta 2023; 190:262. [PMID: 37329340 DOI: 10.1007/s00604-023-05842-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that has a carcinogenic effect and is often found at a high rate in frequently consumed foods. In this study, a characteristic molecular imprinted quartz crystal microbalance (QCM) sensor based on molybdenum disulfide nanoparticle (MoS2NPs)-multiwalled carbon nanotube (MWCNT) nanocomposite (MoS2NPs-MWCNTs) is presented for selective determination of ZEA in rice samples. Firstly, molybdenum disulfide nanoparticle (MoS2NP)-multiwalled carbon nanotube nanocomposites were characterized by using microscopic, spectroscopic, and electrochemical techniques. Then, ZEA-imprinted QCM chip was prepared in the presence of methacryloylamidoglutamicacid (MAGA) as monomer, N,N'-azobisisobutyronitrile (AIBN) as initiator, and ZEA as target molecule by using UV polymerization. The sensor revealed a linearity toward ZEA in the range 1.0-10.0 ng L-1 with a detection limit (LOD) of 0.30 ng L-1. The high repeatability, reusability, selectivity, and stability of the developed sensor enable reliable ZEA detection in rice samples.
Collapse
Affiliation(s)
- Nesrin Çapar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - İlknur Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey.
| |
Collapse
|
11
|
Yadav AK, Verma D, Kumar A, Bhatt AN, Solanki PR. Biocompatible epoxysilane substituted polymer-based nano biosensing platform for label-free detection of cancer biomarker SP17 in patient serum samples. Int J Biol Macromol 2023; 239:124325. [PMID: 37054852 DOI: 10.1016/j.ijbiomac.2023.124325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Herein, we report the results of the studies relating to developing a simple, sensitive, cost-effective, and disposable electrochemical-based label-free immunosensor for real-time detection of a new cancer biomarker, sperm protein-17 (SP17), in complex serum samples. An indium tin oxide (ITO) coated glass substrate modified with self-assembled monolayers (SAMs) of 3-glycidoxypropyltrimethoxysilane (GPTMS) was functionalized via covalent immobilization of monoclonal anti-SP17 antibodies using EDC(1-(3-(dimethylamine)-propyl)-3-ethylcarbodiimide hydrochloride) - NHS (N-hydroxy succinimide) chemistry. The developed immunosensor platform (BSA/anti-SP17/GPTMS@SAMs/ITO) was characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA), Fourier transform infrared (FT-IR) spectroscopic, and electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The fabricated BSA/anti-SP17/GPTMS@SAMs/ITO immunoelectrode platform was used to measure changes in the magnitude of the current of the electrodes through an electrochemical CV and DPV technique. A calibration curve between current and SP17 concentrations exhibited a broad linear detection range of (100-6000 & 50-5500 pg mL-1), with enhanced sensitivity (0.047 & 0.024 μA pg mL-1 cm-2), limit of detection (LOD) and limit of quantification (LOQ) of 47.57 & 142.9 pg mL-1 and 158.58 & 476.3 pg mL-1, by CV and DPV technique, respectively with a rapid response time of 15 min. It possessed exceptional repeatability, outstanding reproducibility, five-time reusability, and high stability. The biosensor's performance was evaluated in human serum samples, giving satisfactory findings obtained via the commercially available enzyme-linked immunosorbent assay (ELISA) technique, proving the clinical applicability for early diagnosis of cancer patients. Moreover, various in vitro studies in murine fibroblast cell line L929 have been performed to assess the cytotoxicity of GPTMS. The results demonstrated that GPTMS has excellent biocompatibility and can be used for biosensor fabrication.
Collapse
Affiliation(s)
- Amit K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhishek Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Anant Narayan Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Pratima R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
12
|
Nanomaterial-Based Electrochemical Nanodiagnostics for Human and Gut Metabolites Diagnostics: Recent Advances and Challenges. BIOSENSORS 2022; 12:bios12090733. [PMID: 36140118 PMCID: PMC9496054 DOI: 10.3390/bios12090733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Metabolites are the intermediatory products of metabolic processes catalyzed by numerous enzymes found inside the cells. Detecting clinically relevant metabolites is important to understand their physiological and biological functions along with the evolving medical diagnostics. Rapid advances in detecting the tiny metabolites such as biomarkers that signify disease hallmarks have an immense need for high-performance identifying techniques. Low concentrations are found in biological fluids because the metabolites are difficult to dissolve in an aqueous medium. Therefore, the selective and sensitive study of metabolites as biomarkers in biological fluids is problematic. The different non-electrochemical and conventional methods need a long time of analysis, long sampling, high maintenance costs, and costly instrumentation. Hence, employing electrochemical techniques in clinical examination could efficiently meet the requirements of fully automated, inexpensive, specific, and quick means of biomarker detection. The electrochemical methods are broadly utilized in several emerging and established technologies, and electrochemical biosensors are employed to detect different metabolites. This review describes the advancement in electrochemical sensors developed for clinically associated human metabolites, including glucose, lactose, uric acid, urea, cholesterol, etc., and gut metabolites such as TMAO, TMA, and indole derivatives. Different sensing techniques are evaluated for their potential to achieve relevant degrees of multiplexing, specificity, and sensitivity limits. Moreover, we have also focused on the opportunities and remaining challenges for integrating the electrochemical sensor into the point-of-care (POC) devices.
Collapse
|
13
|
Gold-Ceria nanocomposite based highly sensitive and selective aptasensing platform for the detection of the Chlorpyrifos in Solanum tuberosum. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Bölükbaşı ÖS, Yola BB, Boyacıoğlu H, Yola ML. A novel paraoxon imprinted electrochemical sensor based on MoS 2NPs@MWCNTs and its application to tap water samples. Food Chem Toxicol 2022; 163:112994. [PMID: 35398444 DOI: 10.1016/j.fct.2022.112994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Organophosphorus pesticides are widely utilized in agricultural fertility. However, their long-term accumulations result in serious damage to human health and ecological balance. Paraoxon (PAR) can block acetylcholinesterase in the human body, resulting in death. Thus, in this study, a molecularly imprinted electrochemical PAR sensor based on multiwalled carbon nanotubes (MWCNTs)/molybdenum disulfide nanoparticles (MoS2NPs) nanocomposite (MoS2NPs@MWCNTs) was proposed for selective tap water determination. A hydrothermal fabrication approach was firstly implemented to prepare MoS2NPs@MWCNTs nanocomposite. Afterwards, the formation of PAR imprinted electrochemical electrode was performed on nanocomposite modified glassy carbon electrode (GCE) in presence of PAR as template and pyrrole (Py) as a monomer by cyclic voltammetry (CV) technique. Just after determining the physicochemical features of as-fabricated nanostructures by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman spectroscopy, and atomic force microscopy (AFM), the electrochemical behavior of the fabricated sensors was determined through CV, differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The suggested imprinted electrode provided the acceptable limit of quantification (LOQ) and limit of detection (LOD) values of 1.0 × 10-11 M, and 2.0 × 10-12 M, respectively. As a consequence, the proposed PAR imprinted electrochemical sensor can be offered for the determining safe tap water and its utility.
Collapse
Affiliation(s)
- Ömer Saltuk Bölükbaşı
- Iskenderun Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Hatay, Turkey
| | - Bahar Bankoğlu Yola
- Iskenderun Technical University, Science and Technology Application and Research Laboratory, Hatay, Turkey
| | - Havva Boyacıoğlu
- Pamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| |
Collapse
|
15
|
Fabrication of alkoxysilane substituted polymer-modified disposable biosensing platform: Toward sperm protein 17 sensing as a new cancer biomarker. Talanta 2022; 243:123376. [DOI: 10.1016/j.talanta.2022.123376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
|
16
|
Mehmandoust M, Khoshnavaz Y, Tuzen M, Erk N. Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Mikrochim Acta 2021; 188:434. [PMID: 34837114 PMCID: PMC8626286 DOI: 10.1007/s00604-021-05107-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
A novel and sensitive voltammetric nanosensor was developed for the first time for trace level monitoring of favipiravir based on gold/silver core–shell nanoparticles (Au@Ag CSNPs) with conductive polymer poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) and functionalized multi carbon nanotubes (F-MWCNTs) on a glassy carbon electrode (GCE). The formation of Au@Ag CSNPs/PEDOT:PSS/F-MWCNT composite was confirmed by various analytical techniques, including X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (SEM). Under the optimized conditions and at a typical working potential of + 1.23 V (vs. Ag/AgCl), the Au@Ag CSNPs/PEDOT:PSS/F-MWCNT/GCE revealed linear quantitative ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of detection 0.46 nM (S/N = 3) with acceptable relative standard deviations (1.1-4.9 %) for pharmaceutical formulations, urine, and human plasma samples without applying any sample pretreatment (1.12–4.93%). The interference effect of antiviral drugs, biological compounds, and amino acids was negligible, and the sensing system demonstrated outstanding reproducibility, repeatability, stability, and reusability. The findings revealed that this assay strategy has promising applications in diagnosing FAV in clinical samples, which could be attributed to the large surface area on active sites and high conductivity of bimetallic nanocomposite.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| | - Yasamin Khoshnavaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Faculty of Science & Arts, Tokat Gaziosmanpaşa University, Tr-60250, Tokat, Turkey
- Research Institute, Center for Environment and Water, King Fahd University of Petroleum and Materials, Dhahran, 31261, Saudi Arabia
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), Sakarya University, 54187, Sakarya, Turkey.
| |
Collapse
|
17
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
18
|
Makvandi P, Ashrafizadeh M, Ghomi M, Najafi M, Hossein HHS, Zarrabi A, Mattoli V, Varma RS. Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes. Prog Biomater 2021; 10:77-89. [PMID: 33768486 PMCID: PMC8021662 DOI: 10.1007/s40204-021-00155-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Injectable materials have shown great potential in tissue engineering applications. However, bacterial infection is one of the main challenges in using these materials in the field of regenerative medicine. In this study, biogenically synthesized silver nanoparticle-decorated multi-walled carbon nanotubes (Ag/MWCNTs) were deployed for adorning biogenic-derived AgNPs which were subsequently used in the preparation of thermosensitive hydrogels based on hyaluronic acid encompassing these green-synthesized NPs. The antibacterial capacity of AgNPs decorated on MWCNTs synthesized through Camellia sinensis extract in an organic solvent-free medium displayed a superior activity by inhibiting the growth of Gram-negative (E. coli and Klebsiella) and Gram-positive (S. aureus and E. faecalis). The injectable hydrogel nanocomposites demonstrated good mechanical properties, as well. The thermosensitive hyaluronic acid-based hydrogels also exhibited Tgel below the body temperature, indicating the transition from liquid-like behavior to elastic gel-like behavior. Such a promising injectable nanocomposite could be applied as liquid, pomade, or ointment to enter wound cavities or bone defects and subsequently its transition in situ to gel form at human body temperature bodes well for their immense potential application in the biomedical sector.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51666-16471, Tabriz, Iran.,Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, 61537-53843, Ahvaz, Iran.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, 6715847141, Kermanshah, Iran. .,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Tuzla, Istanbul, Turkey
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|