1
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
2
|
Mostafa GA, Meguid NA, Shehab AAS, Elsaeid A, Maher M. Plasma levels of nerve growth factor in Egyptian autistic children: Relation to hyperserotonemia and autoimmunity. J Neuroimmunol 2021; 358:577638. [PMID: 34214954 DOI: 10.1016/j.jneuroim.2021.577638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
Hyperserotonemia and brain-specific autoantibodies are detected in some autistic children. Nerve growth factor (NGF) stimulates the proliferation of B lymphocytes with production of antibodies and also increases mast cell serotonin release. This work was the first to investigate the relationship between plasma NGF and both hyperserotonemia and the frequency of serum anti-myelin basic protein (anti-MBP) auto-antibodies in 22 autistic children aged between 4 and 12 years and 22 healthy-matched controls. Levels of NGF, serotonin and anti-MBP were significantly higher in autistic children than healthy control children (P < 0.001). There was a significant positive correlation between NGF and serotonin levels in autistic patients (P < 0.01). In contrast, there was a non-significant correlation between NGF and anti-MBP levels (P > 0.05). In conclusions, serum NGF levels were elevated and significantly correlated to hyperserotonemia found in many autistic children.
Collapse
Affiliation(s)
- Gehan Ahmed Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nagwa Abdel Meguid
- Research on Children with Special Needs Department, National Research Centre, Cairo, Egypt
| | - Abeer Al Sayed Shehab
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal Elsaeid
- Research on Children with Special Needs Department, National Research Centre, Cairo, Egypt
| | - Mahmoud Maher
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Meyyazhagan A, Balasubramanian B, Easwaran M, Alagamuthu KK, Shanmugam S, Kuchi Bhotla H, Pappusamy M, Arumugam VA, Thangaraj A, Kaul T, Keshavarao S, Cacabelos R. Biomarker study of the biological parameter and neurotransmitter levels in autistics. Mol Cell Biochem 2020; 474:277-284. [PMID: 32740790 DOI: 10.1007/s11010-020-03851-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023]
Abstract
Autism is a prevalent developmental disorder that combines repetitive behaviours, social deficits and language abnormalities. The present study aims to assess the autistic subjects using DSM IV-TR criteria followed with the analysis of neurotransmitters, biochemical parameters, oxidative stress and its ions in two groups of autistic subjects (group I < 12 years; group II ≥ 12 years). Antioxidants show a variation of 10% increase in controls compared to autistic age < 12 years. The concentration of pyruvate kinase and hexokinase is elevated in controls approximately 60% and 45%, respectively, with the significance of 95 and 99%. Autistic subjects showed marked variation in levels of neurotransmitters, oxidative stress and its related ions. Cumulative assessment of parameters related to biochemical markers and neurotransmitters paves the way for autism-based research, although these observations draw interest in an integrated approach for autism.
Collapse
Affiliation(s)
- Arun Meyyazhagan
- EuroEspes Biomedical Research Centre, International Center of Neurosciences and Genomic Medicine, Bergondo, 15165, Corunna, Spain. .,Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India. .,Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India.
| | - Balamuralikrishnan Balasubramanian
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.,Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Murugesh Easwaran
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Karthick Kumar Alagamuthu
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.,Jiagsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sureshkumar Shanmugam
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.,Department of Animal Resource and Science, Dankook University, Cheonan, 31116, South Korea
| | - Haripriya Kuchi Bhotla
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sasikala Keshavarao
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ramon Cacabelos
- EuroEspes Biomedical Research Centre, International Center of Neurosciences and Genomic Medicine, Bergondo, 15165, Corunna, Spain
| |
Collapse
|
4
|
Albumin is a secret factor involved in multidirectional interactions among the serotoninergic, immune and endocrine systems that supervises the mechanism of CYP1A and CYP3A regulation in the liver. Pharmacol Ther 2020; 215:107616. [PMID: 32590025 DOI: 10.1016/j.pharmthera.2020.107616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Abstract
This review focuses on albumin, which is involved in multidirectional interactions among the immune, endocrine and serotoninergic systems and supervises the regulation of cytochrome P450 (CYP) isoforms under conditions of both normal liver function and liver insufficiency. Special attention is paid to albumin, thyroid hormones, testosterone and tryptophan hydroxylase in these interactions as well as their potential roles in liver regeneration. The association of these factors with inflammation and the modification of the mechanism of hepatic drug-metabolizing CYP isoform regulation are also presented because changes in the expression of CYP isoforms in the liver may result in subsequent changes to a marker substance used for testing CYP activity, thus providing a simple way to control the liver regeneration process or the dangerous stimulation of hepatocarcinogenesis.
Collapse
|
5
|
Kardani A, Soltani A, Sewell RDE, Shahrani M, Rafieian-Kopaei M. Neurotransmitter, Antioxidant and Anti-neuroinflammatory Mechanistic Potentials of Herbal Medicines in Ameliorating Autism Spectrum Disorder. Curr Pharm Des 2020; 25:4421-4429. [PMID: 31721693 DOI: 10.2174/1381612825666191112143940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/09/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental issue that disrupts behavior, nonverbal communication, and social interaction, impacting all aspects of an individual's social development. The underlying origin of autism is unclear, however, oxidative stress, as well as serotonergic, adrenergic and dopaminergic systems are thought to be implicated in ASD. Despite the fact that there is no effective medication for autism, current pharmacological treatments are utilized to ameliorate some of the symptoms such as selfmutilation, aggression, repetitive and stereotyped behaviors, inattention, hyperactivity, and sleep disorders. METHODS In accord with the literature regarding the activity of herbal medicines on neurotransmitter function, we aimed to review the most worthy medicinal herbs possessing neuroprotective effects. RESULTS Based on the outcome, medicinal herbs such as Zingiber officinale, Astragalus membranaceu, Ginkgo biloba, Centella asiatica and Acorus calamus, have antioxidant activity, which can influence neurotransmitter systems and are potentially neuroprotective. CONCLUSION Consequently, these herbs, in theory at least, appear to be suitable candidates within an overall management strategy for those on the autism spectrum.
Collapse
Affiliation(s)
- Arefeh Kardani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Win-Shwe TT, Nway NC, Imai M, Lwin TT, Mar O, Watanabe H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J Toxicol Sci 2018; 43:631-643. [PMID: 30404997 DOI: 10.2131/jts.43.631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autism is a complex neurodevelopmental disorder characterized by impaired social communication and social interactions, and repetitive behaviors. The etiology of autism remains unknown and its molecular basis is not yet well understood. Pregnant Sprague-Dawley (SD) rats were administered 600 mg/kg of valproic acid (VPA) by intraperitoneal injection on day 12.5 of gestation. Both 11- to 13-week-old male and female rat models of VPA-induced autism showed impaired sociability and impaired preference for social novelty as compared to the corresponding control SD rats. Significantly reduced mRNA expressions of social behavior-related genes, such as those encoding the serotonin receptor, brain-derived neurotrophic factor and neuroligin3, and significantly increased expression levels of proinflammatory cytokines, such as interleukin-1 β and tumor necrosis factor-α, were noted in the hippocampi of both male and female rats exposed to VPA in utero. The hippocampal expression level of gamma amino butyric acid (GABA) enzyme glutamic acid decarboxylase (GAD) 67 protein was reduced in both male and female VPA-exposed rats as compared to the corresponding control animals. Our results indicate that developmental exposure to VPA affects the social behavior in rats by modulating the expression levels of social behavior-related genes and inflammatory mediators accompanied with changes in GABA enzyme in the hippocampus.
Collapse
Affiliation(s)
| | | | - Motoki Imai
- Graduate School of Medical Sciences, Kitasato University, Japan
| | - Thet-Thet Lwin
- Graduate School of Medical Sciences, Kitasato University, Japan
| | - Ohn Mar
- University of Medicine 1, Myanmar
| | | |
Collapse
|
7
|
Healy D, Le Noury J, Mangin D. Links between serotonin reuptake inhibition during pregnancy and neurodevelopmental delay/spectrum disorders: A systematic review of epidemiological and physiological evidence. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2017; 28:125-41. [PMID: 27662278 DOI: 10.3233/jrs-160726] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate possible linkages between neurodevelopmental delay and neurodevelopmental spectrum disorders and exposure to medication with effects on serotonin reuptake inhibition during pregnancy. METHODS We systematically reviewed the epidemiological literature for studies bearing on this relationship in children born with neurodevelopmental spectrum disorder and related conditions, as well as animal studies giving serotonin reuptake inhibitors to pregnant animals and in addition reviewed the literature for proposals as to possible mechanisms that might link effects on serotonin reuptake with cognitive changes post-partum.The epidemiological studies were analysed to produce Forest plots to illustrate possible relations. RESULTS The odds ratio of Autistic Spectrum or related Disorders in children born to women taking serotonin reuptake inhibiting antidepressants during pregnancy in case control studies was 1.95 (95% C.I. 1.63, 2.34) and in prospective cohort studies was 1.96 (95% C.I. 1.33, 2.90). CONCLUSIONS There appears to be a link between serotonin reuptake inhibition in pregnancy and developmental delay and spectrum disorders in infancy leading to cognitive difficulties in childhood. More work needs to be done to establish more precisely the nature of the difficulties and possible mechanisms through which this link might be mediated.
Collapse
Affiliation(s)
- D Healy
- North Wales Department of Psychological Medicine, Bangor University, Wales, UK
| | - J Le Noury
- North Wales Department of Psychological Medicine, Bangor University, Wales, UK
| | - D Mangin
- David Braley Nancy Gordon Chair in Family Medicine, Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Berding K, Donovan SM. Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr Rev 2016; 74:723-736. [DOI: 10.1093/nutrit/nuw048] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
9
|
Gopi Daisy N, Subramanian ER, Selvan Christyraj JD, Sudalai Mani DK, Selvan Christyraj JRS, Ramamoorthy K, Arumugaswami V, Sivasubramaniam S. Studies on regeneration of central nervous system and social ability of the earthworm Eudrilus eugeniae. INVERTEBRATE NEUROSCIENCE 2016; 16:6. [PMID: 27279085 DOI: 10.1007/s10158-016-0189-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
Earthworms are segmented invertebrates that belong to the phylum Annelida. The segments can be divided into the anterior, clitellar and posterior parts. If the anterior part of the earthworm, which includes the brain, is amputated, the worm would essentially survive even in the absence of the brain. In these brain amputee-derived worms, the nerve cord serves as the primary control center for neurological function. In this current work, we studied changes in the expression levels of anti-acetylated tubulin and serotonin as the indicators of neuro-regenerative processes. The data reveal that the blastemal tissues express the acetylated tubulin and serotonin from day four and that the worm amputated at the 7th segment takes 30 days to complete the regeneration of brain. The ability of self-assemblage is one of the specific functions of the earthworm's brain. The brain amputee restored the ability of self-assemblage on the eighth day.
Collapse
Affiliation(s)
- Nino Gopi Daisy
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Elaiya Raja Subramanian
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | | | - Dinesh Kumar Sudalai Mani
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | | | - Kalidas Ramamoorthy
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vaithilingaraja Arumugaswami
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
10
|
Jiang S, Liang Z, Hao L, Li L. Investigation of signaling molecules and metabolites found in crustacean hemolymph via in vivo microdialysis using a multifaceted mass spectrometric platform. Electrophoresis 2016; 37:1031-8. [PMID: 26691021 DOI: 10.1002/elps.201500497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
Abstract
Neurotransmitters (NTs) are endogenous signaling molecules that play an important role in regulating various physiological processes in animals. Detection of these chemical messengers is often challenging due to their low concentration levels and fast degradation rate in vitro. In order to address these challenges, herein we employed in vivo microdialysis (MD) sampling to study NTs in the crustacean model Cancer borealis. Multifaceted separation tools, such as CE and ion mobility mass spectrometry (MS) were utilized in this work. Small molecules were separated by different mechanisms and detected by MALDI mass spectrometric imaging (MALDI-MSI). Performance of this separation-based MSI platform was also compared to LC-ESI-MS. By utilizing both MALDI and ESI-MS, a total of 208 small molecule NTs and metabolites were identified, of which 39 were identified as signaling molecules secreted in vivo. In addition, the inherent property of sub microscale sample consumption using CE enables shorter time of MD sample collection. Temporal resolution of MD was improved by approximately tenfold compared to LC-ESI-MS, indicating the significant advantage of applying separation-assisted MALDI-MS imaging platform.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Zhidan Liang
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Ling Hao
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI, USA.,Department of Chemistry, University of Wisconsin, Madison, WI, USA.,School of Life Sciences, Tianjin University, Nankai District, Tianjin, P. R. China
| |
Collapse
|
11
|
Billeci L, Tonacci A, Tartarisco G, Ruta L, Pioggia G, Gangemi S. Association Between Atopic Dermatitis and Autism Spectrum Disorders: A Systematic Review. Am J Clin Dermatol 2015; 16:371-88. [PMID: 26254000 DOI: 10.1007/s40257-015-0145-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an allergic disorder caused by both immunological dysregulation and epidermal barrier defect. Several studies have investigated the association between AD and mental health disorders. Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions characterized by impairments in social communication and restricted, stereotyped interests and behaviors. The concurrent increased prevalence of AD and ASD in the last decades has led many scientists to investigate the relationship between the two diseases. OBJECTIVE The aim of this systematic review was to examine the association between AD and ASD. METHODS A systematic review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed and ScienceDirect were searched up to March 2015 for all reports examining the association between ASD and AD. Descriptive statistics of the studies are reported. RESULTS The review included 18 studies assessing the association between ASD and AD. Of these studies, two focused on ASD in relation to AD alone, 14 discussed ASD in relation to both AD and other atopic disorders, and two evaluated AD in parents of children with ASD. Most of these studies found a positive association between the two disorders, although there were some studies going in the opposite direction. The entity of the association is somewhat inconsistent among the different studies given that the frequencies of AD in ASD compared with a control group ranged from 7 to 64.2%. In addition, odds ratios (ORs) or hazard ratios (HRs) gave different results as three studies found a weak association with an OR below 2 and a nonsignificant p value, and three other studies found a moderate or strong association with an OR ranging from 1.52 to 7.17 and a significant p value. When all atopic disorders were considered when evaluating the risk of ASD, the association was strong with an HR of 3.4 or an OR of 1.24 and p < 0.001. CONCLUSIONS Overall, the results of this systematic review seem to reveal an association between ASD and AD, suggesting that subjects with ASD have an increased risk of presenting with AD compared with typically developing controls, and vice versa. This association is supported by clinical/epidemiological aspects, shared genetic background and common immunological and autoimmune processes. However, the variability in study population and design, and the presence of other risk factors acting as confounding factors, sometimes contribute to inconsistent results. Further studies are needed to clarify the underlying pathophysiologic mechanism explaining the association between ASD and AD and to explore the causal association between the two conditions.
Collapse
Affiliation(s)
- Lucia Billeci
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Pisa Unit, Pisa, Italy
| | - Alessandro Tonacci
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Pisa Unit, Pisa, Italy
| | - Gennaro Tartarisco
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Messina Unit, Via C. Valeria, SNC, 98125, Messina, Italy
| | - Liliana Ruta
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Messina Unit, Via C. Valeria, SNC, 98125, Messina, Italy
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Calambrone, Pisa, Italy
| | - Giovanni Pioggia
- National Research Council of Italy, Institute of Clinical Physiology, IFC-CNR, Messina Unit, Via C. Valeria, SNC, 98125, Messina, Italy.
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| |
Collapse
|
12
|
Jaiswal P, Mohanakumar KP, Rajamma U. Serotonin mediated immunoregulation and neural functions: Complicity in the aetiology of autism spectrum disorders. Neurosci Biobehav Rev 2015; 55:413-31. [PMID: 26021727 DOI: 10.1016/j.neubiorev.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Serotonergic system has long been implicated in the aetiology of autism spectrum disorders (ASD), since platelet hyperserotonemia is consistently observed in a subset of autistic patients, who respond well to selective serotonin reuptake inhibitors. Apart from being a neurotransmitter, serotonin functions as a neurotrophic factor directing brain development and as an immunoregulator modulating immune responses. Serotonin transporter (SERT) regulates serotonin level in lymphoid tissues to ensure its proper functioning in innate and adaptive responses. Immunological molecules such as cytokines in turn regulate the transcription and activity of SERT. Dysregulation of serotonergic system could trigger signalling cascades that affect normal neural-immune interactions culminating in neurodevelopmental and neural connectivity defects precipitating behavioural abnormalities, or the disease phenotypes. Therefore, we suggest that a better understanding of the cross talk between serotonergic genes, immune systems and serotonergic neurotransmission will open wider avenues to develop pharmacological leads for addressing the core ASD behavioural deficits.
Collapse
Affiliation(s)
- Preeti Jaiswal
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata 700 107, India
| | - Kochupurackal P Mohanakumar
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata 700 107, India.
| |
Collapse
|
13
|
Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rüfenacht V, Meili D, Bobrowski E, Philippe P, Nava C, Van Maldergem L, Bruggmann R, Walitza S, Wang J, Grünblatt E, Thöny B. Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 2014; 5:43. [PMID: 25802735 PMCID: PMC4370364 DOI: 10.1186/2040-2392-5-43] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/21/2014] [Indexed: 01/21/2023] Open
Abstract
Background Patients with autism spectrum disorder (ASD) may have low brain serotonin concentrations as reflected by the serotonin end-metabolite 5-hydroxyindolacetic acid (5HIAA) in cerebrospinal fluid (CSF). Methods We sequenced the candidate genes SLC6A4 (SERT), SLC29A4 (PMAT), and GCHFR (GFRP), followed by whole exome analysis. Results The known heterozygous p.Gly56Ala mutation in the SLC6A4 gene was equally found in the ASD and control populations. Using a genetic candidate gene approach, we identified, in 8 patients of a cohort of 248 with ASD, a high prevalence (3.2%) of three novel heterozygous non-synonymous mutations within the SLC29A4 plasma membrane monoamine transporter (PMAT) gene, c.86A > G (p.Asp29Gly) in two patients, c.412G > A (p.Ala138Thr) in five patients, and c.978 T > G (p.Asp326Glu) in one patient. Genome analysis of unaffected parents confirmed that these PMAT mutations were not de novo but inherited mutations. Upon analyzing over 15,000 normal control chromosomes, only SLC29A4 c.86A > G was found in 23 alleles (0.14%), while neither c.412G > A (<0.007%) nor c.978 T > G (<0.007%) were observed in all chromosomes analyzed, emphasizing the rareness of the three alterations. Expression of mutations PMAT-p.Ala138Thr and p.Asp326Glu in cellulae revealed significant reduced transport uptake activity towards a variety of substrates including serotonin, dopamine, and 1-methyl-4-phenylpyridinium (MPP+), while mutation p.Asp29Gly had reduced transport activity only towards MPP+. At least two ASD subjects with either the PMAT-Ala138Thr or the PMAT-Asp326Glu mutation with altered serotonin transport activity had, besides low 5HIAA in CSF, elevated serotonin levels in blood and platelets. Moreover, whole exome sequencing revealed additional alterations in these two ASD patients in mainly serotonin-homeostasis genes compared to their non-affected family members. Conclusions Our findings link mutations in SLC29A4 to the ASD population although not invariably to low brain serotonin. PMAT dysfunction is speculated to raise serotonin prenatally, exerting a negative feedback inhibition through serotonin receptors on development of serotonin networks and local serotonin synthesis. Exome sequencing of serotonin homeostasis genes in two families illustrated more insight in aberrant serotonin signaling in ASD.
Collapse
Affiliation(s)
- Dea Adamsen
- Division of Metabolism, Department of Pediatrics, University of Zürich, Zürich 8032, Switzerland.,Affiliated with the Neuroscience Center Zürich, University of Zürich and ETH Zürich (ZNZ), Zürich 8000, and the Children's Research Center (CRC), Zürich 8032, Switzerland
| | - Vincent Ramaekers
- Centre of Autism Liège and Division of Pediatric Neurology, University Hospital Liège, Liège 4000, Belgium
| | - Horace Tb Ho
- Department of Pharmaceutics, University of Washington, Seattle 98195, WA, USA
| | - Corinne Britschgi
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zürich Zürich 8032, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism, Department of Pediatrics, University of Zürich, Zürich 8032, Switzerland
| | - David Meili
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zürich Zürich 8032, Switzerland
| | - Elise Bobrowski
- University Clinics of Child and Adolescent Psychiatry, University of Zürich, Zürich 8050, Switzerland
| | - Paule Philippe
- Centre of Autism Liège and Division of Pediatric Neurology, University Hospital Liège, Liège 4000, Belgium
| | - Caroline Nava
- Department of Genetics, Cytogenetics and human Genetics, Pitié-Salpêtrière Hospital, Paris 75651, France
| | | | - Rémy Bruggmann
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich 8057, Switzerland.,current address: Interfaculty Bioinformatics Unit, University of Bern/Swiss Institute of Bioinformatics, Bern 3012, Switzerland
| | - Susanne Walitza
- University Clinics of Child and Adolescent Psychiatry, University of Zürich, Zürich 8050, Switzerland.,Affiliated with the Neuroscience Center Zürich, University of Zürich and ETH Zürich (ZNZ), Zürich 8000, Switzerland.,Affiliated with the Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich 8000, Switzerland
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle 98195, WA, USA
| | - Edna Grünblatt
- University Clinics of Child and Adolescent Psychiatry, University of Zürich, Zürich 8050, Switzerland.,Affiliated with the Neuroscience Center Zürich, University of Zürich and ETH Zürich (ZNZ), Zürich 8000, Switzerland
| | - Beat Thöny
- Division of Metabolism, Department of Pediatrics, University of Zürich, Zürich 8032, Switzerland.,Affiliated with the Neuroscience Center Zürich, University of Zürich and ETH Zürich (ZNZ), Zürich 8000, and the Children's Research Center (CRC), Zürich 8032, Switzerland.,Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zürich Zürich 8032, Switzerland.,Affiliated with the Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich 8000, Switzerland
| |
Collapse
|
14
|
van Elst K, Bruining H, Birtoli B, Terreaux C, Buitelaar JK, Kas MJ. Food for thought: dietary changes in essential fatty acid ratios and the increase in autism spectrum disorders. Neurosci Biobehav Rev 2014; 45:369-78. [PMID: 25025657 DOI: 10.1016/j.neubiorev.2014.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/16/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
The last decades have shown a spectacular and partially unexplained rise in the prevalence of autism spectrum disorders (ASD). This rise in ASD seems to parallel changes in the dietary composition of fatty acids. This change is marked by the replacement of cholesterol by omega-6 (n-6) fatty acids in many of our food products, resulting in a drastically increased ratio of omega-6/omega-3 (n-6/n-3). In this context, we review the available knowledge on the putative role of fatty acids in neurodevelopment and describe how disturbances in n-6/n-3 ratios may contribute to the emergence of ASDs. Both clinical and experimental research is discussed. We argue that a change in the ratio of n-6/n-3, especially during early life, may induce developmental changes in brain connectivity, synaptogenesis, cognition and behavior that are directly related to ASD.
Collapse
Affiliation(s)
- Kim van Elst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jan K Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Verma D, Chakraborti B, Karmakar A, Bandyopadhyay T, Singh AS, Sinha S, Chatterjee A, Ghosh S, Mohanakumar KP, Mukhopadhyay K, Rajamma U. Sexual dimorphic effect in the genetic association of monoamine oxidase A (MAOA) markers with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:11-20. [PMID: 24291416 DOI: 10.1016/j.pnpbp.2013.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022]
Abstract
Autism spectrum disorders are heritable and behaviorally-defined neurodevelopmental disorders having skewed sex ratio. Serotonin as modulator of behavior and implication of serotonergic dysfunction in ASD etiology corroborates that serotonergic system genes are potential candidates for autism susceptibility. In the current study X-chromosomal gene, MAOA responsible for degradation of serotonin is investigated for possible association with ASD using population-based approach. Study covers analysis of 8 markers in 421 subjects including cases and ethnically-matched controls from West Bengal. MAOA marker, rs6323 and various haplotypes formed between the markers show significant association with the disorder. Stratification on the basis of sex reveals significant genetic effect of rs6323 with low activity T allele posing higher risk in males, but not in females. Haplotypic association results also show differential effect both in males and females. Contrasting linkage disequilibrium pattern between pair of markers involving rs6323 in male cases and controls further supports the sex-bias in genetic association. Bioinformatic analysis shows presence of Y-encoded SRY transcription factor binding sites in the neighborhood of rs1137070. C allele of rs1137070 causes deletion of GATA-2 binding site and GATA-2 is known to interact with SRY. This is the first study highlighting male-specific effect of rs6323 marker and its haplotypes in ASD etiology and it suggests sexual dimorphic effect of MAOA in this disorder. Overall results of this study identify MAOA as a possible ASD susceptibility locus and the differential genetic effect in males and females might contribute to the sex ratio differences and molecular pathology of the disorder.
Collapse
Affiliation(s)
- Deepak Verma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Barnali Chakraborti
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Arijit Karmakar
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Tirthankar Bandyopadhyay
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Asem Surindro Singh
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Swagata Sinha
- Out-Patients Department, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Anindita Chatterjee
- Out-Patients Department, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Saurabh Ghosh
- Human Genetics Unit, Indian Statistical Institute, 203 BT Road, Kolkata, West Bengal, India
| | - Kochupurackal P Mohanakumar
- Lab of Clinical & Experimental Neurosciences, Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Jadavpur, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India
| | - Usha Rajamma
- Manovikas Biomedical Research & Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, EM Bypass, Kolkata, West Bengal, India.
| |
Collapse
|
16
|
Mazur-Kolecka B, Cohen IL, Gonzalez M, Jenkins EC, Kaczmarski W, Brown WT, Flory M, Frackowiak J. Autoantibodies against neuronal progenitors in sera from children with autism. Brain Dev 2014; 36:322-9. [PMID: 23838310 DOI: 10.1016/j.braindev.2013.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/09/2013] [Accepted: 04/30/2013] [Indexed: 12/13/2022]
Abstract
The pathological role of autoantibodies in development of CNS disorders is a new idea with growing interest among neuroscientists. The involvement of autoimmune response in the pathogenesis of autism spectrum disorders (ASD) has been suggested by the presence of multiple brain-specific autoantibodies in children with ASD and in their mothers. The possibility of the effect of autoimmunity on neurogenesis and postnatal brain plasticity has not been determined. The presence of autoantibodies against human neuronal progenitor cells (NPCs) stimulated for neuronal differentiation in culture was tested in sera from children with autism (n=20) and age-matched controls (n=18) by immunoblotting and immunocytochemistry. Immunoreactivity against multiple NPCs proteins of molecular sizes of approximately 55 kDa, 105 kDa, 150 kDa, and 210 kDa in sera from individuals with autism had a higher incidence and was stronger than in control sera which immunoreacted mainly with a 150 kDa protein. The sera from children with autism immunoreacted the strongest with NPCs expressing neuronal markers Tuj1 and doublecortin, but not astrocyte marker GFAP. The epitopes recognized by antibodies from sera were not human-specific because they detected also NPCs in situ in murine hippocampus. The autoimmune reactions against NPCs suggest an impaired tolerance to neural antigens in autism. These autoantibodies may be symptomatic for autism and furthermore, their presence suggests that autoimmunity may affect postnatal neuronal plasticity particularly after impairment of blood-brain barrier. Future studies will determine the diagnostic value of the presence of autoantibodies in autism and the therapeutic value of prevention of autoimmunity in autism.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, USA.
| | | | | | | | - Wojciech Kaczmarski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, USA
| | - W Ted Brown
- Department of Human Genetics, NYS IBRDD, USA
| | - Michael Flory
- Laboratory of Research Design and Analysis, NYS IBRDD, USA
| | - Janusz Frackowiak
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, USA
| |
Collapse
|
17
|
Goldani AAS, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in autism. Front Psychiatry 2014; 5:100. [PMID: 25161627 PMCID: PMC4129499 DOI: 10.3389/fpsyt.2014.00100] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body's metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.
Collapse
Affiliation(s)
| | - Susan R Downs
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Felicia Widjaja
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Brittany Lawton
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Robert L Hendren
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| |
Collapse
|
18
|
Rose'meyer R. A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders. Mol Autism 2013; 4:37. [PMID: 24103554 PMCID: PMC3852299 DOI: 10.1186/2040-2392-4-37] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/13/2013] [Indexed: 01/28/2023] Open
Abstract
The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence. Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension, gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic signalling through elevating SERT production in the developing brain, it is also necessary to investigate the physiological functions of cortisol, its action during gestation and metabolic syndromes.
Collapse
Affiliation(s)
- Roselyn Rose'meyer
- School of Medical Sciences, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| |
Collapse
|
19
|
Toma C, Hervás A, Balmaña N, Salgado M, Maristany M, Vilella E, Aguilera F, Orejuela C, Cuscó I, Gallastegui F, Pérez-Jurado LA, Caballero-Andaluz R, Diego-Otero YD, Guzmán-Alvarez G, Ramos-Quiroga JA, Ribasés M, Bayés M, Cormand B. Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC. World J Biol Psychiatry 2013; 14:516-27. [PMID: 22397633 DOI: 10.3109/15622975.2011.602719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Neurotransmitter systems and neurotrophic factors can be considered strong candidates for autism spectrum disorder (ASD). The serotoninergic and dopaminergic systems are involved in neurotransmission, brain maturation and cortical organization, while neurotrophic factors (NTFs) participate in neurodevelopment, neuronal survival and synapses formation. We aimed to test the contribution of these candidate pathways to autism through a case-control association study of genes selected both for their role in central nervous system functions and for pathophysiological evidences. METHODS The study sample consisted of 326 unrelated autistic patients and 350 gender-matched controls from Spain. We genotyped 369 tagSNPs to perform a case-control association study of 37 candidate genes. RESULTS A significant association was obtained between the DDC gene and autism in the single-marker analysis (rs6592961, P = 0.00047). Haplotype-based analysis pinpointed a four-marker combination in this gene associated with the disorder (rs2329340C-rs2044859T-rs6592961A-rs11761683T, P = 4.988e-05). No significant results were obtained for the remaining genes after applying multiple testing corrections. However, the rs167771 marker in DRD3, associated with ASD in a previous study, displayed a nominal association in our analysis (P = 0.023). CONCLUSIONS Our data suggest that common allelic variants in the DDC gene may be involved in autism susceptibility.
Collapse
Affiliation(s)
- Claudio Toma
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona , Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 2013; 6:19. [PMID: 23935565 PMCID: PMC3733014 DOI: 10.3389/fnmol.2013.00019] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment.
Collapse
Affiliation(s)
- Hyejung Won
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Won Mah
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| |
Collapse
|
21
|
Wasilewska J, Kaczmarski M, Stasiak-Barmuta A, Tobolczyk J, Kowalewska E. Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old. Arch Med Sci 2012; 8:324-31. [PMID: 22662007 PMCID: PMC3361046 DOI: 10.5114/aoms.2012.28561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 05/23/2011] [Accepted: 07/03/2011] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Immune system dysfunction is considered to be one of many medical disorders found in children with autism. The primary objective of the study was to assess if blood tests reflecting humoral immunity (IgA, IgG, IgM, IgE) are useful in identifying children with regressive autism. The secondary objective was to evaluate a part of the cellular arm of immunity (CD4/CD25 Tregs, CD4/CD23 cells) in those children. MATERIAL AND METHODS Using a clinical case-control design, the systemic levels of immunoglobulins and lymphocyte subpopulations analysed by flow cytometry were compared in children aged 3-6 years old with a new diagnosis of regressive autism (n = 24; mean age: 4.25 ±1.70 years; male 23/24) and in sex- and age-matched healthy children (n = 24; aged 4.25 ±2.20 years; male 23/24). RESULTS The humoral immunity profile, described by three binary variables, IgA < 0.97 g/l, IgE > 36 IU/ml, and IgG > 6.3 g/l, with a sensitivity of 79% and a specificity of 83% (p < 0.0001), was able to identify children with autism. The highest risk of autism diagnosis was associated with IgA < 0.97g/l (OR - 23.0; p < 0.001). A higher number of CD19/CD23 was found in children diagnosed with autism than in the control group (36.82 ±6.72% vs. 18.20 ±3.95%; p < 0.02). No correlation between the number of CD23-positive cells and serum IgE levels was observed. CONCLUSIONS A subtle shift of serum immunoglobulins consisting of low-normal IgA and B cell activation expressed by an increase of CD23-positive cells may characterize children with regressive autism aged 3-6 years old.
Collapse
Affiliation(s)
- Jolanta Wasilewska
- Department of Paediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Poland
| | - Maciej Kaczmarski
- Department of Paediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
22
|
Choudhury PR, Lahiri S, Rajamma U. Glutamate mediated signaling in the pathophysiology of autism spectrum disorders. Pharmacol Biochem Behav 2012; 100:841-9. [PMID: 21756930 DOI: 10.1016/j.pbb.2011.06.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/29/2011] [Accepted: 06/19/2011] [Indexed: 02/02/2023]
|
23
|
Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 2011; 668 Suppl 1:S70-80. [PMID: 21810417 DOI: 10.1016/j.ejphar.2011.07.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders, characterized by impairments in social interaction and communication and the presence of limited, repetitive and stereotyped interests and behavior. Bowel symptoms are frequently reported in children with ASD and a potential role for gastrointestinal disturbances in ASD has been suggested. This review focuses on the importance of (allergic) gastrointestinal problems in ASD. We provide an overview of the possible gut-to-brain pathways and discuss opportunities for pharmaceutical and/or nutritional approaches for therapy.
Collapse
|
24
|
A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation 2011; 8:71. [PMID: 21696608 PMCID: PMC3142225 DOI: 10.1186/1742-2094-8-71] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most consistent biological findings in autism is the elevated blood serotonin levels. Immune abnormalities, including autoimmunity with production of brain specific auto-antibodies, are also commonly observed in this disorder. Hyperserotonemia may be one of the contributing factors to autoimmunity in some patients with autism through the reduction of T-helper (Th) 1-type cytokines. We are the first to investigate the possible role of hyperserotonemia in the induction of autoimmunity, as indicated by serum anti-myelin-basic protein (anti-MBP) auto-antibodies, in autism. METHODS Serum levels of serotonin and anti-MBP auto-antibodies were measured, by ELISA, in 50 autistic patients, aged between 5 and 12 years, and 30 healthy-matched children. RESULTS Autistic children had significantly higher serum levels of serotonin and anti-MBP auto-antibodies than healthy children (P < 0.001 and P < 0.001, respectively). Increased serum levels of serotonin and anti-MBP auto-antibodies were found in 92% and 80%, respectively of autistic patients. Patients with severe autism had significantly higher serum serotonin levels than children with mild to moderate autism (P < 0.001). Serum serotonin levels had no significant correlations with serum levels of anti-MBP auto-antibodies in autistic patients (P = 0.39). CONCLUSIONS Hyperserotonemia may not be one of the contributing factors to the increased frequency of serum anti-MBP auto-antibodies in some autistic children. These data should be treated with caution until further investigations are performed. However, inclusion of serum serotonin levels as a correlate may be useful in other future immune studies in autism to help unravel the long-standing mystery of hyperserotonemia and its possible role in the pathophysiology of this disorder.
Collapse
|
25
|
Kinney HC, Broadbelt KG, Haynes RL, Rognum IJ, Paterson DS. The serotonergic anatomy of the developing human medulla oblongata: implications for pediatric disorders of homeostasis. J Chem Neuroanat 2011; 41:182-99. [PMID: 21640183 DOI: 10.1016/j.jchemneu.2011.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/25/2011] [Accepted: 05/06/2011] [Indexed: 12/18/2022]
Abstract
The caudal serotonergic (5-HT) system is a critical component of a medullary "homeostatic network" that regulates protective responses to metabolic stressors such as hypoxia, hypercapnia, and hyperthermia. We define anatomically the caudal 5-HT system in the human medulla as 5-HT neuronal cell bodies located in the raphé (raphé obscurus, raphé magnus, and raphé pallidus), extra-raphé (gigantocellularis, paragigantocellularis lateralis, intermediate reticular zone, lateral reticular nucleus, and nucleus subtrigeminalis), and ventral surface (arcuate nucleus). These 5-HT neurons are adjacent to all of the respiratory- and autonomic-related nuclei in the medulla where they are positioned to modulate directly the responses of these effector nuclei. In the following review, we highlight the topography and development of the caudal 5-HT system in the human fetus and infant, and its inter-relationships with nicotinic, GABAergic, and cytokine receptors. We also summarize pediatric disorders in early life which we term "developmental serotonopathies" of the caudal (as well as rostral) 5-HT domain and which are associated with homeostatic imbalances. The delineation of the development and organization of the human caudal 5-HT system provides the critical foundation for the neuropathologic elucidation of its disorders directly in the human brain.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, United States
| | | | | | | | | |
Collapse
|
26
|
Abstract
Autism is dramatically increasing in incidence and is now considered an epidemic. There are no objective means to diagnose the disorder. Diagnosis is made subjectively, based on the perceived behavior of the subject. This review presents an approach toward development of an objective measure of autism. Covering the literature from 1943 to the present in the PubMed and Ovid Medline databases, this review summarizes evidence of hormones, metabolites, amino acids, and other biomarkers present in significantly different quantities in autistic subjects compared to age- and sex-matched controls. These differences can be measured in the gastrointestinal, immunologic, neurologic, and toxicologic systems of the body, with some biomarkers showing ubiquitous application. In addition, there are unifying concepts, i.e., increased vulnerability to oxidative stress, immune glutamatergic dysfunction, and pineal gland malfunction. The variances of the biomarkers from the norm present the opportunity to create biomarker arrays that when properly developed and analyzed could result in an objective diagnosis with a ranking of the severity of autism for each subject. The contribution of each biomarker to the overall diagnosis could be calculated, thus providing a profile pattern unique to the individual. This profile could consequently provide information for therapeutic interventions on an individual basis.
Collapse
|
27
|
Mechanistic biomarkers for autism treatment. Med Hypotheses 2009; 73:950-4. [PMID: 19619951 DOI: 10.1016/j.mehy.2009.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/13/2009] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Autism is a syndrome with a number of etiologies with differing mechanisms that lead to abnormal development. This review highlights the need to identify autism subgroups as they each might require unique approaches for prevention or treatment. METHODS Targeting treatments to specific mechanisms and utilizing biomarkers can more rapidly advance our understanding of how to classify and treat autism subgroups based on translational mechanisms. We illustrate this approach using mechanisms that may influence the course of autism and provide rationale for selected biomarkers that could guide treatments targeted anywhere from DNA to symptom expression. CONCLUSIONS The use of potential biomarkers that point to specific mechanisms of disordered neurodevelopment will help identify meaningful subtypes of autism and will help tailor treatment or prevention strategies for each mechanism rather than solely to a symptom category.
Collapse
|
28
|
Lothe A, Boni C, Costes N, Gorwood P, Bouvard S, Le Bars D, Lavenne F, Ryvlin P. Association between triallelic polymorphism of the serotonin transporter and [18F]MPPF binding potential at 5-HT1A receptors in healthy subjects. Neuroimage 2009; 47:482-92. [PMID: 19409499 DOI: 10.1016/j.neuroimage.2009.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/11/2009] [Accepted: 04/15/2009] [Indexed: 12/30/2022] Open
Abstract
Previous [(11)C]WAY100-635 PET studies have demonstrated that the short (S) and long (L) alleles of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) were associated with distinct patterns of 5-HT(1A) receptor distribution in human. However, these studies reported discordant findings and did not take into account the recent description of two functional variants of the L allele (L(A)/L(G)). To further explore this issue, we investigated the triallelic functional polymorphism of the 5-HTTLPR in 38 healthy volunteers who underwent a [(18)F]MPPF PET study of 5-HT1A receptors. We used a simplified reference tissue model to generate parametric images of [(18)F]MPPF binding potential (BP(ND)), and compared these data among the different genotypes using statistical parametric mapping and region of interest of the raphe nuclei. Homozygote carriers of the S allele demonstrated greater [(18)F]MPPF BP(ND) than carriers of the L(A) allele, but this association was only found in women. Differences in [(18)F]MPPF BP(ND) between women with and without L(A) allele were observed over large clusters encompassing the right and left temporal lobes, cingulate and perisylvian regions, as well as the right precuneus and frontal dorso-lateral cortex, and the left orbitofrontal cortex. In contrast, no difference was found between groups in the raphe nuclei. The greater [(18)F]MPPF BP(ND) observed in women homozygote carriers of the S allele could either reflect a greater 5-HT1A receptor density or a lower extracellular concentration of 5-HT. Our data suggest that any future PET studies of 5-HT1A receptors should incorporate the 5-HTTLPR polymorphism status of the population studied.
Collapse
|
29
|
Stefanatou A. Use of drawings in children with pervasive developmental disorder during hospitalization: a developmental perspective. J Child Health Care 2008; 12:268-83. [PMID: 19052186 DOI: 10.1177/1367493508096203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The level and nature of emotional upheaval and relationship to developmental stage was studied in children with pervasive developmental disorder (PDD) hospitalized for head injury. The sample consisted of 25 hospitalized children aged 5-12 years. Children were asked to make the drawing of a ;person in hospital'. The drawings were evaluated by Koppitz's emotional indicators. Punishment and persecution were the main cognitive constructs of children in order to explain hospitalization.
Collapse
|
30
|
Herrick KA, Rossen LM, Nielsen SJ, Branum AM, Ogden CL. Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 2008. [PMID: 26391940 DOI: 10.1542/peds] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Autistic spectrum disorders are childhood neurodevelopmental disorders characterized by social and communicative impairment and repetitive and stereotypical behavior. Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity that promotes monocyte/macrophage-activation responses by increasing the expression of Toll-like receptors and inhibiting activation-induced apoptosis. On the basis of results of previous genetic linkage studies and reported altered innate immune response in autism spectrum disorder, we hypothesized that MIF could represent a candidate gene for autism spectrum disorder or its diagnostic components. METHODS Genetic association between autism spectrum disorder and MIF was investigated in 2 independent sets of families of probands with autism spectrum disorder, from the United States (527 participants from 152 families) and Holland (532 participants from 183 families). Probands and their siblings, when available, were evaluated with clinical instruments used for autism spectrum disorder diagnoses. Genotyping was performed for 2 polymorphisms in the promoter region of the MIF gene in both samples sequentially. In addition, MIF plasma analyses were conducted in a subset of Dutch patients from whom plasma was available. RESULTS There were genetic associations between known functional polymorphisms in the promoter for MIF and autism spectrum disorder-related behaviors. Also, probands with autism spectrum disorder exhibited higher circulating MIF levels than did their unaffected siblings, and plasma MIF concentrations correlated with the severity of multiple autism spectrum disorder symptoms. CONCLUSIONS These results identify MIF as a possible susceptibility gene for autism spectrum disorder. Additional research is warranted on the precise relationship between MIF and the behavioral components of autism spectrum disorder, the mechanism by which MIF contributes to autism spectrum disorder pathogenesis, and the clinical use of MIF genotyping.
Collapse
Affiliation(s)
| | - Lauren M Rossen
- Infant, Child, and Women's Health Statistics Branch, Office of Analysis and Epidemiology, and
| | | | - Amy M Branum
- Reproductive Statistics Branch, Division of Vital Statistics, National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, Maryland
| | | |
Collapse
|
31
|
Grigorenko EL, Han SS, Yrigollen CM, Leng L, McDonald C, Mizue Y, Anderson GM, Mulder EJ, de Bildt A, Minderaa RB, Volkmar FR, Chang JT, Bucala R. Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 2008; 122:e438-45. [PMID: 18676531 PMCID: PMC3816765 DOI: 10.1542/peds.2007-3604] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Autistic spectrum disorders are childhood neurodevelopmental disorders characterized by social and communicative impairment and repetitive and stereotypical behavior. Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity that promotes monocyte/macrophage-activation responses by increasing the expression of Toll-like receptors and inhibiting activation-induced apoptosis. On the basis of results of previous genetic linkage studies and reported altered innate immune response in autism spectrum disorder, we hypothesized that MIF could represent a candidate gene for autism spectrum disorder or its diagnostic components. METHODS Genetic association between autism spectrum disorder and MIF was investigated in 2 independent sets of families of probands with autism spectrum disorder, from the United States (527 participants from 152 families) and Holland (532 participants from 183 families). Probands and their siblings, when available, were evaluated with clinical instruments used for autism spectrum disorder diagnoses. Genotyping was performed for 2 polymorphisms in the promoter region of the MIF gene in both samples sequentially. In addition, MIF plasma analyses were conducted in a subset of Dutch patients from whom plasma was available. RESULTS There were genetic associations between known functional polymorphisms in the promoter for MIF and autism spectrum disorder-related behaviors. Also, probands with autism spectrum disorder exhibited higher circulating MIF levels than did their unaffected siblings, and plasma MIF concentrations correlated with the severity of multiple autism spectrum disorder symptoms. CONCLUSIONS These results identify MIF as a possible susceptibility gene for autism spectrum disorder. Additional research is warranted on the precise relationship between MIF and the behavioral components of autism spectrum disorder, the mechanism by which MIF contributes to autism spectrum disorder pathogenesis, and the clinical use of MIF genotyping.
Collapse
Affiliation(s)
- Elena L. Grigorenko
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA,Department of Psychology, Yale University, 2 Hillhouse Ave, New Haven, CT 06520, USA,Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Department of Psychology, Moscow State University, 11/5 Mokhovaia St, Moscow 125009, Russia,To whom correspondence should be addressed: Telephone: 203-737-1453, 203-737-2316, Fax: 203-785-7053, 203-785-3002, ,
| | - Summer S. Han
- Department of Psychology, Moscow State University, 11/5 Mokhovaia St, Moscow 125009, Russia
| | - Carolyn M. Yrigollen
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA
| | - Lin Leng
- Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Departments of Internal Medicine and Pathology, Yale University, 300 Cedar St, New Haven, CT 06520
| | - Courtney McDonald
- Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Departments of Internal Medicine and Pathology, Yale University, 300 Cedar St, New Haven, CT 06520
| | - Yuka Mizue
- Sapporo Immuno Diagnostic Laboratory, 12-20, Shinkawa 2-2, Kita-ku, Sapporo 001-0922, Japan
| | - George M. Anderson
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA
| | - Erik J. Mulder
- Accare/University Medical Center Groningen, University Center for Child and Adolescent Psychiatry, P.O. Box 660, 9700 AR Groningen, the Netherlands
| | - Annelies de Bildt
- Accare/University Medical Center Groningen, University Center for Child and Adolescent Psychiatry, P.O. Box 660, 9700 AR Groningen, the Netherlands
| | - Ruud B. Minderaa
- Accare/University Medical Center Groningen, University Center for Child and Adolescent Psychiatry, P.O. Box 660, 9700 AR Groningen, the Netherlands
| | - Fred R. Volkmar
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA,Department of Psychology, Yale University, 2 Hillhouse Ave, New Haven, CT 06520, USA
| | - Joseph T. Chang
- Department of Psychology, Moscow State University, 11/5 Mokhovaia St, Moscow 125009, Russia
| | - Richard Bucala
- Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Departments of Internal Medicine and Pathology, Yale University, 300 Cedar St, New Haven, CT 06520,To whom correspondence should be addressed: Telephone: 203-737-1453, 203-737-2316, Fax: 203-785-7053, 203-785-3002, ,
| |
Collapse
|
32
|
Thompson BL, Stanwood GD. Pleiotropic effects of neurotransmission during development: modulators of modularity. J Autism Dev Disord 2008; 39:260-8. [PMID: 18648918 DOI: 10.1007/s10803-008-0624-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/04/2008] [Indexed: 11/28/2022]
Abstract
The formation and function of the mammalian cerebral cortex relies on the complex interplay of a variety of genetic and environmental factors through protracted periods of gestational and postnatal development. Biogenic amine systems are important neuromodulators, both in the adult nervous system, and during critical epochs of brain development. Abnormalities in developmental programming likely contribute to developmental delays and multiple neurological and psychiatric disorders, often with symptom onset much later than the actual induction of pathology. We review several genetic and pharmacological models of dopamine, norepinephrine and serotonin modulation during development, each of which produces permanent changes in cerebral cortical structure and function. These models clearly illustrate the ability of these neurotransmitters to function beyond their classic roles and show their involvement in the development and modulation of fine brain circuitry that is sensitive to numerous effectors. Furthermore, these studies demonstrate the need to consider not only gene by environment interactions, but also gene by environment by developmental time interactions.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
33
|
McNamara IM, Borella AW, Bialowas LA, Whitaker-Azmitia PM. Further studies in the developmental hyperserotonemia model (DHS) of autism: Social, behavioral and peptide changes. Brain Res 2008; 1189:203-14. [DOI: 10.1016/j.brainres.2007.10.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/19/2023]
|
34
|
|
35
|
Abstract
Improving clinical tests are allowing us to more precisely classify autism spectrum disorders and diagnose them at earlier ages. This raises the possibility of earlier and potentially more effective therapeutic interventions. To fully capitalize on this opportunity, however, will require better understanding of the neurobiological changes underlying this devastating group of developmental disorders. It is becoming clear that the normal trajectory of neurodevelopment is altered in autism, with aberrations in brain growth, neuronal patterning and cortical connectivity. Changes to the structure and function of synapses and dendrites have also been strongly implicated in the pathology of autism by morphological, genetic and animal modeling studies. Finally, environmental factors are likely to interact with the underlying genetic profile, and foster the clinical heterogeneity seen in autism spectrum disorders. In this review we attempt to link the molecular pathways altered in autism to the neurodevelopmental and clinical changes that characterize the disease. We focus on signaling molecules such as neurotrophin, Reelin, PTEN and hepatocyte growth factor, neurotransmitters such as serotonin and glutamate, and synaptic proteins such as neurexin, SHANK and neuroligin. We also discuss evidence implicating oxidative stress, neuroglial activation and neuroimmunity in autism.
Collapse
Affiliation(s)
- Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287. USA.
| | | |
Collapse
|
36
|
Abstract
The treatment of pervasive developmental disorders (PDDs) is a challenging task, which should include behavioral therapy modifications as well as pharmacologic therapy. There has been a lack of data on using medications in children with PDDs until recent years. Within the last 10 years, an increase in clinical research has attempted to provide efficacy and safety data to support the use of medications in children with PDDs. Double-blinded and open-label research of atypical antipsychotics has been of particular focus. Evidence shows that atypical antipsychotics (AAs) may be useful in treating certain symptoms associated with PDDs, such as aggression, irritability, and self-injurious behavior. This article reviews the literature regarding the use of AAs in children with PDDs. Of the AAs, risperidone has the largest amount of evidence with five published double-blinded, placebo-controlled trials and nine open-label trials. These risperidone trials have consistently shown improvements in aggression, irritability, self-injurious behavior, temper tantrums, and quickly changing moods associated with autistic disorder and other PDDs. Data for the other AAs are limited, but ziprasidone and aripiprazole appear to be promising treatment options. Based on clinical trials, olanzapine and quetiapine have shown minimal clinical benefit and a high incidence of weight gain and sedation. It should be noted that all AAs do have a risk of metabolic syndrome, and patients should be monitored appropriately while receiving these medications. Overall, AAs can be beneficial in alleviating behavioral symptoms, and should be considered an appropriate therapeutic option, as part of a comprehensive treatment strategy, for children with PDD.
Collapse
Affiliation(s)
- Benjamin Chavez
- Rutgers, State University of New Jersey, Piscataway, New Jersey, USA.
| | | | | | | |
Collapse
|
37
|
Kemperman RFJ, Muskiet FD, Boutier AI, Kema IP, Muskiet FAJ. Brief report: normal intestinal permeability at elevated platelet serotonin levels in a subgroup of children with pervasive developmental disorders in Curaçao (The Netherlands antilles). J Autism Dev Disord 2007; 38:401-6. [PMID: 17661166 PMCID: PMC2226079 DOI: 10.1007/s10803-007-0399-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/10/2007] [Indexed: 11/23/2022]
Abstract
This study investigated the relationship between platelet (PLT) serotonin (5-HT) and intestinal permeability in children with pervasive developmental disorders (PDD). Differential sugar absorption and PLT 5-HT were determined in 23 children with PDD. PLT 5-HT (2.0–7.1 nmol/109 PLT) was elevated in 4/23 patients. None exhibited elevated intestinal permeability (lactulose/mannitol ratio: 0.008–0.035 mol/mol). PLT 5-HT did not correlate with intestinal permeability or GI tract complaints. PLT 5-HT correlated with 24 h urinary 5-hydroxyindoleacetic acid (5-HIAA; p = .034). Also urinary 5-HIAA and urinary 5-HT were interrelated (p = .005). A link between hyperserotonemia and increased intestinal permeability remained unsupported. Increased PLT 5-HT in PDD is likely to derive from increased PLT exposure to 5-HT. Longitudinal studies, showing the (in)consistency of abnormal intestinal permeability and PLT 5-HT, may resolve present discrepancies in the literature.
Collapse
Affiliation(s)
- Ramses F J Kemperman
- Department of Pathology and Laboratory Medicine, CMC-V 1st Floor, Room Y3.181, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|