1
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
2
|
Maier S, Nickel K, Lange T, Oeltzschner G, Dacko M, Endres D, Runge K, Schumann A, Domschke K, Rousos M, Tebartz van Elst L. Increased cerebral lactate levels in adults with autism spectrum disorders compared to non-autistic controls: a magnetic resonance spectroscopy study. Mol Autism 2023; 14:44. [PMID: 37978557 PMCID: PMC10655272 DOI: 10.1186/s13229-023-00577-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs). MATERIALS AND METHODS Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated. RESULTS Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels. LIMITATIONS A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality. CONCLUSION This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.
Collapse
Affiliation(s)
- Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany.
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Thomas Lange
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael Dacko
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Anke Schumann
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Michalis Rousos
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| |
Collapse
|
3
|
Durankuş F, Budak K, Albayrak Y, Sever İH, Özkul B, Uyanıkgil Y, Albayrak N, Erbas O. Atorvastatin Improves the Propionic Acid-Induced Autism in Rats: The Roles of Sphingosine-1-Phosphate and Anti-inflammatory Action. Cureus 2023; 15:e36870. [PMID: 37123681 PMCID: PMC10147056 DOI: 10.7759/cureus.36870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose The aim of this study is to investigate the benefits of atorvastatin on the propionic acid-induced autism model via increasing sphingosine-1-phosphate and anti-inflammatory actions with imaging and brain tissue investigations. Materials and methods Twenty-five mg/kg/day/rat of propionic acid (PPA) was administered intraperitoneally to 20 male Wistar rats, and 10 male Wistar rats were fed orally. Study groups were designed as follows: Group 1: Control Group (orally fed control, n=10); Group 2 (PPA+saline, n=10); Group 3 (PPA+Atorvastatin, n=10). The brain biochemical and histopathology assessments and magnetic resonance (MR) imaging were conducted across groups in order to compare them. Results The PPA+Atorvastatin group was found to have significantly lower levels of brain malondialdehyde, IL-2 level, IL-17, tumor necrosis factor-alpha (TNF-α), and lactate compared to the PPA+saline group. The PPA+Atorvastatin group had higher levels of nerve growth factor and nuclear factor erythroid 2-related factor 2 (NRF-2) and sphingosine-1-phosphate. In histopathology assessments, the PPA+Atorvastatin group was found to have significantly higher neuronal counts of CA1 and CA2 in the hippocampus, and Purkinje cells in the cerebellum. Conclusions Current findings suggest that atorvastatin increases sphingosine-1-phosphate levels and decreases inflammatory actions which characterize the autism rodent model implemented in this study. These preliminary results have to be confirmed by further experimental and clinical studies.
Collapse
|
4
|
Özkul B, Urfalı FE, Sever İH, Bozkurt MF, Söğüt İ, Elgörmüş ÇS, Erdogan MA, Erbaş O. Demonstration of Ameliorating Effect of Vardenafil Through Its Anti-Inflammatory and Neuroprotective Properties in Autism Spectrum Disorder Induced by Propionic Acid on Rat Model. Int J Neurosci 2022; 132:1150-1164. [PMID: 35584252 DOI: 10.1080/00207454.2022.2079507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. In this study, we aimed to determine the ameliorating effects of vardenafil in the ASD rat model induced by propionic acid (PPA) in terms of neurobehavioral changes and also support these effects with histopathological changes, brain biochemical analysis and magnetic resonance spectroscopy (MRS) findings.Materials and Methods: Twenty-one male rats were randomly assigned into 3 groups. Group 1 (control, 7 rats) did not receive treatment. Rats in groups 2 and 3 were given PPA at the dose of 250 mg/kg/day intraperitoneally for 5 days. After PPA administration, animals in group 2 (PPAS, 7 rats) were given saline and animals in group 3 (PPAV, 7 rats) were given vardenafil. Behavioral tests were performed between the 20th and 24th days of the study. The rats were taken for MRS on the 25th day. At the end of the study, brain levels of interleukin-2 (IL-2), IL-17, tumor necrosis factor-α, nerve growth factor, cGMP and lactate levels were measured. In the cerebellum and the CA1 and CA3 regions of the hippocampus, counts of neurons and Purkinje cells and glial fibrillary acidic protein (associated with gliosis) were evaluated histologically.Results: Three chamber sociability and passive avoiding test, histopathological results, lactate levels derived from MRS, and biochemical biomarkers revealed significant differences among the PPAV and PPAS groups.Conclusion: We concluded that vardenafil improves memory and social behaviors and prevent loss of neuronal and Purkinje cell through its anti-inflammatory and neuroprotective effect.
Collapse
Affiliation(s)
- Bahattin Özkul
- Faculty of Medicine, Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Furkan Ertürk Urfalı
- Department of Radiology, Faculty of Medicine, Kutahya Saglık Bilimleri, Kutahya, Turkey
| | - İbrahim Halil Sever
- Department of Radiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary, Afyon Kocatepe University, Afyon, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Çağrı Serdar Elgörmüş
- Department of Emergency, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
5
|
Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther 2018; 22:571-593. [PMID: 30039193 PMCID: PMC6132446 DOI: 10.1007/s40291-018-0352-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) affects ~ 2% of children in the United States. The etiology of ASD likely involves environmental factors triggering physiological abnormalities in genetically sensitive individuals. One of these major physiological abnormalities is mitochondrial dysfunction, which may affect a significant subset of children with ASD. Here we systematically review the literature on human studies of mitochondrial dysfunction related to ASD. Clinical aspects of mitochondrial dysfunction in ASD include unusual neurodevelopmental regression, especially if triggered by an inflammatory event, gastrointestinal symptoms, seizures, motor delays, fatigue and lethargy. Traditional biomarkers of mitochondrial disease are widely reported to be abnormal in ASD, but appear non-specific. Newer biomarkers include buccal cell enzymology, biomarkers of fatty acid metabolism, non-mitochondrial enzyme function, apoptosis markers and mitochondrial antibodies. Many genetic abnormalities are associated with mitochondrial dysfunction in ASD, including chromosomal abnormalities, mitochondrial DNA mutations and large-scale deletions, and mutations in both mitochondrial and non-mitochondrial nuclear genes. Mitochondrial dysfunction has been described in immune and buccal cells, fibroblasts, muscle and gastrointestinal tissue and the brains of individuals with ASD. Several environmental factors, including toxicants, microbiome metabolites and an oxidized microenvironment are shown to modulate mitochondrial function in ASD tissues. Investigations of treatments for mitochondrial dysfunction in ASD are promising but preliminary. The etiology of mitochondrial dysfunction and how to define it in ASD is currently unclear. However, preliminary evidence suggests that the mitochondria may be a fruitful target for treatment and prevention of ASD. Further research is needed to better understand the role of mitochondrial dysfunction in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Dmitriy M Niyazov
- Section of Medical Genetics, Ochsner Health System, New Orleans, LA, USA
| | | | - Michael Goldenthal
- Department of Pediatrics, Neurology Section, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stephen G Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, USA.
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Bednarz HM, Kana RK. Advances, challenges, and promises in pediatric neuroimaging of neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 90:50-69. [PMID: 29608989 DOI: 10.1016/j.neubiorev.2018.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Recent years have witnessed the proliferation of neuroimaging studies of neurodevelopmental disorders (NDDs), particularly of children with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Tourette's syndrome (TS). Neuroimaging offers immense potential in understanding the biology of these disorders, and how it relates to clinical symptoms. Neuroimaging techniques, in the long run, may help identify neurobiological markers to assist clinical diagnosis and treatment. However, methodological challenges have affected the progress of clinical neuroimaging. This paper reviews the methodological challenges involved in imaging children with NDDs. Specific topics include correcting for head motion, normalization using pediatric brain templates, accounting for psychotropic medication use, delineating complex developmental trajectories, and overcoming smaller sample sizes. The potential of neuroimaging-based biomarkers and the utility of implementing neuroimaging in a clinical setting are also discussed. Data-sharing approaches, technological advances, and an increase in the number of longitudinal, prospective studies are recommended as future directions. Significant advances have been made already, and future decades will continue to see innovative progress in neuroimaging research endeavors of NDDs.
Collapse
Affiliation(s)
- Haley M Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Sex differences in brain metabolite concentrations in healthy children - proton magnetic resonance spectroscopy study ( 1HMRS). Pol J Radiol 2018; 83:e24-e31. [PMID: 30038675 PMCID: PMC6047095 DOI: 10.5114/pjr.2018.74536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 11/17/2022] Open
Abstract
Purpose The aim of this 1HMRS study was to define sex-related differences in metabolic spectrum between healthy children. Forty-nine girls and boys aged 6-15 years were examined. Material and methods Volume of interest was located in seven brain regions: frontal lobes, basal ganglia, hippocampi, and cerebellum. Results Statistical analysis of the results showed significantly higher (p < 0.05) myo-inositol concentrations relative to the total concentrations in the boys than the girls, as well as higher absolute N-acetyl aspartate concentrations in the left frontal lobes in girls. No other significant differences were shown, except for trends in differences. Conclusions In clinical practice the diagnostic process first of all focuses on assessing concentrations of metabolites to relative cerebellum concentration. Thus, the findings of the present study allow the conclusion that when analysing the results of 1HMRS studies in children it is not necessary to take into account the child's gender.
Collapse
|
8
|
Hollis F, Kanellopoulos AK, Bagni C. Mitochondrial dysfunction in Autism Spectrum Disorder: clinical features and perspectives. Curr Opin Neurobiol 2017. [PMID: 28628841 DOI: 10.1016/j.conb.2017.05.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism Spectrum Disorder (ASD) is a prototypic pervasive developmental disorder characterized by social interaction, and communication deficits, repetitive, stereotypic patterns of behavior, and impairments in language and development. Clinical studies have identified mitochondrial disturbances at the levels of DNA, activity, complexes, oxidative stress, and metabolites in blood and urine of ASD patients. However, these observations from postmortem brains or peripheral tissues do not provide a direct link between autism and mitochondria. The synaptic abnormality of autistic patients has not been investigated yet. Here we review the findings of clinical studies investigating mitochondrial involvement in ASD patients, focusing particularly on the brain and the limitations and future directions needed in order to fully understand the role of mitochondria in ASD pathology.
Collapse
Affiliation(s)
- Fiona Hollis
- University of Lausanne, Department of Fundamental Neuroscience, Lausanne, Switzerland
| | | | - Claudia Bagni
- University of Lausanne, Department of Fundamental Neuroscience, Lausanne, Switzerland; University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy.
| |
Collapse
|
9
|
Basic Principles and Clinical Applications of Magnetic Resonance Spectroscopy in Neuroradiology. J Comput Assist Tomogr 2016; 40:1-13. [PMID: 26484954 DOI: 10.1097/rct.0000000000000322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance spectroscopy is a powerful tool to assist daily clinical diagnostics. This review is intended to give an overview on basic principles of the technology, discuss some of its technical aspects, and present typical applications in daily clinical routine in neuroradiology.
Collapse
|
10
|
Lindberg D, Shan D, Ayers-Ringler J, Oliveros A, Benitez J, Prieto M, McCullumsmith R, Choi DS. Purinergic signaling and energy homeostasis in psychiatric disorders. Curr Mol Med 2016; 15:275-95. [PMID: 25950756 DOI: 10.2174/1566524015666150330163724] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/22/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Purinergic signaling regulates numerous vital biological processes in the central nervous system (CNS). The two principle purines, ATP and adenosine act as excitatory and inhibitory neurotransmitters, respectively. Compared to other classical neurotransmitters, the role of purinergic signaling in psychiatric disorders is not well understood or appreciated. Because ATP exerts its main effect on energy homeostasis, neuronal function of ATP has been underestimated. Similarly, adenosine is primarily appreciated as a precursor of nucleotide synthesis during active cell growth and division. However, recent findings suggest that purinergic signaling may explain how neuronal activity is associated neuronal energy charge and energy homeostasis, especially in mental disorders. In this review, we provide an overview of the synaptic function of mitochondria and purines in neuromodulation, synaptic plasticity, and neuron-glia interactions. We summarize how mitochondrial and purinergic dysfunction contribute to mental illnesses such as schizophrenia, bipolar disorder, autism spectrum disorder (ASD), depression, and addiction. Finally, we discuss future implications regarding the pharmacological targeting of mitochondrial and purinergic function for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - D-S Choi
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Magnetic resonance spectroscopy of the ischemic brain under lithium treatment. Link to mitochondrial disorders under stroke. Chem Biol Interact 2015; 237:175-82. [PMID: 26079057 DOI: 10.1016/j.cbi.2015.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that mitochondria are one of the main factors in the pathogenesis in different organs including brain. The pathogenesis after brain damage is caused not only by the change in bioenergetics, but also involves impairment of alternative functions of mitochondria, particularly those related to the control of cell death. In this study we evaluated partial metabolic pathways under the simulation of a stroke by using the occlusion of the middle cerebral artery in rats. The analysis shows that the induced switch to a non-oxidative energy metabolism (glycolysis) due to the block of tissue oxygen supply does not ensure the adequate supply of the tissue with ATP. Moreover, the well-known acidification of the ischemic tissue is not associated with the so-called traditionally and incorrectly considered "lactic acidosis" (the generation of lactate from glucose by itself does not lead to excessive generation of protons), but occurs because of the consumption of tissue ATP under its reduced resynthesis. Incubation of mitochondria isolated from normal rat brain at neutral and slightly acidic pH, mimicking the intracellular pH of normal and ischemic tissues correspondingly, revealed serious changes in mitochondrial bioenergetics, partially reflected in the magnitude of respiratory control and the basal and maximally stimulated respiration rates. Measurement of available metabolites by (1)H MR spectra of normal and ischemia-damaged brains showed a significant increase in lactate and myo-inositol and a moderate decrease in N-acetylaspartate 24h after reperfusion. Remarkably, the administration of lithium chloride in the reperfusion phase normalized the levels of metabolites. Moreover, the introduction of lithium salts (chloride or succinate) in the bloodstream, restored after ischemia, reduced both the size of the ischemia-induced brain damage and the degree of brain swelling. Besides, post-ischemic introduction of lithium salts largely restored the neurological status of the animal.
Collapse
|
12
|
Lainhart JE. Brain imaging research in autism spectrum disorders: in search of neuropathology and health across the lifespan. Curr Opin Psychiatry 2015; 28:76-82. [PMID: 25602243 PMCID: PMC4465432 DOI: 10.1097/yco.0000000000000130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Advances in brain imaging research in autism spectrum disorders (ASD) are rapidly occurring, and the amount of neuroimaging research has dramatically increased over the past 5 years. In this review, advances during the past 12 months and longitudinal studies are highlighted. RECENT FINDINGS Cross-sectional neuroimaging research provides evidence that the neural underpinnings of the behavioral signs of ASD involve not only dysfunctional integration of information across distributed brain networks but also basic dysfunction in primary cortices.Longitudinal studies of ASD show abnormally enlarged brain volumes and increased rates of brain growth during early childhood in only a small minority of ASD children. There is evidence of disordered development of white matter microstructure and amygdala growth, and at 2 years of age, network inefficiencies in posterior cerebral regions.From older childhood into adulthood, atypical age-variant and age-invariant changes in the trajectories of total and regional brain volumes and cortical thickness are apparent at the group level. SUMMARY There is evidence of abnormalities in posterior lobes and posterior brain networks during the first 2 years of life in ASD and, even in older children and adults, dysfunction in primary cortical areas.
Collapse
Affiliation(s)
- Janet E. Lainhart
- Waisman Laboratory for Brain Imaging and Behavior, and Autism & Developmental Disorders Clinic, Waisman Center, and Department of Psychiatry, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
13
|
Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry 2014; 19:1314-25. [PMID: 25048006 DOI: 10.1038/mp.2014.62] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/28/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
Abstract
Over the last few years, awareness of autism spectrum disorder (ASD) in adults has increased. The precise etiology of ASD is still unresolved. Animal research, genetic and postmortem studies suggest that the glutamate (Glu) system has an important role, possibly related to a cybernetic imbalance between neuronal excitation and inhibition. To clarify the possible disruption of Glu metabolism in adults with high-functioning autism, we performed a magnetic resonance spectroscopy (MRS) study investigating the anterior cingulate cortex (ACC) and the cerebellum in adults with high-functioning ASD. Twenty-nine adult patients with high-functioning ASD and 29 carefully matched healthy volunteers underwent MRS scanning of the pregenual ACC and the left cerebellar hemisphere. Metabolic data were compared between groups and were correlated with psychometric measures of autistic features. We found a significant decrease in the cingulate N-acetyl-aspartate (NAA) and the combined Glu and glutamine (Glx) signals in adults with ASD, whereas we did not find other metabolic abnormalities in the ACC or the cerebellum. The Glx signal correlated significantly with psychometric measures of autism, particularly with communication deficits. Our data support the hypothesis that there is a link between disturbances of the cingulate NAA and Glx metabolism, and autism. The findings are discussed in the context of the hypothesis of excitatory/inhibitory imbalance in autism. Further research should clarify the specificity and dynamics of these findings regarding other neuropsychiatric disorders and other brain areas.
Collapse
|
14
|
Goh S, Dong Z, Zhang Y, DiMauro S, Peterson BS. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry 2014; 71:665-71. [PMID: 24718932 PMCID: PMC4239991 DOI: 10.1001/jamapsychiatry.2014.179] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Impaired mitochondrial function impacts many biological processes that depend heavily on energy and metabolism and can lead to a wide range of neurodevelopmental disorders, including autism spectrum disorder (ASD). Although evidence that mitochondrial dysfunction is a biological subtype of ASD has grown in recent years, no study, to our knowledge, has demonstrated evidence of mitochondrial dysfunction in brain tissue in vivo in a large, well-defined sample of individuals with ASD. OBJECTIVES To assess brain lactate in individuals with ASD and typically developing controls using high-resolution, multiplanar spectroscopic imaging; to map the distribution of lactate in the brains of individuals with ASD; and to assess correlations of elevated brain lactate with age, autism subtype, and intellectual ability. DESIGN, SETTING, AND PARTICIPANTS Case-control study at Columbia University Medical Center and New York State Psychiatric Institute involving 75 children and adults with ASD and 96 age- and sex-matched, typically developing controls. MAIN OUTCOMES AND MEASURES Lactate doublets (present or absent) on brain magnetic resonance spectroscopic imaging. RESULTS Lactate doublets were present at a significantly higher rate in participants with ASD (13%) than controls (1%) (P = .001). In the ASD group, the presence of lactate doublets correlated significantly with age (P = .004) and was detected more often in adults (20%) than in children (6%), though it did not correlate with sex, ASD subtype, intellectual ability, or the Autism Diagnostic Observation Schedule total score or subscores. In those with ASD, lactate was detected most frequently within the cingulate gyrus but it was also present in the subcortical gray matter nuclei, corpus callosum, superior temporal gyrus, and pre- and postcentral gyri. CONCLUSIONS AND RELEVANCE In vivo brain findings provide evidence for a possible neurobiological subtype of mitochondrial dysfunction in ASD.
Collapse
Affiliation(s)
- Suzanne Goh
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 74, New York, NY 10032,New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 74, New York, NY 10032,New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032
| | - Yudong Zhang
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 74, New York, NY 10032,New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 630 West 168 Street, New York, NY 10032
| | - Bradley S. Peterson
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 74, New York, NY 10032,New York State Psychiatric Institute, 1051 Riverside Drive, Unit 74, New York, NY 10032
| |
Collapse
|
15
|
Rossignol DA, Frye RE. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 2014; 5:150. [PMID: 24795645 PMCID: PMC4001006 DOI: 10.3389/fphys.2014.00150] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/28/2014] [Indexed: 01/26/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders that are defined solely on the basis of behavioral observations. Therefore, ASD has traditionally been framed as a behavioral disorder. However, evidence is accumulating that ASD is characterized by certain physiological abnormalities, including oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation. While these abnormalities have been reported in studies that have examined peripheral biomarkers such as blood and urine, more recent studies have also reported these abnormalities in brain tissue derived from individuals diagnosed with ASD as compared to brain tissue derived from control individuals. A majority of these brain tissue studies have been published since 2010. The brain regions found to contain these physiological abnormalities in individuals with ASD are involved in speech and auditory processing, social behavior, memory, and sensory and motor coordination. This manuscript examines the evidence linking oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation in the brain of ASD individuals, suggesting that ASD has a clear biological basis with features of known medical disorders. This understanding may lead to new testing and treatment strategies in individuals with ASD.
Collapse
Affiliation(s)
| | - Richard E Frye
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
16
|
Baruth JM, Wall CA, Patterson MC, Port JD. Proton Magnetic Resonance Spectroscopy as a Probe into the Pathophysiology of Autism Spectrum Disorders (ASD): A Review. Autism Res 2013; 6:119-33. [DOI: 10.1002/aur.1273] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 12/08/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Joshua M. Baruth
- Department of Psychiatry and Psychology; Mayo Clinic; Rochester; Minnesota
| | | | - Marc C. Patterson
- Departments of Neurology, Pediatric and Adolescent Medicine and Medical Genetics; Mayo Clinic Children's Center; Rochester; Minnesota
| | | |
Collapse
|
17
|
Substantial problems with measuring brain mitochondrial dysfunction in autism spectrum disorder using magnetic resonance spectroscopy. J Autism Dev Disord 2012; 42:640-2; author reply 643-6. [PMID: 21556966 DOI: 10.1007/s10803-011-1276-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
|
19
|
Further Commentary on Mitochondrial Dysfunction in Autism Spectrum Disorder: Assessment and Treatment Considerations. J Autism Dev Disord 2012. [DOI: 10.1007/s10803-011-1352-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Aoki Y, Kasai K, Yamasue H. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies. Transl Psychiatry 2012; 2:e69. [PMID: 22832731 PMCID: PMC3309540 DOI: 10.1038/tp.2011.65] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 02/05/2023] Open
Abstract
Abnormal trajectory of brain development has been suggested by previous structural magnetic resonance imaging and head circumference findings in autism spectrum disorders (ASDs); however, the neurochemical backgrounds remain unclear. To elucidate neurochemical processes underlying aberrant brain growth in ASD, we conducted a comprehensive literature search and a meta-analysis of (1)H-magnetic resonance spectroscopy ((1)H-MRS) studies in ASD. From the 22 articles identified as satisfying the criteria, means and s.d. of measure of N-acetylaspartate (NAA), creatine, choline-containing compounds, myo-Inositol and glutamate+glutamine in frontal, temporal, parietal, amygdala-hippocampus complex, thalamus and cerebellum were extracted. Random effect model analyses showed significantly lower NAA levels in all the examined brain regions but cerebellum in ASD children compared with typically developed children (n=1295 at the maximum in frontal, P<0.05 Bonferroni-corrected), although there was no significant difference in metabolite levels in adulthood. Meta-regression analysis further revealed that the effect size of lower frontal NAA levels linearly declined with older mean age in ASD (n=844, P<0.05 Bonferroni-corrected). The significance of all frontal NAA findings was preserved after considering between-study heterogeneities (P<0.05 Bonferroni-corrected). This first meta-analysis of (1)H-MRS studies in ASD demonstrated robust developmental changes in the degree of abnormality in NAA levels, especially in frontal lobes of ASD. Previously reported larger-than-normal brain size in ASD children and the coincident lower-than-normal NAA levels suggest that early transient brain expansion in ASD is mainly caused by an increase in non-neuron tissues, such as glial cell proliferation.
Collapse
Affiliation(s)
- Y Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|