1
|
Byrne D, Fisher A, Baker L, Twomey EL, Gorman KM. Yield of brain MRI in children with autism spectrum disorder. Eur J Pediatr 2023; 182:3603-3609. [PMID: 37227501 PMCID: PMC10460367 DOI: 10.1007/s00431-023-05011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental condition. The American Academy of Paediatrics and American Academy of Neurology do not recommend routine brain magnetic resonance imaging (MRI) in the assessment of ASD. The need for a brain MRI should be decided on atypical features in the clinical history and examination. However, many physicians continue to use brain MRI routinely in the assessment process. We performed a retrospective review of indications for requesting brain MRI in our institution over a 5-year period. The aim was to identify the yield of MRI in children with ASD and calculate the prevalence of significant neuroimaging abnormalities in children with ASD and identify clinical indications for neuroimaging. One hundred eighty-one participants were analysed. An abnormal brain MRI was identified in 7.2% (13/181). Abnormal brain MRI was more likely with an abnormal neurological examination (OR 33.1, p = 0.001) or genetic/metabolic abnormality (OR 20, p = 0.02). In contrast, abnormal MRI was not shown to be more likely in children with a variety of other indications such as behavioural issues and developmental delay. Conclusion: Thus, our findings support that MRI should not be a routine investigation in ASD, without additional findings. The decision to arrange brain MRI should be made on a case-by-case basis following careful evaluation of potential risks and benefits. The impact of any findings on the management course of the child should be considered prior to arranging imaging. What is Known: • Incidental brain MRI findings are common in children with and without ASD. • Many children with ASD undergo brain MRI in the absence of neurological comorbidities. What is New: • Brain MRI abnormalities in ASD are more likely with an abnormal neurological examination and genetic or metabolic conditions. • Prevalence of significant brain MRI abnormalities in ASD alone is low.
Collapse
Affiliation(s)
- D Byrne
- Department of Neurodisability, Children’s Health Ireland at Temple Street, Dublin 1, Ireland
| | - A Fisher
- Department of Neurodisability, Children’s Health Ireland at Temple Street, Dublin 1, Ireland
| | - L Baker
- Department of Neurodisability, Children’s Health Ireland at Temple Street, Dublin 1, Ireland
| | - EL Twomey
- Department of Radiology, Children’s Health Ireland at Temple Street, Dublin 1, Ireland
| | - K M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin 1, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
2
|
Kangarani-Farahani M, Izadi-Najafabadi S, Zwicker JG. How does brain structure and function on MRI differ in children with autism spectrum disorder, developmental coordination disorder, and/or attention deficit hyperactivity disorder? Int J Dev Neurosci 2022; 82:681-715. [PMID: 36084947 DOI: 10.1002/jdn.10228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
AIM The purpose of this study was to systematically review the neural similarities and differences in brain structure and function, measured by magnetic resonance imaging (MRI), in children with neurodevelopmental disorders that commonly co-occur to understand if and how they have shared neuronal characteristics. METHOD Using systematic review methodology, the following databases were comprehensively searched: MEDLINE, EMBASE, CINAHL, CENTRAL, PsycINFO, and ProQuest from the earliest record up to December 2021. Inclusion criteria were: (1) peer-reviewed studies, case reports, or theses; (2) children under 18 years of age with at least one of the following neurodevelopmental disorders: autism spectrum disorder (ASD), attention hyperactivity deficit disorder (ADHD), developmental coordination disorder (DCD), and their co-occurrence; (3) studies based on MRI modalities (i.e., structural MRI, diffusion tensor imaging (DTI), and resting-state fMRI). Thirty-one studies that met the inclusion criteria were included for quality assessment by two independent reviewers using the Appraisal tool for Cross-Sectional Studies (AXIS). RESULTS Studies compared brain structure and function of children with DCD and ADHD (n=6), DCD and ASD (n=1), ASD and ADHD (n=17), and various combinations of these co-occurring conditions (n=7). Structural neuroimaging (n=15) was the most commonly reported modality, followed by resting-state (n=8), DTI (n=5), and multi-modalities (n=3). INTERPRETATION Evidence indicated that the neural correlates of the co-occurring conditions were more widespread and distinct compared to a single diagnosis. The majority of findings (77%) suggested that each neurodevelopmental disorder had more distinct neural correlates than shared neural features, suggesting that each disorder is distinct despite commonly co-occurring with each other. As the number of papers examining the co-occurrence of ASD, DCD, and/or ADHD was limited and most findings were not corrected for multiple comparisons, these results must be interpreted with caution.
Collapse
Affiliation(s)
- Melika Kangarani-Farahani
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sara Izadi-Najafabadi
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jill G Zwicker
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,CanChild Centre for Childhood Disability Research, Hamilton, Canada
| |
Collapse
|
3
|
Ambrosino S, Elbendary H, Lequin M, Rijkelijkhuizen D, Banaschewski T, Baron-Cohen S, Bast N, Baumeister S, Buitelaar J, Charman T, Crawley D, Dell'Acqua F, Hayward H, Holt R, Moessnang C, Persico AM, Sacco R, San José Cáceres A, Tillmann J, Loth E, Ecker C, Oranje B, Murphy D, Durston S. In-depth characterization of neuroradiological findings in a large sample of individuals with autism spectrum disorder and controls. Neuroimage Clin 2022; 35:103118. [PMID: 35868222 PMCID: PMC9421485 DOI: 10.1016/j.nicl.2022.103118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions associated with quantitative differences in cortical and subcortical brain morphometry. Qualitative assessment of brain morphology provides complementary information on the possible underlying neurobiology. Studies of neuroradiological findings in ASD have rendered mixed results, and await robust replication in a sizable and independent sample. METHODS We systematically and comprehensively assessed neuroradiological findings in a large cohort of participants with ASD and age-matched controls (total N = 620, 348 ASD and 272 controls), including 70 participants with intellectual disability (47 ASD, 23 controls). We developed a comprehensive scoring system, augmented by standardized biometric measures. RESULTS There was a higher incidence of neuroradiological findings in individuals with ASD (89.4 %) compared to controls (83.8 %, p = .042). Certain findings were also more common in ASD, in particular opercular abnormalities (OR 1.9, 95 % CI 1.3-3.6) and mega cisterna magna (OR 2.4, 95 % CI 1.4-4.0) reached significance when using FDR, whereas increases in macrocephaly (OR 2.0, 95 % CI 1.2-3.2), cranial deformities (OR 2.4, 95 % CI: 1.0-5.8), calvarian / dural thickening (OR 1.5, 95 % CI 1.0-2.3), ventriculomegaly (OR 3.4, 95 % CI 1.3-9.2), and hypoplasia of the corpus callosum (OR 2.7, 95 % CI 1.1-6.3) did not survive this correction. Furthermore, neuroradiological findings were more likely to occur in isolation in controls, whereas they clustered more frequently in ASD. The incidence of neuroradiological findings was higher in individuals with mild intellectual disability (95.7 %), irrespective of ASD diagnosis. CONCLUSION There was a subtly higher prevalence of neuroradiological findings in ASD, which did not appear to be specific to the condition. Individual findings or clusters of findings may point towards the neurodevelopmental mechanisms involved in individual cases. As such, clinical MRI assessments may be useful to guide further etiopathological (genetic) investigations, and are potentially valuable to fundamental ASD research.
Collapse
Affiliation(s)
- Sara Ambrosino
- University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Hasnaa Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Division of the National Research Center, Cairo, Egypt
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dominique Rijkelijkhuizen
- University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Nico Bast
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Daisy Crawley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Hannah Hayward
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program at Modena University Hospital, & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child Neuropsychiatry / Neurodevelopmental Disorders Unit, University "Campus Bio-Medico", Rome, Italy
| | - Roberto Sacco
- Child Neuropsychiatry / Neurodevelopmental Disorders Unit, University "Campus Bio-Medico", Rome, Italy
| | - Antonia San José Cáceres
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom; Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid and CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Spain
| | - Julian Tillmann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom; Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Sarah Durston
- University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
4
|
Masri AT, Nasir A, Irshaid F, Alomari F, Irshaid A, Al-Qudah A, Nafi O, Almomani M. Genetic evaluation of children with autism spectrum disorders in developing and low-resource areas. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:1491-1498. [PMID: 34781785 DOI: 10.1177/13623613211055535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT Autism is the most common neurodevelopmental disorder in children worldwide. Genetic factors play an important role in the risk of developing autism. Determining the genetic cause of autism is key to understanding the biological processes that lead to the clinical manifestations of autism, and can inform the management and even prevention of this condition. Establishing genetic causes of autism requires collection of genetic data on a global scale. Limited research on genetic testing for individuals with autism is available from developing countries in low-resource regions. In this study, we explored the types of investigations ordered for Jordanian children with autism by their physicians. A representative sample of parents of children with autism in Jordan was questioned about the studies that their children received. We found that the recommended genetic testing was only performed in a small number of children with autism. In contrast, most children in the sample received non-genetic testing, which is not routinely recommended. We also explored the sociocultural factors that may influence the decision to perform genetic testing in this population. We discuss our findings in light of the data available from other developing and developed countries.
Collapse
Affiliation(s)
| | - Arwa Nasir
- University of Nebraska Medical Center, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in Autism Spectrum Disorder: Narrative Review and Recent Advances. J Magn Reson Imaging 2021; 55:1613-1624. [PMID: 34626442 DOI: 10.1002/jmri.27949] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Autism spectrum disorder (ASD) is neuropsychiatric continuum of disorders characterized by persistent deficits in social communication and restricted repetitive patterns of behavior which impede optimal functioning. Early detection and intervention in ASD children can mitigate the deficits in social interaction and result in a better outcome. Various non-invasive imaging methods and molecular techniques have been developed for the early identification of ASD characteristics. There is no general consensus on specific neuroimaging features of autism; however, quantitative magnetic resonance techniques have provided valuable structural and functional information in understanding the neuropathophysiology of ASD and how the autistic brain changes during childhood, adolescence, and adulthood. In this review of decades of ASD neuroimaging research, we identify the structural, functional, and molecular imaging clues that most accurately point to the diagnosis of ASD vs. typically developing children. These studies highlight the 1) exaggerated synaptic pruning, 2) anomalous gyrification, 3) interhemispheric under- and overconnectivity, and 4) excitatory glutamate and inhibitory GABA imbalance theories of ASD. The application of these various theories to the analysis of a patient with ASD is mitigated often by superimposed comorbid neuropsychological disorders, evolving brain maturation processes, and pharmacologic and behavioral interventions that may affect the structure and function of the brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Faranak Rafiee
- Department of Radiology, Fara Parto Medical Imaging and Interventional Radiology Center, Shiraz, Iran
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | - Mina Motaghi
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, Maryland, USA
| | | |
Collapse
|
6
|
Actionable and incidental neuroradiological findings in twins with neurodevelopmental disorders. Sci Rep 2020; 10:22417. [PMID: 33376247 PMCID: PMC7772336 DOI: 10.1038/s41598-020-79959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
While previous research has investigated neuroradiological findings in autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD), the entire range of neurodevelopmental disorders (NDDs) has not yet been well-studied using magnetic resonance imaging (MRI). Considering the overlap among NDDs and simultaneous development of the brain and face, guided by molecular signaling, we examined the relationship of actionable and incidental (non-actionable) MRI findings and NDD diagnoses together with facial morphological variants and genetic copy number variants (CNVs). A cross-sectional study was conducted with a twin cohort 8–36 years of age (57% monozygotic, 40% dizygotic), including 372 subjects (46% with NDDs; 47% female) imaged by MRI, 280 with data for facial morphological variants, and 183 for CNVs. Fifty-one percent of participants had MRI findings. Males had a statistically significantly higher percentage of MRI findings (57.7%) compared with females (43.8%, p = 0.03). Twin zygosity was not statistically significantly correlated with incidence or severity of specific MRI findings. No statistically significant association was found between MRI findings and any NDD diagnosis or facial morphological variants; however, MRI findings were statistically significantly associated with the number of CNVs (OR 1.20, 95% CI 1.00–1.44, p = 0.05, adjusted OR for sex 1.24, 95% CI 1.03–1.50, p = 0.02). When combining the presence of MRI findings, facial morphological variants, and CNVs, statistically significant relationships were found with ASD and ADHD diagnoses (p = 0.0006 and p = 0.002, respectively). The results of this study demonstrate that the ability to identify NDDs from combined radiology, morphology, and CNV assessments may be possible. Additionally, twins do not appear to be at increased risk for neuroradiological variants.
Collapse
|
7
|
Brain Magnetic Resonance Findings in 117 Children with Autism Spectrum Disorder under 5 Years Old. Brain Sci 2020; 10:brainsci10100741. [PMID: 33081247 PMCID: PMC7602717 DOI: 10.3390/brainsci10100741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
We examined the potential benefits of neuroimaging measurements across the first 5 years of life in detecting early comorbid or etiological signs of autism spectrum disorder (ASD). In particular, we analyzed the prevalence of neuroradiologic findings in routine magnetic resonance imaging (MRI) scans of a group of 117 ASD children younger than 5 years old. These data were compared to those reported in typically developing (TD) children. MRI findings in children with ASD were analyzed in relation to their cognitive level, severity of autistic symptoms, and the presence of electroencephalogram (EEG) abnormalities. The MRI was rated abnormal in 55% of children with ASD with a significant prevalence in the high-functioning subgroup compared to TD children. We report significant incidental findings of mega cisterna magna, ventricular anomalies and abnormal white matter signal intensity in ASD without significant associations between these MRI findings and EEG features. Based on these results we discuss the role that brain MRI may play in the diagnostic procedure of ASD.
Collapse
|
8
|
Hyman SL, Levy SE, Myers SM. Identification, Evaluation, and Management of Children With Autism Spectrum Disorder. Pediatrics 2020; 145:peds.2019-3447. [PMID: 31843864 DOI: 10.1542/peds.2019-3447] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with reported prevalence in the United States of 1 in 59 children (approximately 1.7%). Core deficits are identified in 2 domains: social communication/interaction and restrictive, repetitive patterns of behavior. Children and youth with ASD have service needs in behavioral, educational, health, leisure, family support, and other areas. Standardized screening for ASD at 18 and 24 months of age with ongoing developmental surveillance continues to be recommended in primary care (although it may be performed in other settings), because ASD is common, can be diagnosed as young as 18 months of age, and has evidenced-based interventions that may improve function. More accurate and culturally sensitive screening approaches are needed. Primary care providers should be familiar with the diagnostic criteria for ASD, appropriate etiologic evaluation, and co-occurring medical and behavioral conditions (such as disorders of sleep and feeding, gastrointestinal tract symptoms, obesity, seizures, attention-deficit/hyperactivity disorder, anxiety, and wandering) that affect the child's function and quality of life. There is an increasing evidence base to support behavioral and other interventions to address specific skills and symptoms. Shared decision making calls for collaboration with families in evaluation and choice of interventions. This single clinical report updates the 2007 American Academy of Pediatrics clinical reports on the evaluation and treatment of ASD in one publication with an online table of contents and section view available through the American Academy of Pediatrics Gateway to help the reader identify topic areas within the report.
Collapse
Affiliation(s)
- Susan L Hyman
- Golisano Children's Hospital, University of Rochester, Rochester, New York;
| | - Susan E Levy
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Scott M Myers
- Geisinger Autism & Developmental Medicine Institute, Danville, Pennsylvania
| | | |
Collapse
|
9
|
Monterrey JC, Philips J, Cleveland S, Tanaka S, Barnes P, Hallmayer JF, Reiss AL, Lazzeroni LC, Hardan AY. Incidental brain MRI findings in an autism twin study. Autism Res 2017; 10:113-120. [PMID: 27874265 DOI: 10.1002/aur.1720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Brain magnetic resonance imaging (MRI) studies suggest the prevalence of asymptomatic "incidental" findings (IF) in autism spectrum disorder (ASD) is similar to that of neurotypically developing (NT) controls. However, given the causes of IF may include both genetic and environmental factors, a twin study would facilitate comparing brain IF between ASD and NT subjects. MRI scans were examined to assess the prevalence of brain IF in twin "case pairs" (at least one twin with diagnosis of ASD) and twin "control pairs" (NT). Fifty case pairs and thirty-two control pairs were analyzed. IF were found in 68% of subjects with ASD, 71% of unaffected ASD siblings, and in 58% of control subjects (P = 0.4). IF requiring clinical follow-up occurred more frequently in subjects with ASD compared to NT controls (17% vs. 5%, respectively; P = 0.02). The concordance rate of IF in twins was 83%. A mixed effects model found younger age, male sex, and "family environment" to be significantly associated with IF. There was no difference in the prevalence rate of IF between ASD subjects and NT controls. More IF required clinical follow-up in ASD subjects compared to NT controls. The prevalence rate of IF observed in this twin study was higher than rates previously reported in singleton studies. Our results suggest the shared environment of twins - perhaps in utero - increases the risk of brain IF. Brain MRI in the initial work-up of ASD may be indicated in twins, especially in males. Autism Res 2017, 10: 113-120. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julio C Monterrey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Jennifer Philips
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Sue Cleveland
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Serena Tanaka
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Patrick Barnes
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Alan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Laura C Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
10
|
Abstract
Abstract
ASD research is at an important crossroads. The ASD diagnosis is important for assigning a child to early behavioral intervention and explaining a child’s condition. But ASD research has not provided a diagnosis-specific medical treatment, or a consistent early predictor, or a unified life course. If the ASD diagnosis also lacks biological and construct validity, a shift away from studying ASD-defined samples would be warranted. Consequently, this paper reviews recent findings for the neurobiological validity of ASD, the construct validity of ASD diagnostic criteria, and the construct validity of ASD spectrum features. The findings reviewed indicate that the ASD diagnosis lacks biological and construct validity. The paper concludes with proposals for research going forward.
Collapse
|
11
|
Blackmon K, Ben-Avi E, Wang X, Pardoe HR, Di Martino A, Halgren E, Devinsky O, Thesen T, Kuzniecky R. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder. NEUROIMAGE-CLINICAL 2015; 10:36-45. [PMID: 26693400 PMCID: PMC4660377 DOI: 10.1016/j.nicl.2015.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development are found at higher rates in autism spectrum disorder (ASD) than in healthy controls on postmortem neuropathological evaluation but are more variably observed on visual review of in-vivo MRI brain scans. This may be due to the visually elusive nature of many malformations on MRI. Here, we utilize a quantitative approach to determine whether a volumetric measure of heterotopic gray matter in the white matter is elevated in people with ASD, relative to typically developing controls (TDC). Data from a primary sample of 48 children/young adults with ASD and 48 age-, and gender-matched TDCs, selected from the Autism Brain Imaging Data Exchange (ABIDE) open-access database, were analyzed to compare groups on (1) blinded review of high-resolution T1-weighted research sequences; and (2) quantitative measurement of white matter hypointensity (WMH) volume calculated from the same T1-weighted scans. Groupwise WMH volume comparisons were repeated in an independent, multi-site sample (80 ASD/80 TDC), also selected from ABIDE. Visual review resulted in equivalent proportions of imaging abnormalities in the ASD and TDC group. However, quantitative analysis revealed elevated periventricular and deep subcortical WMH volumes in ASD. This finding was replicated in the independent, multi-site sample. Periventricular WMH volume was not associated with age but was associated with greater restricted repetitive behaviors on both parent-reported and clinician-rated assessment inventories. Thus, findings demonstrate that periventricular WMH volume is elevated in ASD and associated with a higher degree of repetitive behaviors and restricted interests. Although the etiology of focal WMH clusters is unknown, the absence of age effects suggests that they may reflect a static anomaly. Periventricular white matter hypointensity (WMH) volume is elevated in autism. ASD-associated WMH volume elevations were observed in independent samples. WMH volume does not change with age in children/young adults. Periventricular WMH volume is associated with restricted repetitive behavior.
Collapse
Affiliation(s)
- Karen Blackmon
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Emma Ben-Avi
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA ; Department of Psychology, New York University, New York, NY 10003, USA
| | - Xiuyuan Wang
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Heath R Pardoe
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Adriana Di Martino
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA
| | - Eric Halgren
- Department of Radiology, University of California at San Diego, La Jolla, CA 92069, USA ; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92069, USA
| | - Orrin Devinsky
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas Thesen
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA ; Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ruben Kuzniecky
- NYU Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Baldwin PR, Curtis KN, Patriquin MA, Wolf V, Viswanath H, Shaw C, Sakai Y, Salas R. Identifying diagnostically-relevant resting state brain functional connectivity in the ventral posterior complex via genetic data mining in autism spectrum disorder. Autism Res 2015; 9:553-62. [PMID: 26451751 DOI: 10.1002/aur.1559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/15/2015] [Indexed: 01/10/2023]
Abstract
Exome sequencing and copy number variation analyses continue to provide novel insight to the biological bases of autism spectrum disorder (ASD). The growing speed at which massive genetic data are produced causes serious lags in analysis and interpretation of the data. Thus, there is a need to develop systematic genetic data mining processes that facilitate efficient analysis of large datasets. We report a new genetic data mining system, ProcessGeneLists and integrated a list of ASD-related genes with currently available resources in gene expression and functional connectivity of the human brain. Our data-mining program successfully identified three primary regions of interest (ROIs) in the mouse brain: inferior colliculus, ventral posterior complex of the thalamus (VPC), and parafascicular nucleus (PFn). To understand its pathogenic relevance in ASD, we examined the resting state functional connectivity (RSFC) of the homologous ROIs in human brain with other brain regions that were previously implicated in the neuro-psychiatric features of ASD. Among them, the RSFC of the VPC with the medial frontal gyrus (MFG) was significantly more anticorrelated, whereas the RSFC of the PN with the globus pallidus was significantly increased in children with ASD compared with healthy children. Moreover, greater values of RSFC between VPC and MFG were correlated with severity index and repetitive behaviors in children with ASD. No significant RSFC differences were detected in adults with ASD. Together, these data demonstrate the utility of our data-mining program through identifying the aberrant connectivity of thalamo-cortical circuits in children with ASD. Autism Res 2016, 9: 553-562. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Philip R Baldwin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, 77030
| | - Kaylah N Curtis
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, 77030
| | - Michelle A Patriquin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, 77030.,The Menninger Clinic, Houston, Texas, 77035
| | - Varina Wolf
- Department of Neurology, Baylor College of Medicine, Houston, Texas, 77030
| | - Humsini Viswanath
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, 77030
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Yasunari Sakai
- Department of Pediatrics, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
13
|
Erbetta A, Bulgheroni S, Contarino VE, Chiapparini L, Esposito S, Annunziata S, Riva D. Low-Functioning Autism and Nonsyndromic Intellectual Disability: Magnetic Resonance Imaging (MRI) Findings. J Child Neurol 2015; 30:1658-63. [PMID: 25895913 DOI: 10.1177/0883073815578523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/16/2015] [Indexed: 01/25/2023]
Abstract
Previous neuroradiologic studies reported a high incidence of abnormalities in low-functioning autistic children. In this population, it is difficult to know which abnormality depends on autism itself and which is related to intellectual disability associated with autism. The aim of this study was to evaluate the frequency of neuroradiologic abnormalities in low-functioning autistic children compared to Intellectual Quotient and age-matched nonsyndromic children, using the same set of magnetic resonance imaging (MRI) sequences. MRI was rated as abnormal in 44% of autistic and 54% of children with intellectual disability. The main results were mega cisterna magna in autism and hypoplastic corpus callosum in intellectual disability. These abnormalities are morphologically visible signs of altered brain development. These findings, more frequent than expected, are not specific to the 2 conditions. Although MRI cannot be considered mandatory, it allows an in-depth clinical assessment in nonsyndromic intellectual-disabled and autistic children.
Collapse
Affiliation(s)
- Alessandra Erbetta
- Neuroradiology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Sara Bulgheroni
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | | | - Luisa Chiapparini
- Neuroradiology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Silvia Esposito
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Silvia Annunziata
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Daria Riva
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| |
Collapse
|
14
|
Blackmon K. Structural MRI biomarkers of shared pathogenesis in autism spectrum disorder and epilepsy. Epilepsy Behav 2015; 47:172-82. [PMID: 25812936 DOI: 10.1016/j.yebeh.2015.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/28/2023]
Abstract
Etiological factors that contribute to a high comorbidity between autism spectrum disorder (ASD) and epilepsy are the subject of much debate. Does epilepsy cause ASD or are there common underlying brain abnormalities that increase the risk of developing both disorders? This review summarizes evidence from quantitative MRI studies to suggest that abnormalities of brain structure are not necessarily the consequence of ASD and epilepsy but are antecedent to disease expression. Abnormal gray and white matter volumes are present prior to onset of ASD and evident at the time of onset in pediatric epilepsy. Aberrant brain growth trajectories are also common in both disorders, as evidenced by blunted gray matter maturation and white matter maturation. Although the etiological factors that explain these abnormalities are unclear, high heritability estimates for gray matter volume and white matter microstructure demonstrate that genetic factors assert a strong influence on brain structure. In addition, histopathological studies of ASD and epilepsy brain tissue reveal elevated rates of malformations of cortical development (MCDs), such as focal cortical dysplasia and heterotopias, which supports disruption of neuronal migration as a contributing factor. Although MCDs are not always visible on MRI with conventional radiological analysis, quantitative MRI detection methods show high sensitivity to subtle malformations in epilepsy and can be potentially applied to MCD detection in ASD. Such an approach is critical for establishing quantitative neuroanatomic endophenotypes that can be used in genetic research. In the context of emerging drug treatments for seizures and autism symptoms, such as rapamycin and rapalogs, in vivo neuroimaging markers of subtle structural brain abnormalities could improve sample stratification in human clinical trials and potentially extend the range of patients that might benefit from treatment. This article is part of a Special Issue entitled "Autism and Epilepsy".
Collapse
Affiliation(s)
- Karen Blackmon
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA; Center for Mind/Brain Sciences, University of Trento, Rovereto, Trento 38068, Italy.
| |
Collapse
|
15
|
Erbetta A, Bulgheroni S, Contarino V, Chiapparini L, Esposito S, Vago C, Riva D. Neuroimaging findings in 41 low-functioning children with autism spectrum disorder: a single-center experience. J Child Neurol 2014; 29:1626-31. [PMID: 24346312 DOI: 10.1177/0883073813511856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The data on the rate of brain imaging abnormalities in autistic spectrum disorders are still inconsistent. A recent study on patients with high-functioning autism found that approximately 90% of children had normal magnetic resonance imaging (MRI) scans whereas an unexpected high rate of MRI abnormalities was reported in 77 nonsyndromic autistic children with or without intellectual disability. The aim of this study was to evaluate the prevalence of neuroradiologic findings in low-functioning autistic children compared to controls matched for age. Minor brain abnormalities were found in 44% of patients and 22% of controls. Our main result is the high rate of mega cisterna magna in autistic patients. High rate of minor neuroradiologic abnormalities in low-functioning autistic patients could contribute to the research about the various endophenotypes and complete the clinical assessment of children with autistic spectrum disorder and intellectual disability.
Collapse
Affiliation(s)
- Alessandra Erbetta
- Neuroradiology Division, Fondazione IRCCS Istituto Neurologico C.Besta, via Celoria 11, 20133 Milano, Italy
| | - Sara Bulgheroni
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C.Besta, via Celoria 11, 20133 Milano, Italy
| | - Valeria Contarino
- Neuroradiology Division, Fondazione IRCCS Istituto Neurologico C.Besta, via Celoria 11, 20133 Milano, Italy
| | - Luisa Chiapparini
- Neuroradiology Division, Fondazione IRCCS Istituto Neurologico C.Besta, via Celoria 11, 20133 Milano, Italy
| | - Silvia Esposito
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C.Besta, via Celoria 11, 20133 Milano, Italy
| | - Chiara Vago
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C.Besta, via Celoria 11, 20133 Milano, Italy
| | - Daria Riva
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico C.Besta, via Celoria 11, 20133 Milano, Italy
| |
Collapse
|
16
|
Abstract
Although accumulated evidence has demonstrated that autism is found with many varied brain dysfunctions, researchers have tried to find a single brain dysfunction that would provide neurobiological validity for autism. However, unitary models of autism brain dysfunction have not adequately addressed conflicting evidence, and efforts to find a single unifying brain dysfunction have led the field away from research to explore individual variation and micro-subgroups. Autism must be taken apart in order to find neurobiological treatment targets. Three research changes are needed. The belief that there is a single defining autism spectrum disorder brain dysfunction must be relinquished. The noise caused by the thorny brain-symptom inference problem must be reduced. Researchers must explore individual variation in brain measures within autism.
Collapse
|