1
|
Pérez-Cano L, Boccuto L, Sirci F, Hidalgo JM, Valentini S, Bosio M, Liogier D’Ardhuy X, Skinner C, Cascio L, Srikanth S, Jones K, Buchanan CB, Skinner SA, Gomez-Mancilla B, Hyvelin JM, Guney E, Durham L. Characterization of a Clinically and Biologically Defined Subgroup of Patients with Autism Spectrum Disorder and Identification of a Tailored Combination Treatment. Biomedicines 2024; 12:991. [PMID: 38790952 PMCID: PMC11117897 DOI: 10.3390/biomedicines12050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. The diagnosis of ASD is currently based on behavior criteria, which overlooks the diversity of genetic, neurophysiological, and clinical manifestations. Failure to acknowledge such heterogeneity has hindered the development of efficient drug treatments for ASD and other NDDs. DEPI® (Databased Endophenotyping Patient Identification) is a systems biology, multi-omics, and machine learning-driven platform enabling the identification of subgroups of patients with NDDs and the development of patient-tailored treatments. In this study, we provide evidence for the validation of a first clinically and biologically defined subgroup of patients with ASD identified by DEPI, ASD Phenotype 1 (ASD-Phen1). Among 313 screened patients with idiopathic ASD, the prevalence of ASD-Phen1 was observed to be ~24% in 84 patients who qualified to be enrolled in the study. Metabolic and transcriptomic alterations differentiating patients with ASD-Phen1 were consistent with an over-activation of NF-κB and NRF2 transcription factors, as predicted by DEPI. Finally, the suitability of STP1 combination treatment to revert such observed molecular alterations in patients with ASD-Phen1 was determined. Overall, our results support the development of precision medicine-based treatments for patients diagnosed with ASD.
Collapse
Affiliation(s)
- Laura Pérez-Cano
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Francesco Sirci
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Jose Manuel Hidalgo
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Samuel Valentini
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Mattia Bosio
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Xavier Liogier D’Ardhuy
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
| | - Cindy Skinner
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
| | - Lauren Cascio
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Research and Education in Disease Diagnosis and Interventions (REDDI) Lab, Center for Innovative Medical Devices and Sensors (CIMeDS), Clemson University, Clemson, SC 29634, USA
| | - Sujata Srikanth
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Research and Education in Disease Diagnosis and Interventions (REDDI) Lab, Center for Innovative Medical Devices and Sensors (CIMeDS), Clemson University, Clemson, SC 29634, USA
| | - Kelly Jones
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
- Research and Education in Disease Diagnosis and Interventions (REDDI) Lab, Center for Innovative Medical Devices and Sensors (CIMeDS), Clemson University, Clemson, SC 29634, USA
| | - Caroline B. Buchanan
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
| | - Steven A. Skinner
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29649, USA; (L.B.); (C.S.); (L.C.); (S.S.); (K.J.); (C.B.B.); (S.A.S.)
| | - Baltazar Gomez-Mancilla
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jean-Marc Hyvelin
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
| | - Emre Guney
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
| | - Lynn Durham
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain; (F.S.); (J.M.H.); (S.V.); (M.B.); (E.G.)
- Drug Development Unit (DDU), STALICLA SA, Avenue de Sécheron 15, 1202 Geneva, Switzerland; (X.L.D.); (B.G.-M.); (J.-M.H.)
| |
Collapse
|
2
|
Schwarz M, Geryk J, Havlovicová M, Mihulová M, Turnovec M, Ryba L, Martinková J, Macek M, Palmer R, Kočandrlová K, Velemínská J, Moslerová V. Body mass index is an overlooked confounding factor in existing clustering studies of 3D facial scans of children with autism spectrum disorder. Sci Rep 2024; 14:9873. [PMID: 38684768 PMCID: PMC11059264 DOI: 10.1038/s41598-024-60376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Cluster analyzes of facial models of autistic patients aim to clarify whether it is possible to diagnose autism on the basis of facial features and further to stratify the autism spectrum disorder. We performed a cluster analysis of sets of 3D scans of ASD patients (116) and controls (157) using Euclidean and geodesic distances in order to recapitulate the published results on the Czech population. In the presented work, we show that the major factor determining the clustering structure and consequently also the correlation of resulting clusters with autism severity degree is body mass index corrected for age (BMIFA). After removing the BMIFA effect from the data in two independent ways, both the cluster structure and autism severity correlations disappeared. Despite the fact that the influence of body mass index (BMI) on facial dimensions was studied many times, this is the first time to our knowledge when BMI was incorporated into the faces clustering study and it thereby casts doubt on previous results. We also performed correlation analysis which showed that the only correction used in the existing clustering studies-dividing the facial distance by the average value within the face-is not eliminating correlation between facial distances and BMIFA within the facial cohort.
Collapse
Affiliation(s)
- Martin Schwarz
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic.
- PRENET - Laboratoře Lékařské Genetiky s.r.o., Pardubice, Czech Republic.
| | - Jan Geryk
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Michaela Mihulová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Marek Turnovec
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Lukáš Ryba
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Júlia Martinková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Richard Palmer
- Faculty of Science and Engineering, Curtin University, Perth, Australia
| | - Karolína Kočandrlová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Velemínská
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Moslerová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
3
|
Quatrosi G, Genovese D, Galliano G, Zoppé H, Amodio E, Bonnet-Brilhault F, Tripi G. Cranio-Facial Characteristics in Autism Spectrum Disorder: A Scoping Review. J Clin Med 2024; 13:729. [PMID: 38337423 PMCID: PMC10856091 DOI: 10.3390/jcm13030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Autism spectrum disorders (ASD) consist of a complex group of neurodevelopmental disorders characterised by qualitative impairments of social interactions, communication abilities, and a limited, stereotyped, and repetitive selection of interests and activities. In light of the imperative to identify a possible biomarker for ASD, it has been determined that craniofacial anomalies serve as significant risk factors for neurodevelopmental disorders. The aim of this scoping review is to deepen the knowledge of the scientific literature related to cranio-facial characteristics in individuals with ASD, with a particular focus on recent research advancements. The review was performed by employing the search strings (("Autism Spectrum Disorder" OR autism OR ASD OR "Autism Spectrum") AND ("facial morphology" OR "facial phenotype")) on the databases PubMed/MEDLINE, Scopus, and ERIC as of March 9, 2023. The review comprised seven studies whose findings were obtained through quantitative analysis of Euclidean distances between anatomical landmarks. The examination of facial abnormalities represents a possible reliable diagnostic biomarker that could aid in the timely identification of ASD. Phenotypic characteristics that may serve as predictive indicators of the severity of autistic symptoms can be observed in certain individuals with ASD by applying anthropometric and instrumental measurements. The presence of a phenotype characterised by an increased intercanthal distance and a reduced facial midline height appears to be associated with a higher degree of severity in autistic symptoms. In addition, it is worth noting that facial asymmetry and facial masculinity can be considered reliable indicators for predicting a more severe manifestation of symptoms.
Collapse
Affiliation(s)
- Giuseppe Quatrosi
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy;
| | - Dario Genovese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
| | - Giuseppe Galliano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
| | - Hugo Zoppé
- UMR 1253 iBrain, Inserm, Université de Tours, 37020 Tours, France; (H.Z.); (F.B.-B.)
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
| | - Fréderique Bonnet-Brilhault
- UMR 1253 iBrain, Inserm, Université de Tours, 37020 Tours, France; (H.Z.); (F.B.-B.)
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Gabriele Tripi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
- Department of Child and Adolescent Psychiatry, EPSM du Loiret/Centre Hospitalier Universitaire d’Orléans, Université d’Orléans, 45100 Orléans, France
| |
Collapse
|
4
|
Salim S, Hussain S, Banu A, Gowda SBM, Ahammad F, Alwa A, Pasha M, Mohammad F. The ortholog of human ssDNA-binding protein SSBP3 influences neurodevelopment and autism-like behaviors in Drosophila melanogaster. PLoS Biol 2023; 21:e3002210. [PMID: 37486945 PMCID: PMC10399856 DOI: 10.1371/journal.pbio.3002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/03/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
1p32.3 microdeletion/duplication is implicated in many neurodevelopmental disorders-like phenotypes such as developmental delay, intellectual disability, autism, macro/microcephaly, and dysmorphic features. The 1p32.3 chromosomal region harbors several genes critical for development; however, their validation and characterization remain inadequate. One such gene is the single-stranded DNA-binding protein 3 (SSBP3) and its Drosophila melanogaster ortholog is called sequence-specific single-stranded DNA-binding protein (Ssdp). Here, we investigated consequences of Ssdp manipulations on neurodevelopment, gene expression, physiological function, and autism-associated behaviors using Drosophila models. We found that SSBP3 and Ssdp are expressed in excitatory neurons in the brain. Ssdp overexpression caused morphological alterations in Drosophila wing, mechanosensory bristles, and head. Ssdp manipulations also affected the neuropil brain volume and glial cell number in larvae and adult flies. Moreover, Ssdp overexpression led to differential changes in synaptic density in specific brain regions. We observed decreased levels of armadillo in the heads of Ssdp overexpressing flies, as well as a decrease in armadillo and wingless expression in the larval wing discs, implicating the involvement of the canonical Wnt signaling pathway in Ssdp functionality. RNA sequencing revealed perturbation of oxidative stress-related pathways in heads of Ssdp overexpressing flies. Furthermore, Ssdp overexpressing brains showed enhanced reactive oxygen species (ROS), altered neuronal mitochondrial morphology, and up-regulated fission and fusion genes. Flies with elevated levels of Ssdp exhibited heightened anxiety-like behavior, altered decisiveness, defective sensory perception and habituation, abnormal social interaction, and feeding defects, which were phenocopied in the pan-neuronal Ssdp knockdown flies, suggesting that Ssdp is dosage sensitive. Partial rescue of behavioral defects was observed upon normalization of Ssdp levels. Notably, Ssdp knockdown exclusively in adult flies did not produce behavioral and functional defects. Finally, we show that optogenetic manipulation of Ssdp-expressing neurons altered autism-associated behaviors. Collectively, our findings provide evidence that Ssdp, a dosage-sensitive gene in the 1p32.3 chromosomal region, is associated with various anatomical, physiological, and behavioral defects, which may be relevant to neurodevelopmental disorders like autism. Our study proposes SSBP3 as a critical gene in the 1p32.3 microdeletion/duplication genomic region and sheds light on the functional role of Ssdp in neurodevelopmental processes in Drosophila.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Swetha B. M. Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mujaheed Pasha
- HBKU Core Labs, Hamad Bin Khalifa University (HBKU): Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
5
|
McVey C, Egger D, Pinedo P. Improving the Reliability of Scale-Free Image Morphometrics in Applications with Minimally Restrained Livestock Using Projective Geometry and Unsupervised Machine Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:8347. [PMID: 36366045 PMCID: PMC9653925 DOI: 10.3390/s22218347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Advances in neural networks have garnered growing interest in applications of machine vision in livestock management, but simpler landmark-based approaches suitable for small, early stage exploratory studies still represent a critical stepping stone towards these more sophisticated analyses. While such approaches are well-validated for calibrated images, the practical limitations of such imaging systems restrict their applicability in working farm environments. The aim of this study was to validate novel algorithmic approaches to improving the reliability of scale-free image biometrics acquired from uncalibrated images of minimally restrained livestock. Using a database of 551 facial images acquired from 108 dairy cows, we demonstrate that, using a simple geometric projection-based approach to metric extraction, a priori knowledge may be leveraged to produce more intuitive and reliable morphometric measurements than conventional informationally complete Euclidean distance matrix analysis. Where uncontrolled variations in image annotation, camera position, and animal pose could not be fully controlled through the design of morphometrics, we further demonstrate how modern unsupervised machine learning tools may be used to leverage the systematic error structures created by such lurking variables in order to generate bias correction terms that may subsequently be used to improve the reliability of downstream statistical analyses and dimension reduction.
Collapse
Affiliation(s)
- Catherine McVey
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel Egger
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Pablo Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Matthews H, de Jong G, Maal T, Claes P. Static and Motion Facial Analysis for Craniofacial Assessment and Diagnosing Diseases. Annu Rev Biomed Data Sci 2022; 5:19-42. [PMID: 35440145 DOI: 10.1146/annurev-biodatasci-122120-111413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deviation from a normal facial shape and symmetry can arise from numerous sources, including physical injury and congenital birth defects. Such abnormalities can have important aesthetic and functional consequences. Furthermore, in clinical genetics distinctive facial appearances are often associated with clinical or genetic diagnoses; the recognition of a characteristic facial appearance can substantially narrow the search space of potential diagnoses for the clinician. Unusual patterns of facial movement and expression can indicate disturbances to normal mechanical functioning or emotional affect. Computational analyses of static and moving 2D and 3D images can serve clinicians and researchers by detecting and describing facial structural, mechanical, and affective abnormalities objectively. In this review we survey traditional and emerging methods of facial analysis, including statistical shape modeling, syndrome classification, modeling clinical face phenotype spaces, and analysis of facial motion and affect. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Harold Matthews
- Department of Human Genetics, KU Leuven, Leuven, Belgium; .,Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.,Facial Sciences Research Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Guido de Jong
- 3D Lab, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Maal
- 3D Lab, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium; .,Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.,Facial Sciences Research Group, Murdoch Children's Research Institute, Parkville, Australia.,Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Mujeeb Rahman KK, Subashini MM. Identification of Autism in Children Using Static Facial Features and Deep Neural Networks. Brain Sci 2022; 12:brainsci12010094. [PMID: 35053837 PMCID: PMC8773918 DOI: 10.3390/brainsci12010094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complicated neurological developmental disorder that manifests itself in a variety of ways. The child diagnosed with ASD and their parents’ daily lives can be dramatically improved with early diagnosis and appropriate medical intervention. The applicability of static features extracted from autistic children’s face photographs as a biomarker to distinguish them from typically developing children is investigated in this study paper. We used five pre-trained CNN models: MobileNet, Xception, EfficientNetB0, EfficientNetB1, and EfficientNetB2 as feature extractors and a DNN model as a binary classifier to identify autism in children accurately. We used a publicly available dataset to train the suggested models, which consisted of face pictures of children diagnosed with autism and controls classed as autistic and non-autistic. The Xception model outperformed the others, with an AUC of 96.63%, a sensitivity of 88.46%, and an NPV of 88%. EfficientNetB0 produced a consistent prediction score of 59% for autistic and non-autistic groups with a 95% confidence level.
Collapse
Affiliation(s)
- K. K. Mujeeb Rahman
- School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India;
- Department of Biomedical Engineering, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - M. Monica Subashini
- School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India
- Correspondence:
| |
Collapse
|
8
|
Deep Learning Approach for Screening Autism Spectrum Disorder in Children with Facial Images and Analysis of Ethnoracial Factors in Model Development and Application. Brain Sci 2021; 11:brainsci11111446. [PMID: 34827443 PMCID: PMC8615807 DOI: 10.3390/brainsci11111446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disability that can cause significant social, communication, and behavioral challenges. Early intervention for children with ASD can help to improve their intellectual ability and reduces autistic symptoms. Multiple clinical researches have suggested that facial phenotypic differences exist between ASD children and typically developing (TD) children. In this research, we propose a practical ASD screening solution using facial images through applying VGG16 transfer learning-based deep learning to a unique ASD dataset of clinically diagnosed children that we collected. Our model produced a 95% classification accuracy and 0.95 F1-score. The only other reported study using facial images to detect ASD was based on the Kaggle ASD Facial Image Dataset, which is an internet search-produced, low-quality, and low-fidelity dataset. Our results support the clinical findings of facial feature differences between children with ASD and TD children. The high F1-score achieved indicates that it is viable to use deep learning models to screen children with ASD. We concluded that the racial and ethnic-related factors in deep-learning based ASD screening with facial images are critical to solution viability and accuracy.
Collapse
|
9
|
Tan DW, Gilani SZ, Boutrus M, Alvares GA, Whitehouse AJO, Mian A, Suter D, Maybery MT. Facial asymmetry in parents of children on the autism spectrum. Autism Res 2021; 14:2260-2269. [PMID: 34529361 DOI: 10.1002/aur.2612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
Greater facial asymmetry has been consistently found in children with autism spectrum disorder (ASD) relative to children without ASD. There is substantial evidence that both facial structure and the recurrence of ASD diagnosis are highly heritable within a nuclear family. Furthermore, sub-clinical levels of autistic-like behavioural characteristics have also been reported in first-degree relatives of individuals with ASD, commonly known as the 'broad autism phenotype'. Therefore, the aim of the current study was to examine whether a broad autism phenotype expresses as facial asymmetry among 192 biological parents of autistic individuals (134 mothers) compared to those of 163 age-matched adults without a family history of ASD (113 females). Using dense surface-modelling techniques on three dimensional facial images, we found evidence for greater facial asymmetry in parents of autistic individuals compared to age-matched adults in the comparison group (p = 0.046, d = 0.21 [0.002, 0.42]). Considering previous findings and the current results, we conclude that facial asymmetry expressed in the facial morphology of autistic children may be related to heritability factors. LAY ABSTRACT: In a previous study, we showed that autistic children presented with greater facial asymmetry than non-autistic children. In the current study, we examined the amount of facial asymmetry shown on three-dimensional facial images of 192 parents of autistic children compared to a control group consisting of 163 similarly aged adults with no known history of autism. Although parents did show greater levels of facial asymmetry than those in the control group, this effect is statistically small. We concluded that the facial asymmetry previously found in autistic children may be related to genetic factors.
Collapse
Affiliation(s)
- Diana Weiting Tan
- School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Syed Zulqarnain Gilani
- School of Sciences, Edith Cowan University, Perth, Western Australia, Australia.,School of Computer Science and Software Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Maryam Boutrus
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Gail A Alvares
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Ajmal Mian
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - David Suter
- School of Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Murray T Maybery
- School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Anthropometric Analysis of the Orbital Region in Children With Autism Spectrum Disorder and Healthy Controls. J Craniofac Surg 2021; 33:322-324. [PMID: 34267125 DOI: 10.1097/scs.0000000000007834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT It was aimed to examine the orbital region in children with autism spectrum disorder and comparison with the healthy controls in the present study. A total of 195 children and adolescents (101 of them were in the autism group, 94 of them were in healthy group) were evaluated. Anterior view photographs were taken, and endocanthion (en), exocanthion (ex), and pupil were determined bilaterally on the photographs. Outer canthal (ex-ex), intercanthal (ex-en), inner canthal (en-en) and interpupillary distances were measured and intercanthal index [(en-en / ex-ex) × 100] was calculated. There was a statistically significant difference between the groups for males for all parameters, while a statistically significant difference was not observed for females. All orbital region distances were higher in male autistic children. Although minor physical anomalies in children and adolescents with autism have been reported before, anthropometric measurements in individuals with autism may differ between genders. Further studies are needed to investigate the differences between genders in autism spectrum disorder.
Collapse
|
11
|
Benítez-Burraco A, Ferretti F, Progovac L. Human Self-Domestication and the Evolution of Pragmatics. Cogn Sci 2021; 45:e12987. [PMID: 34170029 DOI: 10.1111/cogs.12987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
As proposed for the emergence of modern languages, we argue that modern uses of languages (pragmatics) also evolved gradually in our species under the effects of human self-domestication, with three key aspects involved in a complex feedback loop: (a) a reduction in reactive aggression, (b) the sophistication of language structure (with emerging grammars initially facilitating the transition from physical aggression to verbal aggression); and (c) the potentiation of pragmatic principles governing conversation, including, but not limited to, turn-taking and inferential abilities. Our core hypothesis is that the reduction in reactive aggression, one of the key factors in self-domestication processes, enabled us to fully exploit our cognitive and interactional potential as applied to linguistic exchanges, and ultimately to evolve a specific form of communication governed by persuasive reciprocity-a trait of human conversation characterized by both competition and cooperation. In turn, both early crude forms of language, well suited for verbal aggression/insult, and later more sophisticated forms of language, well suited for persuasive reciprocity, significantly contributed to the resolution and reduction of (physical) aggression, thus having a return effect on the self-domestication processes. Supporting evidence for our proposal, as well as grounds for further testing, comes mainly from the consideration of cognitive disorders, which typically simultaneously present abnormal features of self-domestication (including aggressive behavior) and problems with pragmatics and social functioning. While various approaches to language evolution typically reduce it to a single factor, our approach considers language evolution as a multifactorial process, with each player acting upon the other, engaging in an intense mutually reinforcing feedback loop. Moreover, we see language evolution as a gradual process, continuous with the pre-linguistic cognitive abilities, which were engaged in a positive feedback loop with linguistic innovations, and where gene-culture co-evolution and cultural niche construction were the main driving forces.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville
| | - Francesco Ferretti
- Department of Philosophy, Communication and Performing Arts. Roma Tre University
| | | |
Collapse
|
12
|
McKenna BG, Huang Y, Vervier K, Hofammann D, Cafferata M, Al-Momani S, Lowenthal F, Zhang A, Koh JY, Thenuwara S, Brueggeman L, Bahl E, Koomar T, Pottschmidt N, Kalmus T, Casten L, Thomas TR, Michaelson JJ. Genetic and morphological estimates of androgen exposure predict social deficits in multiple neurodevelopmental disorder cohorts. Mol Autism 2021; 12:43. [PMID: 34108004 PMCID: PMC8190870 DOI: 10.1186/s13229-021-00450-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) display a strong male bias. Androgen exposure is profoundly increased in typical male development, but it also varies within the sexes, and previous work has sought to connect morphological proxies of androgen exposure, including digit ratio and facial morphology, to neurodevelopmental outcomes. The results of these studies have been mixed, and the relationships between androgen exposure and behavior remain unclear. METHODS Here, we measured both digit ratio masculinity (DRM) and facial landmark masculinity (FLM) in the same neurodevelopmental cohort (N = 763) and compared these proxies of androgen exposure to clinical and parent-reported features as well as polygenic risk scores. RESULTS We found that FLM was significantly associated with NDD diagnosis (ASD, ADHD, ID; all [Formula: see text]), while DRM was not. When testing for association with parent-reported problems, we found that both FLM and DRM were positively associated with concerns about social behavior ([Formula: see text], [Formula: see text]; [Formula: see text], [Formula: see text], respectively). Furthermore, we found evidence via polygenic risk scores (PRS) that DRM indexes masculinity via testosterone levels ([Formula: see text], [Formula: see text]), while FLM indexes masculinity through a negative relationship with sex hormone binding globulin (SHBG) levels ([Formula: see text], [Formula: see text]). Finally, using the SPARK cohort (N = 9419) we replicated the observed relationship between polygenic estimates of testosterone, SHBG, and social functioning ([Formula: see text], [Formula: see text], and [Formula: see text], [Formula: see text] for testosterone and SHBG, respectively). Remarkably, when considered over the extremes of each variable, these quantitative sex effects on social functioning were comparable to the effect of binary sex itself (binary male: [Formula: see text]; testosterone: [Formula: see text] from 0.1%-ile to 99.9%-ile; SHBG: [Formula: see text] from 0.1%-ile to 99.9%-ile). LIMITATIONS In the devGenes and SPARK cohorts, our analyses rely on indirect, rather than direct measurement of androgens and related molecules. CONCLUSIONS These findings and their replication in the large SPARK cohort lend support to the hypothesis that increasing net androgen exposure diminishes capacity for social functioning in both males and females.
Collapse
Affiliation(s)
| | - Yongchao Huang
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | - Kévin Vervier
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | | | - Mary Cafferata
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | - Seima Al-Momani
- Department of Psychology, University of Nebraska, Omaha, USA
| | | | - Angela Zhang
- University of Washington School of Public Health, Seattle, USA
| | - Jin-Young Koh
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, USA
| | | | - Leo Brueggeman
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | - Ethan Bahl
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | - Tanner Koomar
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | | | - Taylor Kalmus
- Department of Psychology, University of Washington, Seattle, USA
| | - Lucas Casten
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | - Taylor R Thomas
- Department of Psychiatry, University of Iowa, Iowa City, USA
| | | |
Collapse
|
13
|
Agelink van Rentergem JA, Deserno MK, Geurts HM. Validation strategies for subtypes in psychiatry: A systematic review of research on autism spectrum disorder. Clin Psychol Rev 2021; 87:102033. [PMID: 33962352 DOI: 10.1016/j.cpr.2021.102033] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/14/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
Heterogeneity within autism spectrum disorder (ASD) is recognized as a challenge to both biological and psychological research, as well as clinical practice. To reduce unexplained heterogeneity, subtyping techniques are often used to establish more homogeneous subtypes based on metrics of similarity and dissimilarity between people. We review the ASD literature to create a systematic overview of the subtyping procedures and subtype validation techniques that are used in this field. We conducted a systematic review of 156 articles (2001-June 2020) that subtyped participants (range N of studies = 17-20,658), of which some or all had an ASD diagnosis. We found a large diversity in (parametric and non-parametric) methods and (biological, psychological, demographic) variables used to establish subtypes. The majority of studies validated their subtype results using variables that were measured concurrently, but were not included in the subtyping procedure. Other investigations into subtypes' validity were rarer. In order to advance clinical research and the theoretical and clinical usefulness of identified subtypes, we propose a structured approach and present the SUbtyping VAlidation Checklist (SUVAC), a checklist for validating subtyping results.
Collapse
Affiliation(s)
- Joost A Agelink van Rentergem
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands.
| | - Marie K Deserno
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands
| | - Hilde M Geurts
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Dutch Autism & ADHD Research Center, the Netherlands; Dr. Leo Kannerhuis, the Netherlands
| |
Collapse
|
14
|
Maniscalco L, Frédérique BB, Roccella M, Matranga D, Tripi G. A Preliminary Study on Cranio-Facial Characteristics Associated with Minor Neurological Dysfunctions (MNDs) in Children with Autism Spectrum Disorders (ASD). Brain Sci 2020; 10:brainsci10080566. [PMID: 32824853 PMCID: PMC7465923 DOI: 10.3390/brainsci10080566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background. Craniofacial anomalies and minor neurological dysfunction (MNDs) have been identified, in literature, as risk factors for neurodevelopmental disorders. They represent physical indicators of embryonic development suggesting a possible contributory role of complications during early, even pre-conceptional, phases of ontogeny in autism spectrum disorders (ASD). Limited research has been conducted about the co-occurrence of the two biomarkers in children with ASD. This study investigates the associative patterns of cranio-facial anomalies and MNDs in ASD children, and whether these neurodevelopmental markers correlate with intensity of ASD symptoms and overall functioning. Methods. Caucasian children with ASD (n = 33) were examined. Measures were based on five anthropometric cranio-facial indexes and a standardized and detailed neurological examination according to Touwen. Relationships between anthropometric z-scores, MNDs and participant characteristics (i.e., age, cognitive abilities, severity of autistic symptoms measured using the Childhood Autism Rating Scale (CARS) checklist) were assessed. Results. With respect to specific MNDs, significant positive correlations were found between Cephalic Index and Sensory deficits (p-value < 0.001), which did not correlate with CARS score. Importantly, CARS score was positively linked with Intercanthal Index (p-value < 0.001), and negatively associated with posture and muscle tone (p-value = 0.027) and Facial Index (p-value = 0.004). Conclusion. Our data show a link between a specific facial phenotype and anomalies in motor responses, suggesting early brain dysmaturation involving subcortical structures in cerebro-craniofacial development of autistic children. This research supports the concept of a “social brain functional morphology” in autism spectrum disorders.
Collapse
Affiliation(s)
- Laura Maniscalco
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-BIND-University of Palermo, 90127 Palermo, Italy;
| | | | - Michele Roccella
- Department of Psychological Sciences, Pedagogical and Education, University of Palermo, 90128 Palermo, Italy;
| | - Domenica Matranga
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza, “G. D’Alessandro”-PROMISE-University of Palermo, 90127 Palermo, Italy;
| | - Gabriele Tripi
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza, “G. D’Alessandro”-PROMISE-University of Palermo, 90127 Palermo, Italy;
- Department of Childhood Psychiatry for Neurodevelopmentals Disorders, Centre Hospitalier du Chinonais, 37500 Saint-Benoît-la-Forêt, France
- Correspondence:
| |
Collapse
|
15
|
Tan DW, Foo YZ, Downs J, Finlay-Jones A, Leonard H, Licari MK, Mullan N, Symons M, Varcin KJ, Whitehouse AJ, Alvares GA. A preliminary investigation of the effects of prenatal alcohol exposure on facial morphology in children with Autism Spectrum Disorder. Alcohol 2020; 86:75-80. [PMID: 32243902 DOI: 10.1016/j.alcohol.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 01/13/2023]
Abstract
Alcohol exposure during pregnancy has been associated with altered brain development and facial dysmorphology. While Autism Spectrum Disorder (ASD) is not specifically related to distinct facial phenotypes, recent studies have suggested certain facial characteristics such as increased facial masculinity and asymmetry may be associated with ASD and its clinical presentations. In the present study, we conducted a preliminary investigation to examine facial morphology in autistic children with (n = 37; mean age = 8.21 years, SD = 2.72) and without (n = 100; mean age = 8.37 years, SD = 2.47) prenatal alcohol exposure. Using three-dimensional facial scans and principal component analysis, we identified a facial shape associated with prenatal alcohol exposure in autistic children. However, variations in the alcohol-related facial shape were generally not associated with behavioral and cognitive outcomes. These findings suggest that while early exposure to alcohol may influence the development of facial structures, it does not appear to be associated with ASD phenotypic variability. Importantly, although these findings do not implicate a role for prenatal alcohol exposure in the etiology of ASD, further research is warranted to investigate the link between prenatal alcohol exposure and facial morphology differences among neurodevelopmental conditions.
Collapse
|
16
|
Myers L, Anderlid BM, Nordgren A, Lundin K, Kuja-Halkola R, Tammimies K, Bölte S. Clinical versus automated assessments of morphological variants in twins with and without neurodevelopmental disorders. Am J Med Genet A 2020; 182:1177-1189. [PMID: 32162839 DOI: 10.1002/ajmg.a.61545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Physical examinations are recommended as part of a comprehensive evaluation for individuals with neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder. These examinations should include assessment for morphological variants. Previous studies have shown an increase in morphological variants in individuals with NDDs, particularly ASD, and that these variants may be present in greater amounts in individuals with genetic alterations. Unfortunately, assessment for morphological variants can be subjective and time-consuming, and require a high degree of clinical expertise. Therefore, objective, automated methods of morphological assessment are desirable. This study compared the use of Face2Gene, an automated tool to explore facial morphological variants, to clinical consensus assessment, using a cohort of N = 290 twins enriched for NDDs (n = 135 with NDD diagnoses). Agreement between automated and clinical assessments were satisfactory to complete (78.3-100%). In our twin sample, individuals with NDDs did not have greater numbers of facial morphological variants when compared to those with typical development, nor when controlling for shared genetic and environmental factors within twin pairs. Common facial morphological variants in those with and without NDDs were similar and included thick upper lip vermilion, abnormality of the nasal tip, long face, and upslanted palpebral fissure. We conclude that although facial morphological variants can be assessed reliably in NDDs with automated tools like Face2Gene, clinical utility is limited when just exploring the facial region. Therefore, currently, automated assessments may best complement, rather than replace, in-person clinical assessments.
Collapse
Affiliation(s)
- Lynnea Myers
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karl Lundin
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia
| |
Collapse
|
17
|
Benítez-Burraco A. Genes Positively Selected in Domesticated Mammals Are Significantly Dysregulated in the Blood of Individuals with Autism Spectrum Disorders. Mol Syndromol 2020; 10:306-312. [PMID: 32021604 PMCID: PMC6995977 DOI: 10.1159/000505116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Human self-domestication (i.e., the presence of traits in our species that are commonly found in domesticated animals) has been hypothesized to have contributed to the emergence of many human-specific features, including aspects of our cognition and behavior. Signs of self-domestication have been claimed to be attenuated in individuals with autism spectrum disorders (ASD), this conceivably accounting for facets of their distinctive cognitive and behavioral profile, although this possibility needs to be properly tested. In this study, we have found that candidate genes for mammal domestication, but not for neural crest development and function, are significantly dysregulated in the blood of subjects with ASD. The set of differentially expressed genes (DEGs) is enriched in biological and molecular processes, as well as in pathological phenotypes, of relevance for the etiology of ASD, like lipid metabolism, cell apoptosis, the activity of the insulin-like growth factor, gene expression regulation, skin/hair anomalies, musculoskeletal abnormalities, and hearing impairment. Moreover, among the DEGs, there are known candidates for ASD and/or genes involved in biological processes known to be affected in ASD. Our findings give support to the view that one important aspect of the etiopathogenesis of ASD is the abnormal manifestation of features of human self-domestication.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
18
|
Kong C. Ethical dangers of facial phenotyping through photography in psychiatric genomics studies. JOURNAL OF MEDICAL ETHICS 2019; 45:730-735. [PMID: 31363012 DOI: 10.1136/medethics-2019-105478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Psychiatric genomics research protocols are increasingly incorporating tools of deep phenotyping to observe and examine phenotypic abnormalities among individuals with neurodevelopmental disorders. In particular, photography and the use of two-dimensional and three-dimensional facial analysis is thought to shed further light on the phenotypic expression of the genes underlying neurodevelopmental disorders, as well as provide potential diagnostic tools for clinicians. In this paper, I argue that the research use of photography to aid facial phenotyping raises deeply fraught issues from an ethical point of view. First, the process of objectification through photographic imagery and facial analysis could potentially worsen the stigmatisation of persons with neurodevelopmental disorders. Second, the use of photography for facial phenotyping has worrying parallels with the historical misuse of photography to advance positive and negative eugenics around race, ethnicity and intellectual disability. The paper recommends ethical caution in the use of photography and facial phenotyping in psychiatric genomics studies exploring neurodevelopmental disorders, outlining certain necessary safeguards, such as a critical awareness of the history of anthropometric photography use among scientists, as well as the exploration of photographic methodologies that could potentially empower individuals with disabilities.
Collapse
Affiliation(s)
- Camillia Kong
- Birkbeck University of London Institute for Criminal Policy Research, London, UK
| |
Collapse
|
19
|
Tripi G, Roux S, Matranga D, Maniscalco L, Glorioso P, Bonnet-Brilhault F, Roccella M. Cranio-Facial Characteristics in Children with Autism Spectrum Disorders (ASD). J Clin Med 2019; 8:jcm8050641. [PMID: 31075935 PMCID: PMC6571684 DOI: 10.3390/jcm8050641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Cranio-facial anomalies frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm. The identification of differences in the facial phenotype of children with Autism Spectrum Disorders (ASD) may reflect alterations in embryologic brain development in children with ASD. Methods: we evaluated 33 caucasian children with ASD using a 2D computerized photogrammetry. Anthropometric euclidean measurements and landmarks located on the soft tissue of the face and head, were based on five cranio-facial indexes. Relationships between anthropometric z-scores and participant characteristics (i.e., age, Global IQ, severity of autistic symptoms measured using the CARS checklist) were assessed. Results: Cephalic index z-score differed significantly from 0 in our ASD group (p = 0.019). Moreover, a significant negative correlation was found between Facial Index z-score and CARS score (p = 0.003); conversely, a positive correlation was found between Interchantal Index z-score and CARS score (p = 0.028). Conclusion: our measurements shows a dolichocephalic head shape which is not correlated with autism severity. Importantly, two craniofacial markers were significantly correlated with autism severity: increased orbital hyperthelorism and decrease of height of the facial midline. These data support previous findings of craniofacial anomalies in autism spectrum disorder suggesting an “ASD facial phenotype” that could be used to improve ASD diagnoses.
Collapse
Affiliation(s)
- Gabriele Tripi
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro"-PROMISE-University of Palermo, 90127 Palermo, Italy.
- Childhood Psychiatric Service for Neurodevelopmentals Disorders, Centre Hospitalier du Chinonais, 37500 Saint-Benoît-la-Forêt, France.
| | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France.
| | - Domenica Matranga
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro"-PROMISE-University of Palermo, 90127 Palermo, Italy.
| | - Laura Maniscalco
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-BIND-University of Palermo, 90127 Palermo, Italy.
| | - Pasqualino Glorioso
- Childhood Psychiatric Service for Neurodevelopmentals Disorders, Centre Hospitalier du Chinonais, 37500 Saint-Benoît-la-Forêt, France.
| | | | - Michele Roccella
- Department of Psychological Sciences, Pedagogical and Education, University of Palermo, 90128 Palermo, Italy.
| |
Collapse
|
20
|
Matta J, Zhao J, Ercal G, Obafemi-Ajayi T. Applications of node-based resilience graph theoretic framework to clustering autism spectrum disorders phenotypes. APPLIED NETWORK SCIENCE 2018; 3:38. [PMID: 30839816 PMCID: PMC6214326 DOI: 10.1007/s41109-018-0093-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/08/2018] [Indexed: 06/09/2023]
Abstract
With the growing ubiquity of data in network form, clustering in the context of a network, represented as a graph, has become increasingly important. Clustering is a very useful data exploratory machine learning tool that allows us to make better sense of heterogeneous data by grouping data with similar attributes based on some criteria. This paper investigates the application of a novel graph theoretic clustering method, Node-Based Resilience clustering (NBR-Clust), to address the heterogeneity of Autism Spectrum Disorder (ASD) and identify meaningful subgroups. The hypothesis is that analysis of these subgroups would reveal relevant biomarkers that would provide a better understanding of ASD phenotypic heterogeneity useful for further ASD studies. We address appropriate graph constructions suited for representing the ASD phenotype data. The sample population is drawn from a very large rigorous dataset: Simons Simplex Collection (SSC). Analysis of the results performed using graph quality measures, internal cluster validation measures, and clinical analysis outcome demonstrate the potential usefulness of resilience measure clustering for biomedical datasets. We also conduct feature extraction analysis to characterize relevant biomarkers that delineate the resulting subgroups. The optimal results obtained favored predominantly a 5-cluster configuration.
Collapse
Affiliation(s)
- John Matta
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL USA
| | - Junya Zhao
- Department of Computer Science, Missouri State University, Springfield, MO USA
| | - Gunes Ercal
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL USA
| | | |
Collapse
|
21
|
Abstract
To reduce phenotypic heterogeneity of Autism spectrum disorders (ASD) and add to the current diagnostic discussion this study aimed at identifying clinically meaningful ASD subgroups. Cluster analyses were used to describe empirically derived groups based on the Autism Diagnostic Interview-revised (ADI-R) in a large sample of n = 463 individuals with ASD aged 3-21. Three clusters were observed. Most severely affected individuals regarding all core symptoms were allocated to cluster 2. Cluster 3 comprised moderate symptom severity of social communication impairments (SCI) and less stereotyped repetitive behavior (RRB). Minor SCI and relatively more RRB characterized cluster 1. This study offers support for both, a symptom profile, and a gradient model of ASD within the spectrum due to the sample included.
Collapse
|
22
|
Hypermasculinised facial morphology in boys and girls with Autism Spectrum Disorder and its association with symptomatology. Sci Rep 2017; 7:9348. [PMID: 28839245 PMCID: PMC5570931 DOI: 10.1038/s41598-017-09939-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Elevated prenatal testosterone exposure has been associated with Autism Spectrum Disorder (ASD) and facial masculinity. By employing three-dimensional (3D) photogrammetry, the current study investigated whether prepubescent boys and girls with ASD present increased facial masculinity compared to typically-developing controls. There were two phases to this research. 3D facial images were obtained from a normative sample of 48 boys and 53 girls (3.01-12.44 years old) to determine typical facial masculinity/femininity. The sexually dimorphic features were used to create a continuous 'gender score', indexing degree of facial masculinity. Gender scores based on 3D facial images were then compared for 54 autistic and 54 control boys (3.01-12.52 years old), and also for 20 autistic and 60 control girls (4.24-11.78 years). For each sex, increased facial masculinity was observed in the ASD group relative to control group. Further analyses revealed that increased facial masculinity in the ASD group correlated with more social-communication difficulties based on the Social Affect score derived from the Autism Diagnostic Observation Scale-Generic (ADOS-G). There was no association between facial masculinity and the derived Restricted and Repetitive Behaviours score. This is the first study demonstrating facial hypermasculinisation in ASD and its relationship to social-communication difficulties in prepubescent children.
Collapse
|
23
|
Boutrus M, Maybery MT, Alvares GA, Tan DW, Varcin KJ, Whitehouse AJO. Investigating facial phenotype in autism spectrum conditions: The importance of a hypothesis driven approach. Autism Res 2017; 10:1910-1918. [PMID: 28816000 DOI: 10.1002/aur.1824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 11/11/2022]
Abstract
Atypical facial characteristics have been observed in many disorders associated with developmental disability. While autism spectrum conditions (ASC) have not previously been thought to be associated with a distinct facial phenotype, an emerging research literature is casting doubt on this assumption. The identification of differences in the facial phenotype of individuals with ASC may contribute to efforts to promote early identification of the condition and help elucidate etiological pathways. With the aim of identifying facial phenotypes associated with ASC, this commentary evaluated facial features purported to distinguish ASC from typical development. Although there is little consensus across the reviewed studies for the majority of facial characteristics described, preliminary evidence suggests increased facial asymmetry may be more common in ASC. There is also evidence to suggest that there are morphologically distinct subgroups within ASC that correspond with different cognitive and behavioral symptomatology. However, in light of the various inconsistencies in the reported literature, and based on an accumulating understanding of etiological pathways proposed to be associated with ASC, we propose an alternative paradigm for investigating facial phenotypes in ASC. A series of studies are outlined to demonstrate the promise of a research program that has taken a hypothesis-driven approach to examine facial phenotypes associated with increased exposure to prenatal testosterone and to ASC. Autism Res 2017, 10: 1910-1918. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY This commentary reviewed studies that found differences in the facial features of individuals with autism spectrum conditions (ASC) compared to typically developing individuals. While there is little agreement between studies, there is some support for asymmetrical facial features associated with ASC, and preliminary evidence that particular facial features relate to specific patterns of cognitive and behavioral symptoms. However, in light of inconsistencies between studies and based on accumulating understanding of etiological pathways, we propose an alternative approach to investigating facial differences in ASC.
Collapse
Affiliation(s)
- Maryam Boutrus
- Telethon Kids Institute, University of Western Australia, West Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia.,School of Psychological Science, University of Western Australia, Perth, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, West Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| | - Diana Weiting Tan
- Telethon Kids Institute, University of Western Australia, West Perth, Australia.,School of Psychological Science, University of Western Australia, Perth, Australia
| | - Kandice J Varcin
- Telethon Kids Institute, University of Western Australia, West Perth, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, West Perth, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| |
Collapse
|
24
|
Sasson NJ, Faso DJ, Nugent J, Lovell S, Kennedy DP, Grossman RB. Neurotypical Peers are Less Willing to Interact with Those with Autism based on Thin Slice Judgments. Sci Rep 2017; 7:40700. [PMID: 28145411 PMCID: PMC5286449 DOI: 10.1038/srep40700] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/07/2016] [Indexed: 12/03/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD), including those who otherwise require less support, face severe difficulties in everyday social interactions. Research in this area has primarily focused on identifying the cognitive and neurological differences that contribute to these social impairments, but social interaction by definition involves more than one person and social difficulties may arise not just from people with ASD themselves, but also from the perceptions, judgments, and social decisions made by those around them. Here, across three studies, we find that first impressions of individuals with ASD made from thin slices of real-world social behavior by typically-developing observers are not only far less favorable across a range of trait judgments compared to controls, but also are associated with reduced intentions to pursue social interaction. These patterns are remarkably robust, occur within seconds, do not change with increased exposure, and persist across both child and adult age groups. However, these biases disappear when impressions are based on conversational content lacking audio-visual cues, suggesting that style, not substance, drives negative impressions of ASD. Collectively, these findings advocate for a broader perspective of social difficulties in ASD that considers both the individual’s impairments and the biases of potential social partners.
Collapse
Affiliation(s)
- Noah J Sasson
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, GR41, 800 W Campbell Road, Richardson, TX, 75080-3021, USA
| | - Daniel J Faso
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, GR41, 800 W Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jack Nugent
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, USA
| | - Sarah Lovell
- Department of Communication Sciences and Disorders, Emerson College, 120 Boylston Street, Boston, MA 02116, USA
| | - Daniel P Kennedy
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, USA
| | - Ruth B Grossman
- Department of Communication Sciences and Disorders, Emerson College, 120 Boylston Street, Boston, MA 02116, USA
| |
Collapse
|
25
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|