1
|
Liu X, Li Y, Xu L, Zhang T, Cui H, Wei Y, Xia M, Su W, Tang Y, Tang X, Zhang D, Spillmann L, Max Andolina I, McLoughlin N, Wang W, Wang J. Spatial and Temporal Abnormalities of Spontaneous Fixational Saccades and Their Correlates With Positive and Cognitive Symptoms in Schizophrenia. Schizophr Bull 2024; 50:78-88. [PMID: 37066730 PMCID: PMC10754167 DOI: 10.1093/schbul/sbad039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Visual fixation is a dynamic process, with the spontaneous occurrence of microsaccades and macrosaccades. These fixational saccades are sensitive to the structural and functional alterations of the cortical-subcortical-cerebellar circuit. Given that dysfunctional cortical-subcortical-cerebellar circuit contributes to cognitive and behavioral impairments in schizophrenia, we hypothesized that patients with schizophrenia would exhibit abnormal fixational saccades and these abnormalities would be associated with the clinical manifestations. STUDY DESIGN Saccades were recorded from 140 drug-naïve patients with first-episode schizophrenia and 160 age-matched healthy controls during ten separate trials of 6-second steady fixations. Positive and negative symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Cognition was assessed using the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB). STUDY RESULTS Patients with schizophrenia exhibited fixational saccades more vertically than controls, which was reflected in more vertical saccades with angles around 90° and a greater vertical shift of horizontal saccades with angles around 0° in patients. The fixational saccades, especially horizontal saccades, showed longer durations, faster peak velocities, and larger amplitudes in patients. Furthermore, the greater vertical shift of horizontal saccades was associated with higher PANSS total and positive symptom scores in patients, and the longer duration of horizontal saccades was associated with lower MCCB neurocognitive composite, attention/vigilance, and speed of processing scores. Finally, based solely on these fixational eye movements, a K-nearest neighbors model classified patients with an accuracy of 85%. Conclusions: Our results reveal spatial and temporal abnormalities of fixational saccades and suggest fixational saccades as a promising biomarker for cognitive and positive symptoms and for diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychological Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqing Xia
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, China
| | - Niall McLoughlin
- School of Optometry and Vision Science, University of Bradford, Bradford, UK
| | - Wei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Beijing, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Zhou R, Xie X, Wang J, Ma B, Hao X. Why do children with autism spectrum disorder have abnormal visual perception? Front Psychiatry 2023; 14:1087122. [PMID: 37255685 PMCID: PMC10225551 DOI: 10.3389/fpsyt.2023.1087122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with severe impairment in social functioning. Visual information processing provides nonverbal cues that support social interactions. ASD children exhibit abnormalities in visual orientation, continuous visual exploration, and visual-spatial perception, causing social dysfunction, and mechanisms underlying these abnormalities remain unclear. Transmission of visual information depends on the retina-lateral geniculate nucleus-visual cortex pathway. In ASD, developmental abnormalities occur in rapid expansion of the visual cortex surface area with constant thickness during early life, causing abnormal transmission of the peak of the visual evoked potential (P100). We hypothesized that abnormal visual perception in ASD are related to the abnormal visual information transmission and abnormal development of visual cortex in early life, what's more, explored the mechanisms of abnormal visual symptoms to provide suggestions for future research.
Collapse
Affiliation(s)
- Rongyi Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyue Xie
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Wang
- Henan Provincial People's Hospital, Henan Institute of Ophthalmology, Zhengzhou, China
| | - Bingxiang Ma
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Hao
- Renmin University of China, Beijing, China
| |
Collapse
|
3
|
Ghasia F, Wang J. Amblyopia and fixation eye movements. J Neurol Sci 2022; 441:120373. [PMID: 36007287 DOI: 10.1016/j.jns.2022.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Amblyopia is a neurodevelopmental disorder caused by abnormal visual experience in early life that affects 3-5% of the population. Amblyopia results in a host of monocular and binocular visual afferent function deficits including reduced visual acuity, contrast sensitivity, depth perception, interocular suppression, and efferent function abnormalities such as unstable and inaccurate fixation. Conventional treatments such as patching therapy and newer dichoptic treatments are not always successful as 30-40% of patients experience recurrence/regression of amblyopia. There are numerous review articles focused on visual afferent function deficits and treatment modalities and outcomes in amblyopia. Recently, the advent of high spatial and temporal resolution eye trackers has spurred studies on fixation eye movements (FEMs) in healthy controls and neurologic and ophthalmic disorders. In this focused review, we will summarize studies evaluating FEM abnormalities in amblyopia. We will first describe the common devices and techniques used to quantify fixation abnormalities, and then highlight the importance of systematically evaluating the eye movements under different viewing conditions and describe the parameters crucial in assessing FEM abnormalities in amblyopia. We will summarize the evidence suggesting that FEM abnormalities are not limited to the amblyopic eye only but also affects the fellow eye and that FEM abnormalities can serve as biomarkers to predict the impact of amblyopia on visual functions. Beyond diagnosis, we will discuss the treatment and prognostic implications of the evaluation of FEM abnormalities in clinical practice.
Collapse
Affiliation(s)
- Fatema Ghasia
- Cleveland Clinic, Cleveland, OH, United States of America.
| | - Jingyun Wang
- SUNY College of Optometry, NY, New York, United States of America
| |
Collapse
|
4
|
Canu D, Ioannou C, Müller K, Martin B, Fleischhaker C, Biscaldi M, Beauducel A, Smyrnis N, van Elst LT, Klein C. Evidence towards a continuum of impairment across neurodevelopmental disorders from basic ocular-motor tasks. Sci Rep 2022; 12:16521. [PMID: 36192503 PMCID: PMC9530118 DOI: 10.1038/s41598-022-19661-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Findings of genetic overlap between Schizophrenia, Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) contributed to a renewed conceptualization of these disorders as laying on a continuum based on aetiological, pathophysiological and neurodevelopmental features. Given that cognitive impairments are core to their pathophysiology, we compared patients with schizophrenia, ADHD, ASD, and controls on ocular-motor and manual-motor tasks, challenging crucial cognitive processes. Group comparisons revealed inhibition deficits common to all disorders, increased intra-subject variability in schizophrenia and, to a lesser extent, ADHD as well as slowed processing in schizophrenia. Patterns of deviancies from controls exhibited strong correlations, along with differences that posited schizophrenia as the most impaired group, followed by ASD and ADHD. While vector correlations point towards a common neurodevelopmental continuum of impairment, vector levels suggest differences in the severity of such impairment. These findings argue towards a dimensional approach to Neurodevelopmental Disorders' pathophysiological mechanisms.
Collapse
Affiliation(s)
- Daniela Canu
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Chara Ioannou
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katarina Müller
- Psychotherapeutisches Wohnheim für Junge Menschen Leppermühle, Buseck, Germany
| | - Berthold Martin
- Psychotherapeutisches Wohnheim für Junge Menschen Leppermühle, Buseck, Germany
| | - Christian Fleischhaker
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monica Biscaldi
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Nikolaos Smyrnis
- 2nd Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital "ATTIKON", Athens, Greece
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute «COSTAS STEFANIS», Athens, Greece
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- 2nd Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital "ATTIKON", Athens, Greece.
- Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Leonard BT, Kontos AP, Marchetti GF, Zhang M, Eagle SR, Reecher HM, Bensinger ES, Snyder VC, Holland CL, Sheehy CK, Rossi EA. Fixational eye movements following concussion. J Vis 2021; 21:11. [PMID: 34940825 PMCID: PMC8709928 DOI: 10.1167/jov.21.13.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate fixational eye movements (FEMs) with high spatial and temporal resolution following concussion, where oculomotor symptoms and impairments are common. Concussion diagnosis was determined using current consensus guidelines. A retinal eye-tracking device, the tracking scanning laser ophthalmoscope (TSLO), was used to measure FEMs in adolescents and young adults following a concussion and in an unaffected control population. FEMs were quantified in two fixational paradigms: (1) when fixating on the center, or (2) when fixating on the corner of the TSLO imaging raster. Fixational saccade amplitude in recent concussion patients (≤ 21 days) was significantly greater, on average, in the concussion group (mean = 1.03°; SD = 0.36°) compared with the controls (mean = 0.82°; SD = 0.31°), when fixating on the center of the imaging raster (t = 2.87, df = 82, p = 0.005). These fixational saccades followed the main sequence and therefore also had greater peak velocity (t = 2.86, df = 82, p = 0.006) and peak acceleration (t = 2.80, df = 82, p = 0.006). These metrics significantly differentiated concussed from controls (AUC = 0.67-0.68, minimum p = 0.005). No group differences were seen for the drift metrics in either task or for any of the FEMs metrics in the corner-of-raster fixation task. Fixational saccade amplitudes were significantly different in the concussion group, but only when fixating on the center of the raster. This task specificity suggests that task optimization may improve differentiation and warrants further study. FEMs measured in the acute-to-subacute period of concussion recovery may provide a quick (<3 minutes), objective, sensitive, and accurate ocular dysfunction assessment. Future work should assess the impact of age, mechanism of injury, and post-concussion recovery on FEM alterations following concussion.
Collapse
Affiliation(s)
- Bianca T Leonard
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Anthony P Kontos
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,
| | | | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Shawn R Eagle
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,
| | - Hope M Reecher
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Ethan S Bensinger
- Vision Science Group, University of California, Berkeley, Berkeley, CA, USA.,
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,
| | - Cyndi L Holland
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,
| | - Christy K Sheehy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA., rossilab.org
| |
Collapse
|
6
|
Shafer RL, Lewis MH, Newell KM, Bodfish JW. Atypical neural processing during the execution of complex sensorimotor behavior in autism. Behav Brain Res 2021; 409:113337. [PMID: 33933522 PMCID: PMC8188828 DOI: 10.1016/j.bbr.2021.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
Stereotyped behavior is rhythmic, repetitive movement that is essentially invariant in form. Stereotypy is common in several clinical disorders, such as autism spectrum disorders (ASD), where it is considered maladaptive. However, it also occurs early in typical development (TD) where it is hypothesized to serve as the foundation on which complex, adaptive motor behavior develops. This transition from stereotyped to complex movement in TD is thought to be supported by sensorimotor integration. Stereotypy in clinical disorders may persist due to deficits in sensorimotor integration. The present study assessed whether differences in sensorimotor processing may limit the expression of complex motor behavior in individuals with ASD and contribute to the clinical stereotypy observed in this population. Adult participants with ASD and TD performed a computer-based stimulus-tracking task in the presence and absence of visual feedback. Electroencephalography was recorded during the task. Groups were compared on motor performance (root mean square error), motor complexity (sample entropy), and neural complexity (multiscale sample entropy of the electroencephalography signal) in the presence and absence of visual feedback. No group differences were found for motor performance or motor complexity. The ASD group demonstrated greater neural complexity and greater differences between feedback conditions than TD individuals, specifically in signals relevant to sensorimotor processing. Motor performance and motor complexity correlated with clinical stereotypy in the ASD group. These findings support the hypothesis that individuals with ASD have differences in sensorimotor processing when executing complex motor behavior and that stereotypy is associated with low motor complexity.
Collapse
Affiliation(s)
- Robin L Shafer
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21(st) Avenue South, Nashville, TN, 37232, USA.
| | - Mark H Lewis
- Department of Psychiatry, University of Florida College of Medicine, PO Box 100256, L4-100 McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL, 3261, USA.
| | - Karl M Newell
- Department of Kinesiology, University of Georgia, G3 Aderhold Hall, 110 Carlton Street, Athens, GA, 30602, USA.
| | - James W Bodfish
- Vanderbilt Brain Institute, Vanderbilt University, 6133 Medical Research Building III, 465 21(st) Avenue South, Nashville, TN, 37232, USA; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 8310 Medical Center East, 1215 21(st) Avenue South, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Individual differences in working memory capacity and the regulation of arousal. Atten Percept Psychophys 2020; 82:3273-3290. [DOI: 10.3758/s13414-020-02077-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Individual differences in baseline oculometrics: Examining variation in baseline pupil diameter, spontaneous eye blink rate, and fixation stability. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1074-1093. [PMID: 30888645 DOI: 10.3758/s13415-019-00709-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Individual differences in baseline oculometrics (baseline pupil diameter, spontaneous eye blink rate, fixation stability), and their relation with cognitive abilities, personality traits, and self-report assessments were examined. Participants performed a baseline eye measure in which they were instructed to stare at a fixation point onscreen for 5 min. Following the baseline eye measure, participants completed a questionnaire asking what they were thinking about during the baseline eye measure. Participants also completed various cognitive ability measures assessing working memory capacity, attention control, and off-task thinking. Finally, participants completed a number of questionnaires assessing personality, Attention Deficit/Hyperactivity Disorder symptomology, mind wandering, and morningness-eveningness. Overall, the vast majority of correlations with the baseline eye measures were weak and nonsignificant, suggesting that these associations may not be very robust. The results also demonstrated the importance of examining what participants are thinking about during the baseline measure. These results add to the growing body of findings suggesting inconsistent relations between different baseline eye measures and various individual differences constructs.
Collapse
|
9
|
Kovarski K, Malvy J, Khanna RK, Arsène S, Batty M, Latinus M. Reduced visual evoked potential amplitude in autism spectrum disorder, a variability effect? Transl Psychiatry 2019; 9:341. [PMID: 31852886 PMCID: PMC6920480 DOI: 10.1038/s41398-019-0672-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Atypical sensory behaviours represent a core symptom of autism spectrum disorder (ASD). Investigating early visual processing is crucial to deepen our understanding of higher-level processes. Visual evoked potentials (VEPs) to pattern-reversal checkerboards were recorded in ASD children and age-matched controls. Peak analysis of the P100 component and two types of single-trial analyses were carried out. P100 amplitude was reduced in the ASD group, consistent with previous reports. The analysis of the proportion of trials with a positive activity in the latency range of the P100, measuring inter-trial (in)consistency, allowed identifying two subgroups of ASD participants: the first group, as control children, showed a high inter-trial consistency, whereas the other group showed an inter-trial inconsistency. Analysis of median absolute deviation of single-trial P100 (st-P100) latencies revealed an increased latency variability in the ASD group. Both single-trial analyses revealed increased variability in a subset of children with ASD. To control for this variability, VEPs were reconstructed by including only positive trials or trials with homogeneous st-P100 latencies. These control analyses abolished group differences, confirming that the reduced P100 amplitude results from increased inter-trial variability in ASD. This increased variability in ASD supports the neural noise theory. The existence of subgroups in ASD suggests that the neural response variability is not a genuine characteristic of the entire autistic spectrum, but rather characterized subgroups of children. Exploring the relationship between sensory responsiveness and inter-trial variability could provide more precise bioclinical profiles in children with ASD, and complete the functional diagnostic crucial for the development of individualized therapeutical projects.
Collapse
Affiliation(s)
- Klara Kovarski
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,CNRS (Integrative Neuroscience and Cognition Center, UMR 8002), Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Fondation Ophtalmologique A. de Rothschild, Paris, France.
| | - Joëlle Malvy
- 0000 0001 2182 6141grid.12366.30UMR 1253, iBrain, Université de Tours, Inserm, Tours, France ,0000 0004 1765 1600grid.411167.4CHRU de Tours, Centre Universitaire de Pédopsychiatrie, Tours, France
| | - Raoul K. Khanna
- 0000 0001 2182 6141grid.12366.30UMR 1253, iBrain, Université de Tours, Inserm, Tours, France ,0000 0004 1765 1600grid.411167.4CHRU de Tours, Département d’Ophtalmologie, Tours, France
| | - Sophie Arsène
- 0000 0004 1765 1600grid.411167.4CHRU de Tours, Département d’Ophtalmologie, Tours, France
| | - Magali Batty
- 0000 0001 2353 1689grid.11417.32Université de Toulouse, CERPPS, Toulouse, France
| | - Marianne Latinus
- 0000 0001 2182 6141grid.12366.30UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
10
|
Orekhova EV, Stroganova TA, Schneiderman JF, Lundström S, Riaz B, Sarovic D, Sysoeva OV, Brant G, Gillberg C, Hadjikhani N. Neural gain control measured through cortical gamma oscillations is associated with sensory sensitivity. Hum Brain Mapp 2019; 40:1583-1593. [PMID: 30549144 DOI: 10.1002/hbm.24469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Gamma oscillations facilitate information processing by shaping the excitatory input/output of neuronal populations. Recent studies in humans and nonhuman primates have shown that strong excitatory drive to the visual cortex leads to suppression of induced gamma oscillations, which may reflect inhibitory-based gain control of network excitation. The efficiency of the gain control measured through gamma oscillations may in turn affect sensory sensitivity in everyday life. To test this prediction, we assessed the link between self-reported sensitivity and changes in magneto-encephalographic gamma oscillations as a function of motion velocity of high-contrast visual gratings. The induced gamma oscillations increased in frequency and decreased in power with increasing stimulation intensity. As expected, weaker suppression of the gamma response correlated with sensory hypersensitivity. Robustness of this result was confirmed by its replication in the two samples: neurotypical subjects and people with autism, who had generally elevated sensory sensitivity. We conclude that intensity-related suppression of gamma response is a promising biomarker of homeostatic control of the excitation-inhibition balance in the visual cortex.
Collapse
Affiliation(s)
- Elena V Orekhova
- Gillberg Neuropsychiatry Centre (GNC), University of Gothenburg, Gothenburg, Sweden.,Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center), Moscow, Russia.,Autism Research Laboratory, Moscow State University of Psychology and Education, Moscow, Russia
| | - Tatiana A Stroganova
- Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center), Moscow, Russia.,Autism Research Laboratory, Moscow State University of Psychology and Education, Moscow, Russia
| | - Justin F Schneiderman
- Department of Clinical Neurophysiology, University of Gothenburg, Institute of Neuroscience & Physiology, Gothenburg, Sweden.,Chalmers University of Technology and MedTech West, Gothenburg, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre (GNC), University of Gothenburg, Gothenburg, Sweden
| | - Bushra Riaz
- Department of Clinical Neurophysiology, University of Gothenburg, Institute of Neuroscience & Physiology, Gothenburg, Sweden
| | - Darko Sarovic
- Gillberg Neuropsychiatry Centre (GNC), University of Gothenburg, Gothenburg, Sweden
| | - Olga V Sysoeva
- Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center), Moscow, Russia.,Autism Research Laboratory, Moscow State University of Psychology and Education, Moscow, Russia
| | - Georg Brant
- Chalmers University of Technology and MedTech West, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre (GNC), University of Gothenburg, Gothenburg, Sweden
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Centre (GNC), University of Gothenburg, Gothenburg, Sweden.,MGH/MIT/HST Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
11
|
Tal N, Yuval‐Greenberg S. Reducing saccadic artifacts and confounds in brain imaging studies through experimental design. Psychophysiology 2018; 55:e13215. [DOI: 10.1111/psyp.13215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Noam Tal
- School of Psychological SciencesTel‐Aviv University Tel‐Aviv Israel
| | - Shlomit Yuval‐Greenberg
- School of Psychological SciencesTel‐Aviv University Tel‐Aviv Israel
- Sagol School of NeuroscienceTel‐Aviv University Tel‐Aviv Israel
| |
Collapse
|
12
|
Rigas I, Friedman L, Komogortsev O. Study of an Extensive Set of Eye Movement Features: Extraction Methods and Statistical Analysis. J Eye Mov Res 2018; 11. [PMID: 33828682 PMCID: PMC7722561 DOI: 10.16910/jemr.11.1.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work presents a study of an extensive set of 101 categories of eye movement features
from three types of eye movement events: fixations, saccades, and post-saccadic oscillations.
We present a unified framework of methods for the extraction of features that describe
the temporal, positional and dynamic characteristics of eye movements. We perform
statistical analysis of feature values by employing eye movement data from a normative
population of 298 subjects, recorded during a text reading task. We present overall
measures for the central tendency and variability of feature values, and we quantify the
test-retest reliability of features using either the Intraclass Correlation Coefficient (for
normally distributed and normalized features) or Kendall’s coefficient of concordance (for
non-normally distributed features). Finally, for the case of normally distributed and normalized
features we additionally perform factor analysis and provide interpretations of the
resulting factors. The presented methods and analysis can provide a valuable tool for
researchers in various fields that explore eye movements, such as in behavioral studies,
attention and cognition research, medical research, biometric recognition, and humancomputer
interaction.
Collapse
|
13
|
Alexander RG, Macknik SL, Martinez-Conde S. Microsaccade Characteristics in Neurological and Ophthalmic Disease. Front Neurol 2018; 9:144. [PMID: 29593642 PMCID: PMC5859063 DOI: 10.3389/fneur.2018.00144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/27/2018] [Indexed: 12/01/2022] Open
Abstract
Microsaccade research has recently reached a critical mass of studies that allows, for the first time, a comprehensive review of how microsaccadic dynamics change in neurological and ophthalmic disease. We discuss the various pathological conditions that affect microsaccades, their impact on microsaccadic and other fixational eye movement dynamics, and the incipient studies that point to microsaccadic features as potential indicators of differential and early diagnoses of multiple clinical conditions, from movement disorders to attention-deficit hyperactivity disorder to amblyopia. We propose that the objective assessment of fixational eye movement parameters may help refine differential diagnostics in neurological disease and assist in the evaluation of ongoing therapy regimes. In addition, determining the effects of ophthalmic disease on fixational eye movement features may help evaluate visual impairment in an objective manner, particularly in young patients or those experiencing communication difficulties.
Collapse
Affiliation(s)
- Robert G Alexander
- State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States
| | - Stephen L Macknik
- State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States
| | - Susana Martinez-Conde
- State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
14
|
Sperandio I, Unwin KL, Landry O, Chouinard PA. Size Constancy is Preserved but Afterimages are Prolonged in Typical Individuals with Higher Degrees of Self-Reported Autistic Traits. J Autism Dev Disord 2017; 47:447-459. [PMID: 27878738 PMCID: PMC5309324 DOI: 10.1007/s10803-016-2971-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deficits in perceptual constancies from early infancy have been proposed to contribute to autism and exacerbate its symptoms (Hellendoorn et al., Frontiers in Psychology 6:1–16, 2015). Here, we examined size constancy in adults from the general population (N = 106) with different levels of self-reported autistic traits using an approach based on negative afterimages. The afterimage strength, as indexed by duration and vividness, was also quantified. In opposition to the Hellendoorn and colleagues’ model, we were unable to demonstrate any kind of relationship between abilities in size constancy and autistic traits. However, our results demonstrated that individuals with higher degrees of autistic traits experienced more persistent afterimages. We discuss possible retinal and post-retinal explanations for prolonged afterimages in people with higher levels of autistic traits.
Collapse
Affiliation(s)
- Irene Sperandio
- School of Psychology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Katy L Unwin
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Oriane Landry
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Philippe A Chouinard
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Johnson BP, Lum JAG, Rinehart NJ, Fielding J. Ocular motor disturbances in autism spectrum disorders: Systematic review and comprehensive meta-analysis. Neurosci Biobehav Rev 2016; 69:260-79. [PMID: 27527824 DOI: 10.1016/j.neubiorev.2016.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 01/21/2023]
Abstract
There has been considerable focus placed on how individuals with autism spectrum disorder (ASD) visually perceive and attend to social information, such as facial expressions or social gaze. The role of eye movements is inextricable from visual perception, however this aspect is often overlooked. We performed a series of meta-analyses based on data from 28 studies of eye movements in ASD to determine whether there is evidence for ocular motor dysfunction in ASD. Tasks assessed included visually-guided saccade tasks, gap/overlap, anti-saccade, pursuit tasks and ocular fixation. These analyses revealed evidence for ocular motor dysfunction in ASD, specifically relating to saccade dysmetria, difficulty inhibiting saccades and impaired tracking of moving targets. However there was no evidence for deficits relating to initiating eye movements, or engaging and disengaging from simple visual targets. Characterizing ocular motor abnormalities in ASD may provide insight into the functional integrity of brain networks in ASD across development, and assist our understanding of visual and social attention in ASD.
Collapse
Affiliation(s)
- Beth P Johnson
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia.
| | - Jarrad A G Lum
- Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Nicole J Rinehart
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia; Deakin Child Study Centre, School of Psychology, Deakin Unviersity, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Joanne Fielding
- Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, 18 Innovation Walk, Monash University, VIC 3800, Australia
| |
Collapse
|