1
|
Bogaj K, Urban-Ciecko J. Inhibition of BK channels by GABAb receptors enhances intrinsic excitability of layer 2/3 vasoactive intestinal polypeptide-expressing interneurons in mouse neocortex. J Physiol 2025. [PMID: 39901494 DOI: 10.1113/jp286439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
GABAb receptors (GABAbRs) affect many signalling pathways, and hence the net effect of the activity of these receptors depends upon the specific ion channels that they are linked to, leading to different effects on specific neuronal populations. Typically, GABAbRs suppress neuronal activity in the cerebral cortex. Previously, we found that neocortical parvalbumin-expressing cells are strongly inhibited through GABAbRs, whereas somatostatin interneurons are immune to this modulation. Here, we employed in vitro whole-cell patch-clamp recordings to study whether GABAbRs modulate the activity of vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in layer (L) 2/3 of the mouse primary somatosensory cortex. Utilizing machine learning algorithms (hierarchical clustering and principal component analysis), we revealed that one VIP-IN cluster (about 68% of all VIP-INs) was sensitive to GABAbR activation. Paradoxically, when recordings were performed in standard conditions with high extracellular Ca2+ level, GABAbRs indirectly inhibited the activity of large conductance voltage- and calcium-activated potassium (BK) channels and reduced GABAaR-mediated inhibition, leading to an increase in intrinsic excitability of these interneurons. However, a classical inhibitory effect of GABAbRs on L2/3 VIP-INs was observed in modified artificial cerebrospinal fluid with physiological (low) Ca2+ concentration. Our results are essential for a deeper understanding of mechanisms underlying the modulation of cortical networks. KEY POINTS: Layer 2/3 vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in the mouse somatosensory cortex cluster into three electrophysiological types differentially sensitive to GABAb receptors (GABAbRs). The majority of VIP-INs (type 1, about 68% of all VIP-INs) are regulated through pre- and postsynaptic GABAbRs, while a subset of these interneurons (types 2 and 3) is controlled only presynaptically. The net effect of GABAbR activation on VIP-IN excitability depends on [Ca2+] in artificial cerebrospinal fluid. When [Ca2+] is high (2.5 mM), GABAbRs indirectly inhibit BK channels and reduce GABAaR inhibition leading to increased intrinsic excitability of type 1 VIP-INs. When [Ca2+] is low (1 mM), which is more physiological, BK channels do not regulate the intrinsic excitability of VIP-INs and thus postsynaptic GABAbRs canonically decrease the intrinsic excitability of type 1 VIP-INs.
Collapse
Affiliation(s)
- Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Shi W, Zhao Q, Gao H, Yang C, Tan Z, Li N, Jiang F, Wang H, Ji Y, Zhou Y. Involvement of BK Channels and Ryanodine Receptors in Salicylate-induced Tinnitus. Mol Neurobiol 2024:10.1007/s12035-024-04533-6. [PMID: 39397241 DOI: 10.1007/s12035-024-04533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Neural hyperexcitability of the central auditory system is a key pathological characteristic of tinnitus, but its underlying molecular mechanisms remain elusive. The large-conductance Ca2+-activated K+ channel (BK) plays a crucial role in down- or upregulating neuronal activity. This study aims to investigate the role of BK channels in mediating tinnitus-associated neural hyperexcitability and elucidate the mechanisms behind it. Immunofluorescent staining revealed extensive expression of the BK channels on neurons within the central auditory system of rats. After long-term systemic administration of salicylate, a stable tinnitus inducer, we observed a significant change in the expression levels of BKα and β4 subunits in the rat central auditory system. In addition, salicylate was found to enhance the outward potassium currents mediated by the BK channel when exogenously expressed in HEK293 cells. Interestingly, this effect could be blocked by ryanodine, a potent inhibitor of ryanodine receptors (RyRs). Molecular docking identified Gln4020 within the central domain of RyR as a key residue in RyR-salicylate interactions. The results indicated that salicylate might directly activate RyRs leading to Ca2+ release from endoplasmic reticulum, and increased BK currents subsequently. Systemic treatment with paxilline, a potent blocker of BK channel, selectively reversed the increased P4/P1 amplitude ratios in the frequency region of tinnitus perception induced by single-dose salicylate administration. These results suggest that BK channels and ryanodine receptors may play a selective role in salicylate-induced tinnitus.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Chao Yang
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Feng Jiang
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China.
| |
Collapse
|
3
|
Postnikova TY, Diespirov GP, Malkin SL, Chernyshev AS, Vylekzhanina EN, Zaitsev AV. Morphological and Functional Alterations in the CA1 Pyramidal Neurons of the Rat Hippocampus in the Chronic Phase of the Lithium-Pilocarpine Model of Epilepsy. Int J Mol Sci 2024; 25:7568. [PMID: 39062811 PMCID: PMC11276980 DOI: 10.3390/ijms25147568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Epilepsy is known to cause alterations in neural networks. However, many details of these changes remain poorly understood. The objective of this study was to investigate changes in the properties of hippocampal CA1 pyramidal neurons and their synaptic inputs in a rat lithium-pilocarpine model of epilepsy. In the chronic phase of the model, we found a marked loss of pyramidal neurons in the CA1 area. However, the membrane properties of the neurons remained essentially unaltered. The results of the electrophysiological and morphological studies indicate that the direct pathway from the entorhinal cortex to CA1 neurons is reinforced in epileptic animals, whereas the inputs to them from CA3 are either unaltered or even diminished. In particular, the dendritic spine density in the str. lacunosum moleculare, where the direct pathway from the entorhinal cortex terminates, was found to be 2.5 times higher in epileptic rats than in control rats. Furthermore, the summation of responses upon stimulation of the temporoammonic pathway was enhanced by approximately twofold in epileptic rats. This enhancement is believed to be a significant contributing factor to the heightened epileptic activity observed in the entorhinal cortex of epileptic rats using an ex vivo 4-aminopyridine model.
Collapse
Affiliation(s)
- Tatyana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | - Georgy P. Diespirov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | - Sergey L. Malkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | | | - Elizaveta N. Vylekzhanina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| |
Collapse
|
4
|
Meredith AL. BK Channelopathies and KCNMA1-Linked Disease Models. Annu Rev Physiol 2024; 86:277-300. [PMID: 37906945 DOI: 10.1146/annurev-physiol-030323-042845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
5
|
Scott LL, Lowe AS, Brecht EJ, Franco-Waite L, Walton JP. Small molecule modulation of the large-conductance calcium-activated potassium channel suppresses salicylate-induced tinnitus in mice. Front Neurosci 2022; 16:763855. [PMID: 36090293 PMCID: PMC9453485 DOI: 10.3389/fnins.2022.763855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Tinnitus is the phantom perception of sound that has no external source. A neurological signature of tinnitus, and the frequently associated hyperacusis, is an imbalance between excitatory and inhibitory activity in the central auditory system (CAS), leading to dysregulated network excitability. The large conductance, calcium-activated potassium (BK) channel is a key player in pre- and post-synaptic excitability through its mediation of K+ currents. Changes in BK channel activity are associated with aberrant network activity in sensory regions of the CNS, raising the possibility that BK channel modulation could regulate activity associated with tinnitus and hyperacusis. To test whether BK channel openers are able to suppress biomarkers of drug-induced tinnitus and hyperacusis, the 1,3,4 oxadiazole BMS-191011 was given to young adult CBA mice that had been administered 250 mg/kg sodium salicylate (SS). Systemic treatment with BMS-191011 reduced behavioral manifestations of SS-induced tinnitus, but not hyperacusis, probed via the gap-in-noise startle response method. Systemic BMS-191011 treatment did not influence SS-induced increases in auditory brainstem response functions, but local application at the inferior colliculus did reverse SS-suppressed spontaneous activity, particularly in the frequency region of the tinnitus percept. Thus, action of BMS-191011 in the inferior colliculus may contribute to the reduction in behaviorally measured tinnitus. Together, these findings support the utility of BK channel openers in reducing central auditory processing changes associated with the formation of the tinnitus percept.
Collapse
Affiliation(s)
| | - Andrea S. Lowe
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Elliott J. Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Luis Franco-Waite
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
| | - Joseph P. Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
- *Correspondence: Joseph P. Walton,
| |
Collapse
|
6
|
Burgraff NJ, Phillips RS, Severs LJ, Bush NE, Baertsch NA, Ramirez JM. Inspiratory rhythm generation is stabilized by Ih. J Neurophysiol 2022; 128:181-196. [PMID: 35675444 PMCID: PMC9291429 DOI: 10.1152/jn.00150.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cellular and network properties must be capable of generating rhythmic activity that is both flexible and stable. This is particularly important for breathing, a rhythmic behavior that dynamically adapts to environmental, behavioral, and metabolic changes from the first to the last breath. The pre-Bötzinger complex (preBötC), located within the ventral medulla, is responsible for producing rhythmic inspiration. Its cellular properties must be tunable, flexible as well as stabilizing. Here, we explore the role of the hyperpolarization-activated, nonselective cation current (Ih) for stabilizing PreBötC activity during opioid exposure and reduced excitatory synaptic transmission. Introducing Ih into an in silico preBötC network predicts that loss of this depolarizing current should significantly slow the inspiratory rhythm. By contrast, in vitro and in vivo experiments revealed that the loss of Ih minimally affected breathing frequency, but destabilized rhythmogenesis through the generation of incompletely synchronized bursts (burstlets). Associated with the loss of Ih was an increased susceptibility of breathing to opioid-induced respiratory depression or weakened excitatory synaptic interactions, a paradoxical depolarization at the cellular level, and the suppression of tonic spiking. Tonic spiking activity is generated by nonrhythmic excitatory and inhibitory preBötC neurons, of which a large percentage express Ih. Together, our results suggest that Ih is important for maintaining tonic spiking, stabilizing inspiratory rhythmogenesis, and protecting breathing against perturbations or changes in network state.NEW & NOTEWORTHY The Ih current plays multiple roles within the preBötC. This current is important for promoting intrinsic tonic spiking activity in excitatory and inhibitory neurons and for preserving rhythmic function during conditions that dampen network excitability, such as in the context of opioid-induced respiratory depression. We therefore propose that the Ih current expands the dynamic range of rhythmogenesis, buffers the preBötC against network perturbations, and stabilizes rhythmogenesis by preventing the generation of unsynchronized bursts.
Collapse
Affiliation(s)
- Nicholas J. Burgraff
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Ryan S. Phillips
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Liza J. Severs
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Nicholas E. Bush
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Nathan A. Baertsch
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington,2Department of Pediatrics, University of Washington, Seattle, Washington
| | - Jan-Marino Ramirez
- 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington,2Department of Pediatrics, University of Washington, Seattle, Washington,3Department of Neurological Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Miller JP, Moldenhauer HJ, Keros S, Meredith AL. An emerging spectrum of variants and clinical features in KCNMA1-linked channelopathy. Channels (Austin) 2021; 15:447-464. [PMID: 34224328 PMCID: PMC8259716 DOI: 10.1080/19336950.2021.1938852] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
KCNMA1-linked channelopathy is an emerging neurological disorder characterized by heterogeneous and overlapping combinations of movement disorder, seizure, developmental delay, and intellectual disability. KCNMA1 encodes the BK K+ channel, which contributes to both excitatory and inhibitory neuronal and muscle activity. Understanding the basis of the disorder is an important area of active investigation; however, the rare prevalence has hampered the development of large patient cohorts necessary to establish genotype-phenotype correlations. In this review, we summarize 37 KCNMA1 alleles from 69 patients currently defining the channelopathy and assess key diagnostic and clinical hallmarks. At present, 3 variants are classified as gain-of-function with respect to BK channel activity, 14 loss-of-function, 15 variants of uncertain significance, and putative benign/VUS. Symptoms associated with these variants were curated from patient-provided information and prior publications to define the spectrum of clinical phenotypes. In this newly expanded cohort, seizures showed no differential distribution between patients harboring GOF and LOF variants, while movement disorders segregated by mutation type. Paroxysmal non-kinesigenic dyskinesia was predominantly observed among patients with GOF alleles of the BK channel, although not exclusively so, while additional movement disorders were observed in patients with LOF variants. Neurodevelopmental and structural brain abnormalities were prevalent in patients with LOF mutations. In contrast to mutations, disease-associated KCNMA1 single nucleotide polymorphisms were not predominantly related to neurological phenotypes but covered a wider set of peripheral physiological functions. Together, this review provides additional evidence exploring the genetic and biochemical basis for KCNMA1-linked channelopathy and summarizes the clinical repository of patient symptoms across multiple types of KCNMA1 gene variants.
Collapse
Affiliation(s)
- Jacob P. Miller
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hans J. Moldenhauer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sotirios Keros
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson's disease? Neurotoxicology 2021; 87:243-257. [PMID: 34699791 DOI: 10.1016/j.neuro.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is primarily associated with the progressive neurodegeneration of the dopaminergic neurons in the substantia nigra region of the brain. The resulting motor symptoms are managed with the help of dopamine replacement therapies. However, these therapeutics do not prevent the neurodegeneration underlying the disease and therefore lose their effectiveness in managing disease symptoms over time. Thus, there is an urgent need to develop newer therapeutics for the benefit of patients. The release of dopamine and the firing activity of substantia nigra neurons is regulated by several ion channels that act in concert. Dysregulations of these channels cause the aberrant movement of various ions in the intracellular milieu. This eventually leads to disruption of intracellular signalling cascades, alterations in cellular homeostasis, and bioenergetic deficits. Therefore, ion channels play a central role in driving the high vulnerability of dopaminergic neurons to degenerate during PD. Targeting ion channels offers an attractive mechanistic strategy to combat the process of neurodegeneration. In this review, we highlight the evidence pointing to the role of various ion channels in driving the PD processes. In addition, we also discuss the various drugs or compounds that target the ion channels and have shown neuroprotective potential in the in-vitro and in-vivo models of PD. We also discuss the current clinical status of various drugs targeting the ion channels in the context of PD.
Collapse
Affiliation(s)
- Neha Hanna Daniel
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Ananya Aravind
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Poonam Thakur
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
9
|
Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol 2019; 151:1173-1189. [PMID: 31427379 PMCID: PMC6785733 DOI: 10.1085/jgp.201912457] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Bailey et al. review a new neurological channelopathy associated with KCNMA1, encoding the BK voltage- and Ca2+-activated K+ channel. KCNMA1 encodes the pore-forming α subunit of the “Big K+” (BK) large conductance calcium and voltage-activated K+ channel. BK channels are widely distributed across tissues, including both excitable and nonexcitable cells. Expression levels are highest in brain and muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. A global deletion in mouse (KCNMA1−/−) is viable but exhibits pathophysiology in many organ systems. Yet despite the important roles in animal models, the consequences of dysfunctional BK channels in humans are not well characterized. Here, we summarize 16 rare KCNMA1 mutations identified in 37 patients dating back to 2005, with an array of clinically defined pathological phenotypes collectively referred to as “KCNMA1-linked channelopathy.” These mutations encompass gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity, as well as several variants of unknown significance (VUS). Human KCNMA1 mutations are primarily associated with neurological conditions, including seizures, movement disorders, developmental delay, and intellectual disability. Due to the recent identification of additional patients, the spectrum of symptoms associated with KCNMA1 mutations has expanded but remains primarily defined by brain and muscle dysfunction. Emerging evidence suggests the functional BK channel alterations produced by different KCNMA1 alleles may associate with semi-distinct patient symptoms, such as paroxysmal nonkinesigenic dyskinesia (PNKD) with GOF and ataxia with LOF. However, due to the de novo origins for the majority of KCNMA1 mutations identified to date and the phenotypic variability exhibited by patients, additional evidence is required to establish causality in most cases. The symptomatic picture developing from patients with KCNMA1-linked channelopathy highlights the importance of better understanding the roles BK channels play in regulating cell excitability. Establishing causality between KCNMA1-linked BK channel dysfunction and specific patient symptoms may reveal new treatment approaches with the potential to increase therapeutic efficacy over current standard regimens.
Collapse
Affiliation(s)
- Cole S Bailey
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Hans J Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Su Mi Park
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Sotirios Keros
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Andrea L Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Liu NN, Xie H, Xiang-Wei WS, Gao K, Wang TS, Jiang YW. The absence of NIPA2 enhances neural excitability through BK (big potassium) channels. CNS Neurosci Ther 2019; 25:865-875. [PMID: 30895737 PMCID: PMC6630003 DOI: 10.1111/cns.13119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022] Open
Abstract
AIM To reveal the pathogenesis and find the precision treatment for the childhood absence epilepsy (CAE) patients with NIPA2 mutations. METHODS We performed whole-cell patch-clamp recordings to measure the electrophysiological properties of layer V neocortical somatosensory pyramidal neurons in wild-type (WT) and NIPA2-knockout mice. RESULTS We identified that layer V neocortical somatosensory pyramidal neurons isolated from the NIPA2-knockout mice displayed higher frequency of spontaneous and evoked action potential, broader half-width of evoked action potential, and smaller currents of BK channels than those from the WT mice. NS11021, a specific BK channel opener, reduced neuronal excitability in the NIPA2-knockout mice. Paxilline, a selective BK channel blocker, treated WT neurons and could simulate the situation of NIPA2-knockout group, thereby suggesting that the absence of NIPA2 enhanced the excitability of neocortical somatosensory pyramidal neurons by decreasing the currents of BK channels. Zonisamide, an anti-epilepsy drug, reduced action potential firing in NIPA2-knockout mice through increasing BK channel currents. CONCLUSION The results indicate that the absence of NIPA2 enhances neural excitability through BK channels. Zonisamide is probably a potential treatment for NIPA2 mutation-induced epilepsy, which may provide a basis for the development of new treatment strategies for epilepsy.
Collapse
Affiliation(s)
- Na-Na Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Wen-Shu Xiang-Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Tian-Shuang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
| |
Collapse
|
11
|
Jaffe DB, Brenner R. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 2018; 119:1506-1520. [PMID: 29357445 DOI: 10.1152/jn.00385.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gain of a neuron, the number and frequency of action potentials triggered in response to a given amount of depolarizing injection, is an important behavior underlying a neuron's function. Variations in action potential waveform can influence neuronal discharges by the differential activation of voltage- and ion-gated channels long after the end of a spike. One component of the action potential waveform, the afterhyperpolarization (AHP), is generally considered an inhibitory mechanism for limiting firing rates. In dentate gyrus granule cells (DGCs) expressing fast-gated BK channels, large fast AHPs (fAHP) are paradoxically associated with increased gain. In this article, we describe a mechanism for this behavior using a computational model. Hyperpolarization provided by the fAHP enhances activation of a dendritic inward current (a T-type Ca2+ channel is suggested) that, in turn, boosts rebound depolarization at the soma. The model suggests that the fAHP may both reduce Ca2+ channel inactivation and, counterintuitively, enhance its activation. The magnitude of the rebound depolarization, in turn, determines the activation of a subsequent, slower inward current (a persistent Na+ current is suggested) limiting the interspike interval. Simulations also show that the effect of AHP on gain is also effective for physiologically relevant stimulation; varying AHP amplitude affects interspike interval across a range of "noisy" stimulus frequency and amplitudes. The mechanism proposed suggests that small fAHPs in DGCs may contribute to their limited excitability. NEW & NOTEWORTHY The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported that enhancing the amplitude of the fast AHP (fAHP) in a relatively slowly firing neuron (vs. fast spiking neurons) expressing fast-gated BK channels augments neuronal excitability. In this computational study, we present a novel, quantitative hypothesis for how varying the amplitude of the fAHP can, paradoxically, influence a subsequent spike tens of milliseconds later.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio , San Antonio, Texas
| | - Robert Brenner
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
12
|
Pratt CP, Kuljis DA, Homanics GE, He J, Kolodieznyi D, Dudem S, Hollywood MA, Barth AL, Bruchez MP. Tagging of Endogenous BK Channels with a Fluorogen-Activating Peptide Reveals β4-Mediated Control of Channel Clustering in Cerebellum. Front Cell Neurosci 2017; 11:337. [PMID: 29163049 PMCID: PMC5671578 DOI: 10.3389/fncel.2017.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking.
Collapse
Affiliation(s)
- Christopher P Pratt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jianjun He
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Dmytro Kolodieznyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Srikanth Dudem
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Zhang B, Zhang Y, Wu W, Xu T, Yin Y, Zhang J, Huang D, Li W. Chronic glucocorticoid exposure activates BK-NLRP1 signal involving in hippocampal neuron damage. J Neuroinflammation 2017; 14:139. [PMID: 28732502 PMCID: PMC5521122 DOI: 10.1186/s12974-017-0911-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuroinflammation mediated by NLRP1 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 1) inflammasome plays an important role in many neurological diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our previous studies showed that chronic glucocorticoid (GC) exposure increased brain inflammation via NLRP1 inflammasome and induce neurodegeneration. However, little is known about the mechanism of chronic GC exposure on NLRP1 inflammasome activation in hippocampal neurons. METHODS Hippocampal neurons damage was assessed by LDH kit and Hoechst 33258 staining. The expression of microtubule-associated protein 2 (MAP2), inflammasome complex protein (NLRP1, ASC and caspase-1), inflammatory cytokines (IL-1β), and large-conductance Ca2+ and voltage-activated K+ channel (BK channels) protein was detected by Western blot. The inflammatory cytokines (IL-1β and IL-18) were examined by ELISA kit. The mRNA levels of NLRP1, IL-1β, and BK were detected by real-time PCR. BK channel currents were recorded by whole-cell patch-clamp technology. Measurement of [K+]i was performed by ion-selective electrode (ISE) technology. RESULTS Chronic dexamethasone (DEX) treatment significantly increased LDH release and neuronal apoptosis and decreased expression of MAP2. The mechanistic studies revealed that chronic DEX exposure significantly increased the expression of NLRP1, ASC, caspase-1, IL-1β, L-18, and BK protein and NLRP1, IL-1β and BK mRNA levels in hippocampal neurons. Further studies showed that DEX exposure results in the increase of BK channel currents, with the subsequent K+ efflux and a low concentration of intracellular K+, which involved in activation of NLRP1 inflammasome. Moreover, these effects of chronic DEX exposure could be blocked by specific BK channel inhibitor iberiotoxin (IbTx). CONCLUSION Our findings suggest that chronic GC exposure may increase neuroinflammation via activation of BK-NLRP1 signal pathway and promote hippocampal neurons damage, which may be involved in the development and progression of AD.
Collapse
Affiliation(s)
- Biqiong Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yaodong Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenning Wu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tanzhen Xu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanyan Yin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Junyan Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dake Huang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handb Exp Pharmacol 2017; 248:281-309. [PMID: 29204711 DOI: 10.1007/164_2017_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.
Collapse
|
15
|
Wang B, Bugay V, Ling L, Chuang HH, Jaffe DB, Brenner R. Knockout of the BK β4-subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability. J Neurophysiol 2016; 116:456-65. [PMID: 27146987 PMCID: PMC4978790 DOI: 10.1152/jn.00857.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/03/2016] [Indexed: 01/24/2023] Open
Abstract
BK channels are large-conductance calcium- and voltage-activated potassium channels with diverse properties. Knockout of the accessory BK β4-subunit in hippocampus dentate gyrus granule neurons causes BK channels to change properties from slow-gated type II channels to fast-gated type I channels that sharpen the action potential, increase the fast afterhyperpolarization (fAHP) amplitude, and increase spike frequency. Here we studied the calcium channels that contribute to fast-gated BK channel activation and increased excitability of β4 knockout neurons. By using pharmacological blockers during current-clamp recording, we find that BK channel activation during the fAHP is dependent on ryanodine receptor activation. In contrast, L-type calcium channel blocker (nifedipine) affects the BK channel-dependent repolarization phase of the action potential but has no effect on the fAHP. Reducing BK channel activation during the repolarization phase with nifedipine, or during the fAHP with ryanodine, indicated that it is the BK-mediated increase of the fAHP that confers proexcitatory effects. The proexcitatory role of the fAHP was corroborated using dynamic current clamp. Increase or decrease of the fAHP amplitude during spiking revealed an inverse relationship between fAHP amplitude and interspike interval. Finally, we show that the seizure-prone ryanodine receptor gain-of-function (R2474S) knockin mice have an unaltered repolarization phase but larger fAHP and increased AP frequency compared with their control littermates. In summary, these results indicate that an important role of the β4-subunit is to reduce ryanodine receptor-BK channel functional coupling during the fAHP component of the action potential, thereby decreasing excitability of dentate gyrus neurons.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Vladislav Bugay
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Ling Ling
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Hui-Hsui Chuang
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - David B Jaffe
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Robert Brenner
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| |
Collapse
|
16
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
17
|
Palacio S, Velázquez-Marrero C, Marrero HG, Seale GE, Yudowski GA, Treistman SN. Time-Dependent Effects of Ethanol on BK Channel Expression and Trafficking in Hippocampal Neurons. Alcohol Clin Exp Res 2015; 39:1619-31. [PMID: 26247146 DOI: 10.1111/acer.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/09/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The large conductance Ca(2+) - and voltage-activated K(+) channel (BK) is an important player in molecular and behavioral alcohol tolerance. Trafficking and surface expression of ion channels contribute to the development of addictive behaviors. We have previously reported that internalization of the BK channel is a component of molecular tolerance to ethanol (EtOH). METHODS Using primary cultures of hippocampal neurons, we combine total internal reflection fluorescence microscopy, electrophysiology, and biochemical techniques to explore how exposure to EtOH affects the expression and subcellular localization of endogenous BK channels over time. RESULTS Exposure to EtOH changed the expression of endogenous BK channels in a time-dependent manner at the perimembrane area (plasma membrane and/or the area adjacent to it), while total protein levels of BK remain unchanged. These results suggest a redistribution of the channel within the neurons rather than changes in synthesis or degradation rates. Our results showed a temporally nonlinear effect of EtOH on perimembrane expression of BK. First, there was an increase in BK perimembrane expression after 10 minutes of EtOH exposure that remained evident after 3 hours, although not correlated to increases in functional channel expression. In contrast, after 6 hours of EtOH exposure, we observed a significant decrease in both BK perimembrane expression and functional channel expression. Furthermore, after 24 hours of EtOH exposure, perimembrane levels of BK had returned to baseline. CONCLUSIONS We report a complex time-dependent pattern in the effect of EtOH on BK channel trafficking, including successive increases and decreases in perimembrane expression and a reduction in active BK channels after 3 and 6 hours of EtOH exposure. Possible mechanisms underlying this multiphasic trafficking are discussed. As molecular tolerance necessarily underlies behavioral tolerance, the time-dependent alterations we see at the level of the channel may be relevant to the influence of drinking patterns on the development of behavioral tolerance.
Collapse
Affiliation(s)
- Stephanie Palacio
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico.,Department of Anatomy and Neurobiology, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Héctor G Marrero
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Garrett E Seale
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Guillermo A Yudowski
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico.,Department of Anatomy and Neurobiology, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Steven N Treistman
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico.,Department of Anatomy and Neurobiology, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
18
|
Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons. Neurobiol Aging 2015; 36:2176-83. [PMID: 25735218 DOI: 10.1016/j.neurobiolaging.2014.12.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/18/2023]
Abstract
Aging impairs the function of the suprachiasmatic nucleus (SCN, the central mammalian clock), leading to a decline in the circadian rhythm of many physiological processes, including sleep-wake rhythms. Recent studies have found evidence of age-related changes in the circadian regulation of potassium currents; these changes presumably lead to a decrease in the SCN's electrical rhythm amplitude. Current through large-conductance Ca(2+)-activated K(+) (BK) channels promote rhythmicity in both SCN neuronal activity and behavior. In many neuron types, changes in BK activity are correlated with changes in intracellular Ca(2+) concentration ([Ca(2+)]i). We performed patch-clamp recordings of SCN neurons in aged mice and observed that the circadian modulation of BK channel activity was lost because of a reduction in BK currents during the night. This reduced current diminished the afterhyperpolarization, depolarized the resting membrane potential, widened the action potential, and increased [Ca(2+)]i. These data suggest that reduced BK current increases [Ca(2+)]i by altering the action potential waveform, possibly contributing to the observed age-related phenotype.
Collapse
|
19
|
Abstract
We use computational models to examine the circumstances under which modulation of a single neuron can alter the dynamics of an entire circuit. We show that under some circumstances, the circuit's behavior is robust to the neuromodulation of a single hub neuron, while under other circumstances the same neuromodulatory action of a single neuron can produce a large variety of circuit outcomes. Neuromodulation of a single neuron in a circuit can either have little to no effect on the output of the circuit, or it can change the pattern of activity within that circuit. This is dependent on the synaptic parameters given the same circuit architecture, thus illustrating the insufficiency of the connectome alone for determining circuit behavior. ![]()
When does neuromodulation of a single neuron influence the output of the entire network? We constructed a five-cell circuit in which a neuron is at the center of the circuit and the remaining neurons form two distinct oscillatory subnetworks. All neurons were modeled as modified Morris−Lecar models with a hyperpolarization-activated conductance (ḡh) in addition to calcium (ḡCa), potassium (ḡK), and leak conductances. We determined the effects of varying ḡCa, ḡK, and ḡh on the frequency, amplitude, and duty cycle of a single neuron oscillator. The frequency of the single neuron was highest when the ḡK and ḡh conductances were high and ḡCa was moderate whereas, in the traditional Morris−Lecar model, the highest frequencies occur when both ḡK and ḡCa are high. We randomly sampled parameter space to find 143 hub oscillators with nearly identical frequencies but with disparate maximal conductance, duty cycles, and burst amplitudes, and then embedded each of these hub neurons into networks with different sets of synaptic parameters. For one set of network parameters, circuit behavior was virtually identical regardless of the underlying conductances of the hub neuron. For a different set of network parameters, circuit behavior varied with the maximal conductances of the hub neuron. This demonstrates that neuromodulation of a single target neuron may dramatically alter the performance of an entire network when the network is in one state, but have almost no effect when the circuit is in a different state.
Collapse
|
20
|
Wang B, Jaffe DB, Brenner R. Current understanding of iberiotoxin-resistant BK channels in the nervous system. Front Physiol 2014; 5:382. [PMID: 25346692 PMCID: PMC4190997 DOI: 10.3389/fphys.2014.00382] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called “type II” subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these channels.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - David B Jaffe
- Department of Biology and the UTSA Neurosciences Institute, University of Texas at San Antonio San Antonio, TX, USA
| | - Robert Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
21
|
Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability. Proc Natl Acad Sci U S A 2012; 109:18997-9002. [PMID: 23112153 DOI: 10.1073/pnas.1205573109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-conductance calcium-activated potassium channels (BK) are potent negative regulators of excitability in neurons and muscle, and increasing BK current is a novel therapeutic strategy for neuro- and cardioprotection, disorders of smooth muscle hyperactivity, and several psychiatric diseases. However, in some neurons, enhanced BK current is linked with seizures and paradoxical increases in excitability, potentially complicating the clinical use of agonists. The mechanisms that switch BK influence from inhibitory to excitatory are not well defined. Here we investigate this dichotomy using a gain-of-function subunit (BK(R207Q)) to enhance BK currents. Heterologous expression of BK(R207Q) generated currents that activated at physiologically relevant voltages in lower intracellular Ca(2+), activated faster, and deactivated slower than wild-type currents. We then used BK(R207Q) expression to broadly augment endogenous BK currents in vivo, generating a transgenic mouse from a circadian clock-controlled Period1 gene fragment (Tg-BK(R207Q)). The specific impact on excitability was assessed in neurons of the suprachiasmatic nucleus (SCN) in the hypothalamus, a cell type where BK currents regulate spontaneous firing under distinct day and night conditions that are defined by different complements of ionic currents. In the SCN, Tg-BK(R207Q) expression converted the endogenous BK current to fast-activating, while maintaining similar current-voltage properties between day and night. Alteration of BK currents in Tg-BK(R207Q) SCN neurons increased firing at night but decreased firing during the day, demonstrating that BK currents generate bidirectional effects on neuronal firing under distinct conditions.
Collapse
|
22
|
Shaping of action potentials by type I and type II large-conductance Ca²+-activated K+ channels. Neuroscience 2011; 192:205-18. [PMID: 21723921 DOI: 10.1016/j.neuroscience.2011.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 01/10/2023]
Abstract
The BK channel is a Ca(2+) and voltage-gated conductance responsible for shaping action potential waveforms in many types of neurons. Type II BK channels are differentiated from type I channels by their pharmacology and slow gating kinetics. The β4 accessory subunit confers type II properties on BK α subunits. Empirically derived properties of BK channels, with and without the β4 accessory subunit, were obtained using a heterologous expression system under physiological ionic conditions. These data were then used to study how BK channels alone (type I) and with the accessory β4 subunit (type II) modulate action potential properties in biophysical neuron models. Overall, the models support the hypothesis that it is the slower kinetics provided by the β4 subunit that endows the BK channel with type II properties, which leads to broadening of action potentials and, secondarily, to greater recruitment of SK channels reducing neuronal excitability. Two regions of parameter space distinguished type II and type I effects; one where the range of BK-activating Ca(2+) was high (>20 μM) and the other where BK-activating Ca(2+) was low (∼0.4-1.2 μM). The latter required an elevated BK channel density, possibly beyond a likely physiological range. BK-mediated sharpening of the spike waveform associated with the lack of the β4 subunit was sensitive to the properties of voltage-gated Ca(2+) channels due to electrogenic effects on spike duration. We also found that depending on Ca(2+) dynamics, type II BK channels may have the ability to contribute to the medium AHP, a property not generally ascribed to BK channels, influencing the frequency-current relationship. Finally, we show how the broadening of action potentials conferred by type II BK channels can also indirectly increase the recruitment of SK-type channels decreasing the excitability of the neuron.
Collapse
|