1
|
Sun SH, Killian NJ, Pezaris JS. More than expected: extracellular waveforms and functional responses in monkey LGN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.22.568065. [PMID: 38798485 PMCID: PMC11118448 DOI: 10.1101/2023.11.22.568065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Unlike the exhaustive determination of cell types in the retina, key populations in the lateral geniculate nucleus of the thalamus (LGN) may have been missed. Here, we have begun to characterize the full range of extracellular neuronal responses in the LGN of awake monkeys using multi-electrodes during the presentation of colored noise visual stimuli to identify any previously overlooked signals. Extracellular spike waveforms of single units were classified into seven distinct classes, revealing previously unrecognized diversity: four negative-dominant classes that were narrow or broad, one triphasic class, and two positive-dominant classes. Based on their mapped receptive field (RF), these units were further categorized into either magnocellular (M), parvocellular (P), koniocellular (K), or non-RF (N). We found correlations between spike shape and mapped RF and response characteristics, with negative and narrow spiking waveform units predominantly associated with P and N RFs, and positive waveforms mostly linked to M RFs. Responses from positive waveforms exhibited shorter latencies, larger RF sizes, and were associated with larger eccentricities in the visual field than the other waveform classes. Additionally, N cells, those without an estimated RF, were consistently responsive to the visually presented mapping stimulus at a lower and more sustained rate than units with an RF. These findings suggest that the LGN cell population may be more diverse than previously believed.
Collapse
Affiliation(s)
- Shi Hai Sun
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Nathaniel J Killian
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John S Pezaris
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Adusei M, Callaway EM, Usrey WM, Briggs F. Parallel Streams of Direct Corticogeniculate Feedback from Mid-level Extrastriate Cortex in the Macaque Monkey. eNeuro 2024; 11:ENEURO.0364-23.2024. [PMID: 38479809 PMCID: PMC10946028 DOI: 10.1523/eneuro.0364-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
First-order thalamic nuclei receive feedforward signals from peripheral receptors and relay these signals to primary sensory cortex. Primary sensory cortex, in turn, provides reciprocal feedback to first-order thalamus. Because the vast majority of sensory thalamocortical inputs target primary sensory cortex, their complementary corticothalamic neurons are assumed to be similarly restricted to primary sensory cortex. We upend this assumption by characterizing morphologically diverse neurons in multiple mid-level visual cortical areas of the primate (Macaca mulatta) brain that provide direct feedback to the primary visual thalamus, the dorsal lateral geniculate nucleus (LGN). Although the majority of geniculocortical neurons project to primary visual cortex (V1), a minority, located mainly in the koniocellular LGN layers, provide direct input to extrastriate visual cortex. These "V1-bypassing" projections may be implicated in blindsight. We hypothesized that geniculocortical inputs directly targeting extrastriate cortex should be complemented by reciprocal corticogeniculate circuits. Using virus-mediated circuit tracing, we discovered corticogeniculate neurons throughout three mid-level extrastriate areas: MT, MST, and V4. Quantitative morphological analyses revealed nonuniform distributions of unique cell types across areas. Many extrastriate corticogeniculate neurons had spiny stellate morphology, suggesting possible targeting of koniocellular LGN layers. Importantly though, multiple morphological types were observed across areas. Such morphological diversity could suggest parallel streams of V1-bypassing corticogeniculate feedback at multiple stages of the visual processing hierarchy. Furthermore, the presence of corticogeniculate neurons across visual cortex necessitates a reevaluation of the LGN as a hub for visual information rather than a simple relay.
Collapse
Affiliation(s)
- Matthew Adusei
- Neuroscience Graduate Program, University of Rochester, Rochester, New York 14642
| | - Edward M Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California 92037
| | - W Martin Usrey
- Center for Neuroscience, University of California Davis, Davis, California 95618
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California 95616
- Department of Neurology, University of California Davis, Davis, California 95618
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, New York 14642
- Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| |
Collapse
|
3
|
Mukherjee A, Halassa MM. The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist 2024; 30:132-147. [PMID: 38279699 PMCID: PMC10822032 DOI: 10.1177/10738584221112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Casanova C, Chalupa LM. The dorsal lateral geniculate nucleus and the pulvinar as essential partners for visual cortical functions. Front Neurosci 2023; 17:1258393. [PMID: 37712093 PMCID: PMC10498387 DOI: 10.3389/fnins.2023.1258393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
In most neuroscience textbooks, the thalamus is presented as a structure that relays sensory signals from visual, auditory, somatosensory, and gustatory receptors to the cerebral cortex. But the function of the thalamic nuclei goes beyond the simple transfer of information. This is especially true for the second-order nuclei, but also applies to first-order nuclei. First order thalamic nuclei receive information from the periphery, like the dorsal lateral geniculate nucleus (dLGN), which receives a direct input from the retina. In contrast, second order thalamic nuclei, like the pulvinar, receive minor or no input from the periphery, with the bulk of their input derived from cortical areas. The dLGN refines the information received from the retina by temporal decorrelation, thereby transmitting the most "relevant" signals to the visual cortex. The pulvinar is closely linked to virtually all visual cortical areas, and there is growing evidence that it is necessary for normal cortical processing and for aspects of visual cognition. In this article, we will discuss what we know and do not know about these structures and propose some thoughts based on the knowledge gained during the course of our careers. We hope that these thoughts will arouse curiosity about the visual thalamus and its important role, especially for the next generation of neuroscientists.
Collapse
Affiliation(s)
| | - Leo M. Chalupa
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
Rahmati M, Curtis CE, Sreenivasan KK. Mnemonic representations in human lateral geniculate nucleus. Front Behav Neurosci 2023; 17:1094226. [PMID: 37234404 PMCID: PMC10206025 DOI: 10.3389/fnbeh.2023.1094226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
There is a growing appreciation for the role of the thalamus in high-level cognition. Motivated by findings that internal cognitive state drives activity in feedback layers of primary visual cortex (V1) that target the lateral geniculate nucleus (LGN), we investigated the role of LGN in working memory (WM). Specifically, we leveraged model-based neuroimaging approaches to test the hypothesis that human LGN encodes information about spatial locations temporarily encoded in WM. First, we localized and derived a detailed topographic organization in LGN that accords well with previous findings in humans and non-human primates. Next, we used models constructed on the spatial preferences of LGN populations in order to reconstruct spatial locations stored in WM as subjects performed modified memory-guided saccade tasks. We found that population LGN activity faithfully encoded the spatial locations held in memory in all subjects. Importantly, our tasks and models allowed us to dissociate the locations of retinal stimulation and the motor metrics of memory-guided saccades from the maintained spatial locations, thus confirming that human LGN represents true WM information. These findings add LGN to the growing list of subcortical regions involved in WM, and suggest a key pathway by which memories may influence incoming processing at the earliest levels of the visual hierarchy.
Collapse
Affiliation(s)
- Masih Rahmati
- Department of Psychology, New York University, New York, NY, United States
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Clayton E. Curtis
- Department of Psychology, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Hu W, Zhu S, Briggs F, Doyley MM. Functional ultrasound imaging reveals 3D structure of orientation domains in ferret primary visual cortex. Neuroimage 2023; 268:119889. [PMID: 36681137 PMCID: PMC9999292 DOI: 10.1016/j.neuroimage.2023.119889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The sensory cortex is organized into "maps" that represent sensory space across cortical space. In primary visual cortex (V1) of highly visual mammals, multiple visual feature maps are organized into a functional architecture anchored by orientation domains: regions containing neurons preferring the same stimulus orientation. Although the pinwheel-like structure of orientation domains is well-characterized in the superficial cortical layers in dorsal regions of V1, the 3D shape of orientation domains spanning all 6 cortical layers and across dorsal and ventral regions of V1 has never been revealed. METHODS We utilized an emerging research method in neuroscience, functional ultrasound imaging (fUS), to resolve the 3D structure of orientation domains throughout V1 in anesthetized female ferrets. fUS measures blood flow from which neuronal population activity is inferred with improved spatial resolution over fMRI. RESULTS fUS activations in response to drifting gratings placed at multiple locations in visual space generated unique activation patterns in V1 and visual thalamus, confirming prior observations that fUS can resolve retinotopy. Iso-orientation domains, determined from clusters of activations driven by large oriented gratings, were cone-shaped and present in both dorsal and ventral regions of V1. The spacing between iso-orientation domains was consistent with spacing measured previously using optical imaging methods. CONCLUSIONS Orientation domains are cones rather than columns. Their width and intra-domain distances may vary across dorsal and ventral regions of V1. These findings demonstrate the power of fUS at revealing 3D functional architecture in cortical regions not accessible to traditional surface imaging methods.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Electrical and Computer Engineering, University of Rochester, 518 Computer Studies Building, Box 270231, Rochester, NY 14627-2031, USA
| | - Silei Zhu
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA; Ernest J. Del Monte Institute for Neuroscience, University of Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY, USA; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, 518 Computer Studies Building, Box 270231, Rochester, NY 14627-2031, USA.
| |
Collapse
|