1
|
Barghi L, Vekalati A, Jahangiri A. Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties. Adv Pharmacol Pharm Sci 2023; 2023:2641153. [PMID: 37215486 PMCID: PMC10199792 DOI: 10.1155/2023/2641153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Limited aqueous solubility and subsequent poor absorption and low bioavailability are the main challenges in oral drug delivery. Solid dispersion is a widely used formulation strategy to overcome this problem. Despite their efficiency, drug crystallization tendency and poor physical stability limited their commercial use. To overcome this defect, ternary solid dispersions of glyburide: sodium lauryl sulfate (SLS) and polyethylene glycol 4000 (PEG), were developed using the fusion (F) and solvent evaporation (SE) techniques and subsequently evaluated and compared. Materials and Methods Physicochemical and dissolution properties of the prepared ternary solid dispersions were evaluated using differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), and dissolution test. Flow properties were also assessed using Carr's index and Hausner's ratio. The physical stability of the formulations was evaluated initially and after 12 months by comparing dissolution properties. Results Formulations prepared by both methods similarly showed significant improvements in dissolution efficiency and mean dissolution time compared to the pure drug. However, formulations that were prepared by SE showed a greater dissolution rate during the initial phase of dissolution. Also, after a 12-month follow-up, no significant change was observed in the mentioned parameters. The results of the infrared spectroscopy indicated that there was no chemical interaction between the drug and the polymer. The absence of endotherms related to the pure drug from thermograms of the prepared formulations could be indicative of reduced crystallinity or the gradual dissolving of the drug in the molten polymer. Moreover, formulations prepared by the SE technique revealed superior flowability and compressibility in comparison with the pure drug and physical mixture (ANOVA, P < 0.05). Conclusion Efficient ternary solid dispersions of glyburide were successfully prepared by F and SE methods. Solid dispersions prepared by SE, in addition to increasing the dissolution properties and the possibility of improving the bioavailability of the drug, showed acceptable long-term physical stability with remarkably improved flowability and compressibility features.
Collapse
Affiliation(s)
- Leila Barghi
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Afshin Vekalati
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Azin Jahangiri
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Aldawsari HM, Naveen NR, Alhakamy NA, Goudanavar PS, Rao GK, Budha RR, Nair AB, Badr-Eldin SM. Compression-coated pulsatile chronomodulated therapeutic system: QbD assisted optimization. Drug Deliv 2022; 29:2258-2268. [PMID: 35838522 PMCID: PMC9477481 DOI: 10.1080/10717544.2022.2094500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulsatile drug delivery systems have drawn attention in contemporary research for designing chronotherapeutic systems. The current work aims to design pulsatile ketorolac tromethamine tablets using compression coating for delayed delivery with a lag time suitable for the treatment of morning stiffness in arthritis. Rapidly disintegrating core tablets of ketorolac tromethamine were formulated using super-disintegrants, and the optimized formulation was compression using PEO WSR coagulant and Eudragit RLPO for delaying the release. The central composite design and response surface methodology were employed to optimize the formulation and process parameters namely PEO WSR Coagulant (X1), Eudragit RLPO (X2), and Hardness (X3). The dependent variables optimized were lag time and time required for 95% drug release. Analysis using response surface graphs and mathematical modeling of the results allowed identifying and quantifying the formulation variables active on the selected responses. A polynomial equation fitted to the data was used to predict the composition with optimum responses. Compression-coated pulsatile tablets’ optimized composition exhibited a lag time of 9 h and released 95% of the ketorolac tromethamine in 17.42 h. Validation of the mathematical model assured the reliability of QBD in formulation design. In vivo X-ray imaging and pharmacokinetic studies established a strong relationship between the coated polymers maintaining the desired lag time for delayed delivery of the active to coincide with the chronobiology for enhanced bioavailability at the right time when needed.
Collapse
Affiliation(s)
- Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - N Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prakash S Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Gsn Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Roja Rani Budha
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Shah PJ, Patel MP, Shah J, Nair AB, Kotta S, Vyas B. Amalgamation of solid dispersion and melt adsorption techniques for augmentation of oral bioavailability of novel anticoagulant rivaroxaban. Drug Deliv Transl Res 2022; 12:3029-3046. [PMID: 35467325 DOI: 10.1007/s13346-022-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
The objective of the present study was to evaluate the potential of solid dispersion adsorbate (SDA) to improve the solubility and bioavailability of rivaroxaban (RXN). SDA of RXN was developed by fusion method using PEG 4000 as carrier and Neusilin as adsorbent. A 32 full factorial design was utilized to formulate various SDAs. The selected independent variables were the amount of carrier (X1) and amount of adsorbent (X2). The responses measured were the time required for 85% drug release (Y1) and saturated solubility (Y2). MTT assay was employed for cytotoxicity studies on Caco-2 cells. In vivo pharmacokinetics and pharmacodynamic evaluations were carried out to assess the prepared SDA. Pre-compression evaluation of SDA suggests the prepared batches (B1-B9) possess adequate flow properties and could be used for compression of tablets. Differential scanning calorimetry and X-ray diffraction data signified the conversion of the crystalline form of drug to amorphous form, a key parameter accountable for improvement in drug dissolution. Optimization data suggests that the amount of carrier and amount of adsorbent significantly (P < 0.05) influence both dependent variables. Post-compression data signifies that the compressibility behavior of prepared tablets was within the official standard limits. A significant increase (P < 0.0001) in the in vitro dissolution characteristics of RXN was noticed in optimized SDA (> 85% in 10 min) as compared to the pure drug, marketed product, and directly compressible tablet. Cytotoxicity studies confirmed the nontoxicity of prepared RXN SDA tablets. RXN SDA tablets exhibited 2.79- and 1.85-fold higher AUC in comparison to RXN suspension and Xarelto tablets respectively indicating improved oral bioavailability. Higher bleeding time and percentage of platelet aggregation noticed with RXN SDA tablets in comparison to RXN suspension further substantiate the efficacy of the prepared formulation. In summary, the results showed the potential of RXN SDA tablets to enhance the bioavailability of RXN and hence can be an alternate approach of solid dosage form for its development for commercial application.
Collapse
Affiliation(s)
- Pranav J Shah
- Maliba Pharmacy College, Uka Tarsadia University, Bardoli, Surat, 394350, India.
| | - Milan P Patel
- Maliba Pharmacy College, Uka Tarsadia University, Bardoli, Surat, 394350, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bhavin Vyas
- Maliba Pharmacy College, Uka Tarsadia University, Bardoli, Surat, 394350, India
| |
Collapse
|
4
|
Javed S, Hussain A, Shah PA, Raza SA, Anwer UU, Shamim R, Rasool F, Hafiz MA, Bukhari NI. Development of Optimized Sumatriptan-Prochlorperazine Combined Orodispersible Films Without Disintegrant: in vitro, ex vivo and in vivo Characterization. AAPS PharmSciTech 2022; 23:156. [PMID: 35655105 DOI: 10.1208/s12249-022-02307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sumatriptan succinate and prochlorperazine maleate are a clinically proven combination for treating migraine and associated nausea and vomiting. Classical oral dosage forms are not frequently workable in migraine because of the associated nausea/vomiting, and no effective fixed dose combination is available. Thus, the aim of the study was to optimize a combined sumatriptan-prochlorperazine orodispersible film for rapid release of drugs. Orodispersible films were prepared by solvent casting method using varied amounts of polyvinyl alcohol and glycerol as film former and plasticizer, respectively, along with fixed levels of other ingredients employing central composite design. The optimum film (VF) demonstrated disintegration and total dispersion times as 21 s and 2.3 min, respectively. Tensile strength and Young's modulus were 8.86 ± 0.37 MPa and 24.15 ± 0.07 MPa, respectively. The in vitro T80% of both drugs from the ODF was achieved within 4 min. The film was palatable and disintegrated in 2 min in buccal cavity of human volunteers. Permeation study through goat mucosa demonstrated 100% permeation of both drugs within 15 min. X-Ray diffraction and differential scanning calorimetry supported drugs being amorphous and Fourier transform infrared demonstrated drug-excipient compatibility in optimized film. A judicious combination of sumatriptan succinate and prochlorperazine maleate could be prepared in orodispersible films for the possible relief of migraine.
Collapse
|
5
|
Formulation and Evaluation of Self-Nanoemulsifying Drug Delivery System Derived Tablet Containing Sertraline. Pharmaceutics 2022; 14:pharmaceutics14020336. [PMID: 35214068 PMCID: PMC8880292 DOI: 10.3390/pharmaceutics14020336] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Being a biopharmaceutics classification system class II drug, the absorption of sertraline from the gut is mainly limited by its poor aqueous solubility. The objective of this investigation was to improve the solubility of sertraline utilizing self-nanoemulsifying drug delivery systems (SNEDDS) and developing it into a tablet dosage form. Ternary phase diagrams were created to identify nanoemulsion regions by fixing oil (glycerol triacetate) and water while varying the surfactant (Tween 80) and co-surfactant (PEG 200) ratio (Smix). A three-factor, two-level (23) full factorial design (batches F1–F8) was utilized to check the effect of independent variables on dependent variables. Selected SNEDDS (batch F4) was solidified into powder by solid carrier adsorption method and compressed into tablets. The SNEDDS-loaded tablets were characterized for various pharmaceutical properties, drug release and evaluated in vivo in Wistar rats. A larger isotropic region was noticed with a Smix ratio of 2:1 and the nanoemulsion exhibited good stability. Screening studies’ data established that all three independent factors influence the dependent variables. The prepared tablets displayed optimal pharmaceutical properties within acceptable limits. In vitro sertraline release demonstrated from solid SNEDDS was statistically significant (p < 0.0001) as compared to pure sertraline. Differential Scanning Calorimetry and X-Ray Diffraction data established the amorphous state of the drug in SNEDDS formulation, while FTIR spectra indicate the compatibility of excipients and drug. Pharmacokinetic evaluation of the SNEDDS tablet demonstrated significant increment (p < 0.0001) in AUC0-α (~5-folds), Cmax (~4-folds), and relative bioavailability (386%) as compared to sertraline suspension. The current study concludes that the solid SNEDDS formulation could be a practicable and effective strategy for oral therapy of sertraline.
Collapse
|
6
|
Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, Patel V. Enhanced Solubility and Bioavailability of Dolutegravir by Solid Dispersion Method: In Vitro and In Vivo Evaluation-a Potential Approach for HIV Therapy. AAPS PharmSciTech 2021; 22:127. [PMID: 33835317 DOI: 10.1208/s12249-021-01995-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
Collapse
|
7
|
Solid Dispersion Pellets: An Efficient Pharmaceutical Approach to Enrich the Solubility and Dissolution Rate of Deferasirox. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8583540. [PMID: 32685534 PMCID: PMC7333047 DOI: 10.1155/2020/8583540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
Abstract
Deferasirox (DFX) is an oral iron-chelating agent and classified into class II of the Biopharmaceutics Classification System. Low bioavailability of the drug due to insufficient solubility in physiological fluids is the main drawback of DFX. The idea of the current study was to explore the potential of solid dispersion (SD) as an effective method to improve the dissolution rate of DFX in pellets. The SDs were made by the solvent evaporation technique using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K25 with different drug-to-carrier ratios. Then, the dispersion was milled and mixed with other components and the mixture layered on sugar-based cores by pan coating technique. The pellets were evaluated in terms of size distribution, morphology (SEM), and dissolution behaviour. Drug-polymer interactions were studied using differential scanning calorimetry (DSC), X-ray diffraction study (XRD), and Fourier transformation infrared (FTIR) spectroscopy. The pellets coated with SD showed a remarkable rise in the solubility of DFX than that of free drug-loaded pellets. The dispersion with PVP K25 showed a faster dissolution rate as compared to other mixtures. The DSC and XRD analysis indicated that the drug was in the amorphous state when dispersed in the polymer. The FTIR studies demonstrated any ruled out interaction between drug and polymer. The SEM showed smoothness on the surface of the pellets. It is resolved that the SD method considerably enriched the dissolution rate of DFX in pellets, which can also be utilized for other poorly water-soluble drugs.
Collapse
|
8
|
Improvement of oral bioavailability of carvedilol by liquisolid compact: optimization and pharmacokinetic study. Drug Deliv Transl Res 2020; 10:975-985. [DOI: 10.1007/s13346-020-00734-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Mohamed MS, Abdelhafez WA, Zayed G, Samy AM. In vitro and in vivo characterization of fast dissolving tablets containing gliquidone–pluronic solid dispersion. Drug Dev Ind Pharm 2019; 45:1973-1981. [DOI: 10.1080/03639045.2019.1689993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mohamed S. Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Wael A. Abdelhafez
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Gamal Zayed
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Assiut, Egypt
- Al-Azhar Centre of Nanosciences and Applications, Al-Azhar University, Assiut, Egypt
| | - Ahmed M. Samy
- Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Orlandi S, Priotti J, Diogo HP, Leonardi D, Salomon CJ, Nunes TG. Structural Elucidation of Poloxamer 237 and Poloxamer 237/Praziquantel Solid Dispersions: Impact of Poly(Vinylpyrrolidone) over Drug Recrystallization and Dissolution. AAPS PharmSciTech 2018; 19:1274-1286. [PMID: 29313262 DOI: 10.1208/s12249-017-0946-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Praziquantel (PZQ) is the recommended, effective, and safe treatment against all forms of schistosomiasis. Solid dispersions (SDs) in water-soluble polymers have been reported to increase solubility and bioavailability of poorly water-soluble drugs like PZQ, generally due to the amorphous form stabilization. In this work, poloxamer (PLX) 237 and poly(vinylpyrrolidone) (PVP) K30 were evaluated as potential carriers to revert PZQ crystallization. Binary and ternary SDs were prepared by the solvent evaporation method. PZQ solubility increased similarly with PLX either as binary physical mixtures or SDs. Such unpredicted data correlated well with crystalline PZQ and PLX as detected by solid-state NMR (ssNMR) and differential scanning calorimetry in those samples. Ternary PVP/PLX/PZQ SDs showed both ssNMR broad and narrow superimposed signals, thus revealing the presence of amorphous and crystalline PZQ, respectively, and exhibited the highest PZQ dissolution efficiency (up to 82% at 180 min). SDs with PVP provided a promising way to enhance solubility and dissolution rate of PZQ since PLX alone did not prevent recrystallization of amorphous PZQ. Based on ssNMR data, novel evidences on PLX structure and molecular dynamics were also obtained. As shown for the first time using ssNMR, propylene glycol and ethylene glycol constitute the PLX amorphous and crystalline components, respectively.
Collapse
|
11
|
Enhanced solubility, dissolution, and absorption of lycopene by a solid dispersion technique: The dripping pill delivery system. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Tawfeek HM, Saleem IY, Roberts M. Dissolution Enhancement and Formulation of Rapid-Release Lornoxicam Mini-Tablets. J Pharm Sci 2014; 103:2470-83. [DOI: 10.1002/jps.24073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/11/2022]
|
13
|
Parejiya PB, Barot BS, Patel HK, Mehta DM, Shelat PK, Shukla A. Release modulation of highly water soluble drug using solid dispersion: impact of dispersion and its compressed unit. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-013-0112-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Alves LDS, de La Roca Soares MF, de Albuquerque CT, da Silva ÉR, Vieira ACC, Fontes DAF, Figueirêdo CBM, Soares Sobrinho JL, Rolim Neto PJ. Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydr Polym 2014; 104:166-74. [DOI: 10.1016/j.carbpol.2014.01.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
|
15
|
Nair AB, Attimarad M, Al-Dhubiab BE, Wadhwa J, Harsha S, Ahmed M. Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin. Drug Deliv 2013; 21:540-7. [PMID: 24215288 DOI: 10.3109/10717544.2013.853213] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The therapeutic potential of acyclovir is limited by the low oral bioavailability owing to its limited aqueous solubility and low permeability. The present study was a systematic investigation on the development and evaluation of inclusion complex using hydroxypropyl-β-cyclodextrin for the enhancement of oral bioavailability of acyclovir. The inclusion complex of acyclovir was prepared by kneading method using drug: hydroxypropyl-β-cyclodextrin (1:1 mole). The prepared inclusion complex was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, NMR spectroscopy and evaluated in vitro by dissolution studies. In vivo bioavailability of acyclovir was compared for inclusion complex and physical mixture in rat model. Phase solubility studies indicate the formation of acyclovir-hydroxypropyl-β-cyclodextrin complex with higher stability constant and linear enhancement in drug solubility with increase in hydroxypropyl-β-cyclodextrin concentration. Characterization of the prepared formulation confirms the formation of acyclovir-hydroxypropyl-β-cyclodextrin inclusion complex. Dissolution profile of inclusion complex demonstrated rapid and complete release of acyclovir in 30 min with greater dissolution efficiency (90.05 ± 2.94%). In vivo pharmacokinetic data signify increased rate and extent of acyclovir absorption (relative bioavailability ∼160%; p < 0.0001) from inclusion complex, compared to physical mixture. Given the promising results in the in vivo studies, it can be concluded that the inclusion complex of acyclovir could be an effective and promising approach for successful oral therapy of acyclovir in the treatment of herpes viruses.
Collapse
Affiliation(s)
- Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University , Al-Ahsa , Kingdom of Saudi Arabia and
| | | | | | | | | | | |
Collapse
|
16
|
Gurunath S, Nanjwade BK, Patila PA. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm J 2013; 22:246-57. [PMID: 25067902 DOI: 10.1016/j.jsps.2013.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/24/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. METHODS In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2-2%). Gibbs free energy [Formula: see text] values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. RESULTS FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. CONCLUSION Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability.
Collapse
Affiliation(s)
- S Gurunath
- Department of Pharmacology, KLE University, Belgaum - Karnataka, India
| | | | - P A Patila
- Department of Pharmacology, KLE University, Belgaum - Karnataka, India
| |
Collapse
|
17
|
Barmpalexis P, Koutsidis I, Karavas E, Louka D, Papadimitriou SA, Bikiaris DN. Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks. Eur J Pharm Biopharm 2013; 85:1219-31. [PMID: 23541514 DOI: 10.1016/j.ejpb.2013.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 11/19/2022]
Abstract
The effect of plasticizer's (PEG) molecular weight (MW) on PVP based solid dispersions (SDs), prepared by melt mixing, was evaluated in the present study using Tibolone as a poorly water soluble model drug. PEGs with MW of 400, 600, and 2000 g/mol were tested, and the effect of drug content, time and temperature of melt mixing on the physical state of Tibolone, and the dissolution characteristics from SDs was investigated. PVP blends with PEG400 and PEG600 were completely miscible, while blends were heterogeneous. Furthermore, a single Tg recorded in all samples, indicating that Tibolone was dispersed in a molecular lever (or in the form of nanodispersions), varied with varying PEG's molecular weight, melt mixing temperature, and drug content, while FTIR analysis indicated significant interactions between Tibolone and PVP/PEG matrices. All prepared solid dispersion showed long-term physical stability (18 months in room temperature). The extent of interaction between mixture components was verified using Fox and Gordon-Taylor equations. Artificial neural networks, used to correlate the studied factors with selected dissolution characteristics, showed good prediction ability.
Collapse
|
18
|
Makar RR, Latif R, Hosni EA, El Gazayerly ON. Optimization for glimepiride dissolution enhancement utilizing different carriers and techniques. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0061-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Papadimitriou SA, Barmpalexis P, Karavas E, Bikiaris DN. Optimizing the ability of PVP/PEG mixtures to be used as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique using artificial neural networks: I. Eur J Pharm Biopharm 2012; 82:175-86. [DOI: 10.1016/j.ejpb.2012.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/12/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|
20
|
Shahzad Y, Shah SNH, Ansari MT, Riaz R, Safdar A, Hussain T, Malik M. Effects of drug-polymer dispersions on solubility and in vitro diffusion of artemisinin across a polydimethylsiloxane membrane. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5094-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Leane MM, Sinclair W, Qian F, Haddadin R, Brown A, Tobyn M, Dennis AB. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant. Pharm Dev Technol 2012; 18:359-66. [DOI: 10.3109/10837450.2011.619544] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Inkjet printing as a novel medicine formulation technique. J Control Release 2011; 156:179-85. [DOI: 10.1016/j.jconrel.2011.07.033] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/20/2022]
|
23
|
Bikiaris DN. Solid dispersions, Part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8:1663-80. [DOI: 10.1517/17425247.2011.618182] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Dua K, Pabreja K, Ramana MV, Bukhari NI. Preparation, Characterization, and In Vitro Evaluation of Aceclofenac PVP-Solid Dispersions. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691.2010.498239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Hamza YES, Aburahma MH. Innovation of novel sustained release compression-coated tablets for lornoxicam: formulation and in vitro investigations. Drug Dev Ind Pharm 2010. [DOI: 10.3109/03639040903170768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|