1
|
Uddin MK, Mahmud MR, Hasan S, Peltoniemi O, Oliviero C. Dietary micro-fibrillated cellulose improves growth, reduces diarrhea, modulates gut microbiota, and increases butyrate production in post-weaning piglets. Sci Rep 2023; 13:6194. [PMID: 37062780 PMCID: PMC10106463 DOI: 10.1038/s41598-023-33291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 04/18/2023] Open
Abstract
Dietary fiber (DF) supplementation is one of the strategies to prevent on-farm infections; it has the capability to improve gut health and piglet performance. Among the beneficial DFs, micro-fibrillated cellulose (MFC) is a new-generation plant-derived innovative feed ingredient; MFC, originating from sugar-beet pulp, has a hyper-branched structure with the ability to form shear-thinning hydrogel and has a high water-binding capacity. We aimed to determine the effects of MFC supplementation on piglets' performance before and after weaning. We included 45 sows and their piglets in this trial and monitored the results until the piglets were 7 weeks old. Piglets supplemented with MFC had higher body weight and average daily growth (ADG) than did control piglets, both pre- and post-weaning. In addition, MFC supplementation in post-weaning piglets improved butyrate content, and reduced diarrhea incidence. These phenomena, perhaps due to the MFC supplementation at different stages until age 7 weeks. In addition, after weaning, MFC supplementation stimulated the growth of butyrate-producing bacteria such as Ruminococcus.2, Ruminococcaceae.UCG.014, Intestinibacter, Roseburia, and Oribacterium genera, as well as reduced the pathogenic bacteria, such as Campylobacter, and Escherichia. Evidently, supplementation of MFC in feed to young piglets can improve growth performance and butyric acid content and reduce post-weaning diarrhea.
Collapse
Affiliation(s)
- Md Karim Uddin
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Md Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Shah Hasan
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
3
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
4
|
Naranda J, Bračič M, Vogrin M, Maver U. Recent Advancements in 3D Printing of Polysaccharide Hydrogels in Cartilage Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3977. [PMID: 34300896 PMCID: PMC8305911 DOI: 10.3390/ma14143977] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
The application of hydrogels coupled with 3-dimensional (3D) printing technologies represents a modern concept in scaffold development in cartilage tissue engineering (CTE). Hydrogels based on natural biomaterials are extensively used for this purpose. This is mainly due to their excellent biocompatibility, inherent bioactivity, and special microstructure that supports tissue regeneration. The use of natural biomaterials, especially polysaccharides and proteins, represents an attractive strategy towards scaffold formation as they mimic the structure of extracellular matrix (ECM) and guide cell growth, proliferation, and phenotype preservation. Polysaccharide-based hydrogels, such as alginate, agarose, chitosan, cellulose, hyaluronan, and dextran, are distinctive scaffold materials with advantageous properties, low cytotoxicity, and tunable functionality. These superior properties can be further complemented with various proteins (e.g., collagen, gelatin, fibroin), forming novel base formulations termed "proteo-saccharides" to improve the scaffold's physiological signaling and mechanical strength. This review highlights the significance of 3D bioprinted scaffolds of natural-based hydrogels used in CTE. Further, the printability and bioink formation of the proteo-saccharides-based hydrogels have also been discussed, including the possible clinical translation of such materials.
Collapse
Affiliation(s)
- Jakob Naranda
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia;
| | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Matjaž Vogrin
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia;
- Department of Orthopaedics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
5
|
EtoGel for Intra-Articular Drug Delivery: A New Challenge for Joint Diseases Treatment. J Funct Biomater 2021; 12:jfb12020034. [PMID: 34065713 PMCID: PMC8162362 DOI: 10.3390/jfb12020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ethosomes® have been proposed as potential intra-articular drug delivery devices, in order to obtain a longer residence time of the delivered drug in the knee joint. To this aim, the conventional composition and preparation method were modified. Ethosomes® were prepared by using a low ethanol concentration and carrying out a vesicle extrusion during the preparation. The modified composition did not affect the deformability of ethosomes®, a typical feature of this colloidal vesicular topical carrier. The maintenance of sufficient deformability bodes well for an effective ethosome® application in the treatment of joint pathologies because they should be able to go beyond the pores of the dense collagen II network. The investigated ethosomes® were inserted in a three-dimensional network of thermo-sensitive poloxamer gel (EtoGel) to improve the residence time in the joint. Rheological experiments evidenced that EtoGel could allow an easy intra-articular injection at room temperature and hence transform itself in gel form at body temperature into the joint. Furthermore, EtoGel seemed to be able to support the knee joint during walking and running. In vitro studies demonstrated that the amount of used ethanol did not affect the viability of human chondrocytes and nanocarriers were also able to suitably interact with cells.
Collapse
|
6
|
Jain N, Singh S. Glycans in scaffold design in tissue reconstruction. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911521997847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.
Collapse
Affiliation(s)
- Nipun Jain
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shashi Singh
- CSIR—Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
7
|
Chiang CW, Hsiao YC, Jheng PR, Chen CH, Manga YB, Lekha R, Chao KM, Ho YC, Chuang EY. Strontium ranelate-laden near-infrared photothermal-inspired methylcellulose hydrogel for arthritis treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111980. [PMID: 33812608 DOI: 10.1016/j.msec.2021.111980] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 01/13/2023]
Abstract
Rheumatoid arthritis (RA) is of foremost concern among long-term autoimmune disorders, as it leads to inflammation, exudates, chondral degeneration, and painful joints. Because RA severity often fluctuates over time, a local drug delivery method that titrates release of therapeutics to arthritis bioactivity should represent a promising paradigm of RA therapy. Given the local nature of RA chronic illnesses, polysaccharide-drug delivering systems have the promise to augment therapeutic outcomes by offering controlled release of bioactive materials, diminishing the required frequency of administration, and preserving therapeutic levels in affected pathological regions. Herein, an intra-articular photothermal-laden injectable methylcellulose (MC) polymeric hydrogel carrier incorporating strontium ranelate (SrR) and sodium chloride was investigated to resolve these issues. Physicochemical and cellular characteristics of the MC carrier system were thoroughly evaluated. The slow release of SrR, enhancement of the material mechanical strength, and the potential of the non-invasive near-infrared photothermal gel to improve blood circulation and suppress inflammation in a mini-surgical model of RA were examined. Biocompatibility and suppression of intracellular ROS-induced inflammation were observed. This multifunctional photothermal MC hydrogel carrier is anticipated to be an alternative approach for future orthopedic disease treatment.
Collapse
Affiliation(s)
- Chih-Wei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan; Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, College of Medicine, Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Optomechatronics, Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, College of Medicine, Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Optomechatronics, Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, College of Medicine, Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan; Department of Orthopedics, , Taipei Medical University-Shuang Ho Hospital, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Yankuba B Manga
- Graduate Institute of Biomedical Optomechatronics, Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, College of Medicine, Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
| | - R Lekha
- Graduate Institute of Biomedical Optomechatronics, Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, College of Medicine, Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
| | - Kun-Mao Chao
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagriculture Science, National Chiayi University, Chiayi, 60004, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Optomechatronics, Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, School of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, College of Medicine, Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, , Taipei Medical University-Wan Fang Hospital, Wenshan District, Taipei, 11696, Taiwan.
| |
Collapse
|
8
|
Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021; 175:495-515. [PMID: 33539959 DOI: 10.1016/j.ijbiomac.2021.01.196] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
Cartilage is a connective tissue, which is made up of ~80% of water. It is alymphatic, aneural and avascular with only one type of cells present, chondrocytes. They constitute about 1-5% of the entire cartilage tissue. It has a very limited capacity for spontaneous repair. Articular cartilage defects are quite common due to trauma, injury or aging and these defects eventually lead to osteoarthritis, affecting the daily activities. Tissue engineering (TE) is a promising strategy for the regeneration of articular cartilage when compared to the existing invasive treatment strategies. Cellulose is the most abundant natural polymer and has desirable properties for the development of a scaffold, which can be used for the regeneration of cartilage. This review discusses about (i) the basic science behind cartilage TE and the study of cellulose properties that can be exploited for the construction of the engineered scaffold with desired properties for cartilage tissue regeneration, (ii) about the requirement of scaffolds properties, fabrication mechanisms and assessment of cellulose based scaffolds, (iii) details about the modification of cellulose surface by employing various chemical approaches for the production of cellulose derivatives with enhanced characteristics and (iv) limitations and future research prospects of cartilage TE.
Collapse
Affiliation(s)
- Madhavi Latha Chinta
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | | | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
9
|
Xi Y, Jiang T, Chaurasiya B, Zhou Y, Yu J, Wen J, Shen Y, Ye X, Webster TJ. Advances in nanomedicine for the treatment of ankylosing spondylitis. Int J Nanomedicine 2019; 14:8521-8542. [PMID: 31806960 PMCID: PMC6831987 DOI: 10.2147/ijn.s216199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a complex disease characterized by inflammation and ankylosis primarily at the cartilage–bone interface. The disease is more common in young males and risk factors include both genetic and environmental. While the pathogenesis of AS is not completely understood, it is thought to be an immune-mediated disease involving inflammatory cellular infiltrates, and human leukocyte antigen-B27. Currently, there is no specific diagnostic technique available for this disease; therefore conventional diagnostic approaches such as clinical symptoms, laboratory tests and imaging techniques are used. There are various review papers that have been published on conventional treatment approaches, and in this review work, we focus on the more promising nanomedicine-based treatment modalities to move this field forward.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu, Jiangsu 215500, People's Republic of China
| | - Birendra Chaurasiya
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanyan Zhou
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
10
|
Pettignano A, Charlot A, Fleury E. Carboxyl-functionalized derivatives of carboxymethyl cellulose: towards advanced biomedical applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1579226] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Asja Pettignano
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223 F 69621, Villeurbanne, France
| | - Aurélia Charlot
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223 F 69621, Villeurbanne, France
| | - Etienne Fleury
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223 F 69621, Villeurbanne, France
| |
Collapse
|
11
|
Yeh MK, Liang YM, Hu CS, Cheng KM, Hung YW, Young JJ, Hong PD. Studies on a novel gelatin sponge: preparation and characterization of cross-linked gelatin scaffolds using 2-chloro-1-methylpyridinium iodide as a zero-length cross-linker. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 23:973-90. [PMID: 21549037 DOI: 10.1163/092050611x568430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We prepared a novel porous gelatin (GEL) sponge which was cross-linked (CL) with a zero-length crosslinker of 2-chloro-1-methylpyridinium iodide (CMPI), and compared CPMI with 1-ethyl-3,3-dimethylaminoproplycarbodiimide (EDC). The ninhydrin assay indicated that the CMPI-CL-GEL sponge had a higher degree of cross-linking than the EDC-CL-GEL sponge at cross-linking saturation. In contrast, the EDC-CL-GEL sponge demonstrated poor water uptake and a much slower enzymatic degradation rate than the CMPI-CL-GEL sponge. Scanning electron microscopy (SEM) images of the gelatin sponge fabricated using a gradient frozen-lyophilization method showed uniformly distributed and interconnected pores. Human 3T3 fibroblasts were successfully seeded onto the scaffolds, and cell proliferation was sustained on all CL-GEL sponges. CMPI-CL-GEL sponges demonstrated significantly increased cell numbers after day 1, and cell numbers steadily rose from day 1 to 12. Meanwhile, the CMPI-CL-GEL sponge had a higher cell number than the EDC-CL-GEL sponge (P < 0.05) by day 4. In vitro studies with 3T3 fibroblasts demonstrated an increased cell viability for those cells grown on sponges cross-linked with CMPI compared to those cross-linked with EDC. SEM images revealed attachment and spreading of cells, the CMPI-CL-GEL sponges had more cells that had elongated, migrated, and formed interconnected networks with neighboring cells.
Collapse
Affiliation(s)
- Ming-Kung Yeh
- a Institute of Preventive Medicine, National Defense Medical Center, PO Box 90048-700, Sanhsia, Taipei 237, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
12
|
Vilela CA, Correia C, Oliveira JM, Sousa RA, Espregueira-Mendes J, Reis RL. Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomater Sci Eng 2015; 1:726-739. [DOI: 10.1021/acsbiomaterials.5b00245] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- C. A. Vilela
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Orthopaedic
Department, Centro Hospitalar do Alto Ave, Guimarães, Portugal
| | - C. Correia
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. Espregueira-Mendes
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Clínica
do Dragão, Espregueira-Mendes Sports Centre, Porto, Portugal
| | - R. L. Reis
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| |
Collapse
|
13
|
Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R. New Formulations of Polysaccharide-Based Hydrogels for Drug Release and Tissue Engineering. Gels 2015; 1:3-23. [PMID: 30674162 PMCID: PMC6318688 DOI: 10.3390/gels1010003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide-based hydrogels are very promising materials for a wide range of medical applications, ranging from tissue engineering to controlled drug delivery for local therapy. The most interesting property of this class of materials is the ability to be injected without any alteration of their chemical, mechanical and biological properties, by taking advantage of their thixotropic behavior. It is possible to modulate the rheological and chemical-physical properties of polysaccharide hydrogels by varying the cross-linking agents and exploiting their thixotropic behavior. We present here an overview of our synthetic strategies and applications of innovative polysaccharide-based hydrogels: hyaluronan-based hydrogel and new derivatives of carboxymethylcellulose have been used as matrices in the field of tissue engineering; while guar gum-based hydrogel and hybrid magnetic hydrogels, have been used as promising systems for targeted controlled drug release. Moreover, a new class of materials, interpenetrating hydrogels (IPH), have been obtained by mixing various native thixotropic hydrogels.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| | - Giulia Rocchigiani
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Lorenzo Mencuccini
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Marianna Uva
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Rolando Barbucci
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| |
Collapse
|
14
|
Bone formation in a rat tibial defect model using carboxymethyl cellulose/BioC/bone morphogenic protein-2 hybrid materials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:230152. [PMID: 24804202 PMCID: PMC3997084 DOI: 10.1155/2014/230152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/12/2014] [Indexed: 02/05/2023]
Abstract
The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects.
Collapse
|
15
|
Lopa S, Mercuri D, Colombini A, Conti G, Segatti F, Zagra L, Moretti M. Orthopedic bioactive implants: Hydrogel enrichment of macroporous titanium for the delivery of mesenchymal stem cells and strontium. J Biomed Mater Res A 2013; 101:3396-403. [DOI: 10.1002/jbm.a.34649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Silvia Lopa
- Cell and Tissue Engineering LaboratoryGruppo Ospedaliero San Donato FoundationMilanItaly
| | - David Mercuri
- Limacorporate s.p.a.Villanova di San Daniele del FriuliUdineItaly
| | - Alessandra Colombini
- Laboratory of Experimental Biochemistry and Molecular BiologyIRCCS Galeazzi Orthopaedic InstituteMilanItaly
| | - Gennyfer Conti
- Limacorporate s.p.a.Villanova di San Daniele del FriuliUdineItaly
| | | | - Luigi Zagra
- Hip DepartmentIRCCS Galeazzi Orthopaedic InstituteMilanItaly
| | - Matteo Moretti
- Cell and Tissue Engineering LaboratoryIRCCS Galeazzi Orthopaedic InstituteMilanItaly
| |
Collapse
|
16
|
Polysaccharide-Based Hydrogels: The Key Role of Water in Affecting Mechanical Properties. Polymers (Basel) 2012. [DOI: 10.3390/polym4031517] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
17
|
Osteodifferentiation of human preadipocytes induced by strontium released from hydrogels. Int J Biomater 2012; 2012:865291. [PMID: 22927856 PMCID: PMC3423935 DOI: 10.1155/2012/865291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 06/21/2012] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been an increasing interest in interactive application principles of biology and engineering for the development of valid biological systems for tissue regeneration, such as for the treatment of bone fractures or skeletal defects. The application of stem cells together with biomaterials releasing bioactive factors promotes the formation of bone tissue by inducing proliferation and/or cell differentiation. In this study, we used a clonal cell line from human adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes), named PA2-E12, to evaluate the effects of strontium (Sr2+) released in the culture medium from an amidated carboxymethylcellulose (CMCA) hydrogel enriched with different Sr2+ concentrations on osteodifferentiation. The osteoinductive effect was evaluated through both the expression of alkaline phophatase (ALP) activity and the hydroxyapatite (HA) production during 42 days of induction. Present data have shown that Sr2+ released from CMCA promotes the osteodifferentiation induced by an osteogenic medium as shown by the increase of ALP activity at 7 and 14 days and of HA production at 14 days. In conclusion, the use of biomaterials able to release in situ osteoinductive agents, like Sr2+, could represent a new strategy for future applications in bone tissue engineering.
Collapse
|
18
|
Micro- and Nano-Carrier Mediated Intra-Articular Drug Delivery Systems for the Treatment of Osteoarthritis. JOURNAL OF NANOTECHNOLOGY 2012. [DOI: 10.1155/2012/748909] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The objective of this paper is to provide readers with current developments of intra-articular drug delivery systems. In recent years, although the search for a clinically successful ideal carrier is ongoing, sustained-release systems, such as polymeric micro- and nanoparticles, liposomes, and hydrogels, are being extensively studied for intra-articular drug delivery purposes. The advantages associated with long-acting preparations include a longer effect of the drug in the action site and a reduced risk of infection due to numerous injections consequently. This paper discusses the recent developments in the field of intra-articular sustained-release delivery systems for the treatment of osteoarthritis.
Collapse
|
19
|
Abstract
Hydrogels are swollen, crosslinked networks that have great potential for use in biomedicine. Their softness, biocompatibility and ability for rapid diffusion of molecules make them useful for drug delivery, cell culture, wound healing and sensing applications. The chemical functionality of the gels can be easily modified to provide signalling and growth factors for cell proliferation. To allow the ingress of large cells, either porosity of the substrate can be controlled, or the gel can be made biodegradable. One ultimate goal is the growth of entire organs in the laboratory for eventual transplantation. Gels can be used as drug-delivery vehicles, either as implantable depots, or as microgels in blood-based delivery systems. One expanding area is the use of gels as surgical aides to prevent bleeding, infection and post-operative complications.
Collapse
|
20
|
Sobol E, Shekhter A, Guller A, Baum O, Baskov A. Laser-induced regeneration of cartilage. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:080902. [PMID: 21895308 DOI: 10.1117/1.3614565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.
Collapse
Affiliation(s)
- Emil Sobol
- Institute on Laser and Information Technologies, Russian Academy of Sciences, 2, Pionerskya, Troitsk, 142192, Russia.
| | | | | | | | | |
Collapse
|
21
|
Yeh MK, Liang YM, Cheng KM, Dai NT, Liu CC, Young JJ. A novel cell support membrane for skin tissue engineering: Gelatin film cross-linked with 2-chloro-1-methylpyridinium iodide. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.10.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Reza AT, Nicoll SB. Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater 2010; 6:179-86. [PMID: 19505596 DOI: 10.1016/j.actbio.2009.06.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 05/26/2009] [Accepted: 06/01/2009] [Indexed: 02/07/2023]
Abstract
Back pain is a significant clinical concern often associated with degeneration of the intervertebral disc (IVD). Tissue engineering strategies may provide a viable IVD replacement therapy; however, an ideal biomaterial scaffold has yet to be identified. One candidate material is carboxymethylcellulose (CMC), a water-soluble derivative of cellulose. In this study, 90 and 250 kDa CMC polymers were modified with functional methacrylate groups and photocrosslinked to produce hydrogels at different macromer concentrations. At 7 days, bovine nucleus pulposus (NP) cells encapsulated in these hydrogels were viable, with values for the elastic modulus ranging from 1.07 + or - 0.06 to 4.29 + or - 1.25 kPa. Three specific formulations were chosen for further study based on cell viability and mechanical integrity assessments: 4% 90 kDa, 2% 250 kDa and 3% 250 kDa CMC. The equilibrium weight swelling ratio of these formulations remained steady throughout the 2 week study (46.45 + or - 3.14, 48.55 + or - 2.91 and 42.41 + or - 3.06, respectively). The equilibrium Young's modulus of all cell-laden and cell-free control samples decreased over time, with the exception of cell-laden 3% 250 kDa CMC constructs, indicating an interplay between limited hydrolysis of interchain crosslinks and the elaboration of a functional matrix. Histological analyses of 3% 250 kDa CMC hydrogels confirmed the presence of rounded cells in lacunae and the pericellular deposition of chondroitin sulfate proteoglycan, a phenotypic NP marker. Taken together, these studies support the use of photocrosslinked CMC hydrogels as tunable biomaterials for NP cell encapsulation.
Collapse
|
23
|
Thixotropic property in pharmaceutical formulations. J Control Release 2009; 136:88-98. [DOI: 10.1016/j.jconrel.2009.02.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 11/19/2022]
|
24
|
Abstract
Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.
Collapse
|